-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlayers.py
616 lines (497 loc) · 22.4 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
import numpy as np
import math
import copy
from scratch_ml.utils import Sigmoid, ReLU, LeakyReLU, Softmax, TanH
class Layer():
"""Base Layer class."""
def set_input_shape(self, shape):
"""Sets the shape that the layer expects of the input."""
self.input_shape = shape
def output_shape(self):
"""The shape of the output produced by forward_pass."""
return NotImplementedError()
def layer_name(self):
"""The name of the layer"""
return self.__class__.__name__
def parameters(self):
"""The number of trainable parameters parameters(used by the layer."""
return 0
def forward_pass(self, x, training):
"""Propogates the data forward in the network."""
return NotImplementedError()
def backward_pass(self, gradient):
""" Propogates the gradient backwards in the network."""
return NotImplementedError()
class Dense(Layer):
def __init__(self, n_units, input_shape=None):
"""A fully-connected NN layer."""
self.layer_input = None
self.input_shape = input_shape
self.n_units = n_units
self.trainable = True
self.w = None
self.w0 = None
def initialize(self, optimizer):
# Initialize weights
limit = 1 / math.sqrt(self.input_shape[0])
self.w = np.random.uniform(-limit, limit,
(self.input_shape[0], self.n_units))
self.w0 = np.zeros((1, self.n_units))
# Weight optimizers
self.w_opt = copy.copy(optimizer)
self.w0_opt = copy.copy(optimizer)
def parameters(self):
return np.prod(self.w.shape) + np.prod(self.w0.shape)
def forward_pass(self, x, training=True):
self.layer_input = x
return x.dot(self.w) + self.w0
def backward_pass(self, gradient):
w = self.w
if self.trainable:
grad_w = self.layer_input.T.dot(gradient)
grad_w0 = np.sum(gradient, axis=0, keepdims=True)
self.w = self.w0_opt.update(self.w, grad_w)
self.w0 = self.w_opt.update(self.w0, grad_w0)
# Return accumulated gradient for next layer
return gradient.dot(w.T)
def output_shape(self):
return (self.n_units, )
class RNN(Layer):
"""Fully Connected RNN layer."""
def __init__(self, n_units, activation='tanh', bptt=5, input_shape=None):
self.input_shape = input_shape
self.n_units = n_units
self.activation = activation_functions[activation]()
self.trainable = True
self.bptt = bptt # Backpropagation Through Time = bppt
self.W = None # Weight of the previous state
self.V = None # Weight of the output
self.U = None # Weight of the input
def initialize(self, optimizer):
timesteps, input_dim = self.input_shape
limit = 1 / math.sqrt(input_dim)
self.U = np.random.uniform(-limit, limit, (self.n_units, input_dim))
limit = 1 / math.sqrt(self.n_units)
self.V = np.random.uniform(-limit, limit, (input_dim, self.n_units))
self.W = np.random.uniform(-limit, limit, (self.n_units, self.n_units))
# Weight optimizers
self.U_opt = copy.copy(optimizer)
self.V_opt = copy.copy(optimizer)
self.W_opt = copy.copy(optimizer)
def parameters(self):
return np.prod(self.U.shape) + np.prod(self.V.shape) + np.prod(self.W.shape)
def forward_pass(self, x, training=True):
self.layer_input = x
batch_size, timesteps, input_dim = x.shape
# Save these values for use in backprop.
self.state_input = np.zeros((batch_size, timesteps, self.n_units))
self.states = np.zeros((batch_size, timesteps+1, self.n_units))
self.outputs = np.zeros((batch_size, timesteps, input_dim))
# Set last time step to zero for calculation of the state_input at time step zero
self.states[:, -1] = np.zeros((batch_size, self.n_units))
for t in range(timesteps):
self.state_input[:, t] = x[:, t].dot(
self.U.T) + self.states[:, t-1].dot(self.W.T)
self.states[:, t] = self.activation(self.state_input[:, t])
self.outputs[:, t] = self.states[:, t].dot(self.V.T)
return self.outputs
def backward_pass(self, gradient):
_, timesteps, _ = gradient.shape
# Variables where we save the accumulated gradient
grad_U = np.zeros_like(self.U)
grad_V = np.zeros_like(self.V)
grad_W = np.zeros_like(self.W)
accum_grad_next = np.zeros_like(gradient)
for t in reversed(range(timesteps)):
# Update gradient w.r.t V at time step t
grad_V += gradient[:, t].T.dot(self.states[:, t])
# Calculate the gradient w.r.t the state input
grad_wrt_state = gradient[:, t].dot(
self.V) * self.activation.gradient(self.state_input[:, t])
# Gradient w.r.t the layer input
accum_grad_next[:, t] = grad_wrt_state.dot(self.U)
# Update gradient w.r.t W and U by backprop. from time step t for at most
# self.bptt_trunc number of time steps
for t_ in reversed(np.arange(max(0, t - self.bptt, t+1))):
grad_U += grad_wrt_state.T.dot(self.layer_input[:, t_])
grad_W += grad_wrt_state.T.dot(self.states[:, t_-1])
# Calculate gradient w.r.t previous state
grad_wrt_state = grad_wrt_state.dot(
self.W) * self.activation.gradient(self.state_input[:, t_-1])
self.U = self.U_opt.update(self.U, grad_U)
self.V = self.V_opt.update(self.V, grad_V)
self.W = self.W_opt.update(self.W, grad_W)
return accum_grad_next
def output_shape(self):
return self.input_shape
class Conv2D(Layer):
"""2D Convolution Layer"""
def __init__(self, n_filters, filter_shape, input_shape=None, padding='same', stride=1):
self.n_filters = n_filters
self.filter_shape = filter_shape
self.padding = padding
self.stride = stride
self.input_shape = input_shape
self.trainable = True
def initialize(self, optimizer):
# Initialize the weights
filter_height, filter_width = self.filter_shape
channels = self.input_shape[0]
limit = 1 / math.sqrt(np.prod(self.filter_shape))
self.w = np.random.uniform(-limit, limit, size=(self.n_filters,
channels, filter_height, filter_width))
self.w0 = np.zeros((self.n_filters, 1))
self.w_opt = copy.copy(optimizer)
self.w0_opt = copy.copy(optimizer)
def parameters(self):
return np.prod(self.w.shape) + np.prod(self.w0.shape)
def forward_pass(self, x, training=True):
batch_size, channels, height, width = x.shape
self.layer_input = x
# Turn image shape into column shape
self.x_col = image_to_column(
x, self.filter_shape, stride=self.stride, output_shape=self.padding)
# Turn weights into column shape
self.w_col = self.w.reshape((self.n_filters, -1))
output = self.w_col.dot(self.x_col) + self.w0
# Reshape into (n_filters, out_height, out_width, batch_size)
output = output.reshape(self.output_shape() + (batch_size, ))
# Redistribute axises so that batch size comes first
return output.transpose(3, 0, 1, 2)
def backward_pass(self, gradient):
# Reshape accumulated gradient into column shape
gradient = gradient.transpose(1, 2, 3, 0).reshape(self.n_filters, -1)
if self.trainable:
# Take dot product between column shaped accum. gradient and column shape
# layer input to determine the gradient at the layer with respect to layer weights
grad_w = gradient.dot(self.x_col.T).reshape(self.w.shape)
# The gradient with respect to bias terms is the sum similarly to in Dense layer
grad_w0 = np.sum(gradient, axis=1, keepdims=True)
# Update the layers weights
self.w = self.w_opt.update(self.w, grad_w)
self.w0 = self.w0_opt.update(self.w0, grad_w0)
# Recalculate the gradient which will be propogated back to prev. layer
gradient = self.w_col.T.dot(gradient)
# Reshape from column shape to image shape
gradient = column_to_image(gradient,
self.layer_input.shape,
self.filter_shape,
stride=self.stride,
output_shape=self.padding)
return gradient
def output_shape(self):
channels, height, width = self.input_shape
pad_h, pad_w = determine_padding(
self.filter_shape, output_shape=self.padding)
output_height = (height + np.sum(pad_h) -
self.filter_shape[0]) / self.stride + 1
output_width = (width + np.sum(pad_w) -
self.filter_shape[1]) / self.stride + 1
return self.n_filters, int(output_height), int(output_width)
activation_functions = {
"relu": ReLU,
"sigmoid": Sigmoid,
"softmax": Softmax,
"leaky_relu": LeakyReLU,
"tanh": TanH,
}
class Activation(Layer):
"""A layer that applies an activation operation to the input."""
def __init__(self, name):
self.activation_func = activation_functions[name]()
self.trainable = True
def layer_name(self):
return self.activation_func.__class__.__name__
def forward_pass(self, x, training=True):
self.layer_input = x
return self.activation_func(x)
def backward_pass(self, gradient):
return gradient * self.activation_func.gradient(self.layer_input)
def output_shape(self):
return self.input_shape
class Dropout(Layer):
"""A layer that randomly sets a fraction p(float) of the output units of the previous layer
to zero."""
def __init__(self, p=0.2):
self.p = p
self.trainable = True
self._mask = None
self.input_shape = None
self.n_units = None
self.pass_through = True
def forward_pass(self, x, training=True):
c = (1 - self.p)
if training:
self._mask = np.random.uniform(size=x.shape) > self.p
c = self._mask
return x * c
def backward_pass(self, gradient):
return gradient * self._mask
def output_shape(self):
return self.input_shape
class Flatten(Layer):
"""Turns a multidimensional matrix into two-dimensional."""
def __init__(self, input_shape=None):
self.input_shape = input_shape
self.trainable = True
self.prev_shape = None
def forward_pass(self, x, training=True):
self.prev_shape = x.shape
return x.reshape((x.shape[0], -1))
def backward_pass(self, gradient):
return gradient.reshape(self.prev_shape)
def output_shape(self):
return (np.prod(self.input_shape),)
class Reshape(Layer):
"""Reshapes the input tensor into specified shape.
shape : tuple
The shape which the input shall be reshaped to.
"""
def __init__(self, shape, input_shape=None):
self.input_shape = input_shape
self.shape = shape
self.trainable = True
self.prev_shape = None
def forward_pass(self, x, training=True):
self.prev_shape = x.shape
return x.reshape((x.shape[0], ) + self.shape)
def backward_pass(self, gradient):
return gradient.reshape(self.prev_shape)
def output_shape(self):
return self.shape
class BatchNormalization(Layer):
"""Batch normalization"""
def __init__(self, momentum=0.99):
self.momentum = momentum
self.trainable = True
self.eps = 0.01
self.running_mean = None
self.running_var = None
def initialize(self, optimizer):
self.gamma = np.ones(self.input_shape)
self.beta = np.zeros(self.input_shape)
self.gamma_opt = copy.copy(optimizer)
self.beta_opt = copy.copy(optimizer)
def parameters(self):
return np.prod(self.gamma.shape) + np.prod(self.beta.shape)
def forward_pass(self, x, training=True):
# Initialize running mean and variance if first run
if self.running_mean is None:
self.running_mean = np.mean(x, axis=0)
self.running_var = np.var(x, axis=0)
if training and self.trainable:
mean = np.mean(x, axis=0)
var = np.var(x, axis=0)
self.running_mean = self.momentum * \
self.running_mean + (1 - self.momentum) * mean
self.running_var = self.momentum * \
self.running_var + (1 - self.momentum) * var
else:
mean = self.running_mean
var = self.running_var
# Statistics saved for backward pass
self.x_centered = x - mean
self.stddev_inv = 1 / np.sqrt(var + self.eps)
x_norm = self.x_centered * self.stddev_inv
output = self.gamma * x_norm + self.beta
return output
def backward_pass(self, gradient):
gamma = self.gamma
if self.trainable:
x_norm = self.x_centered * self.stddev_inv
grad_gamma = np.sum(gradient * x_norm, axis=0)
grad_beta = np.sum(gradient, axis=0)
self.gamma = self.gamma_opt.update(self.gamma, grad_gamma)
self.beta = self.beta_opt.update(self.beta, grad_beta)
batch_size = gradient.shape[0]
# The gradient of the loss with respect to the layer inputs.
gradient = (1 / batch_size) * gamma * self.stddev_inv * (
batch_size * gradient
- np.sum(gradient, axis=0)
- self.x_centered * self.stddev_inv**2 *
np.sum(gradient * self.x_centered, axis=0))
return gradient
def output_shape(self):
return self.input_shape
class UpSampling2D(Layer):
"""Up sampling of the input repeats the rows and
columns of the data."""
def __init__(self, size=(2, 2), input_shape=None):
self.prev_shape = None
self.trainable = True
self.size = size
self.input_shape = input_shape
def forward_pass(self, x, training=True):
self.prev_shape = x.shape
x_new = x.repeat(self.size[0], axis=2).repeat(self.size[1], axis=3)
return x_new
def backward_pass(self, gradient):
# Down sample input to previous shape
gradient = gradient[:, :, ::self.size[0], ::self.size[1]]
return gradient
def output_shape(self):
channels, height, width = self.input_shape
return channels, self.size[0] * height, self.size[1] * width
class ConstantPadding2D(Layer):
"""Adds rows and columns of constant values to the input.
Parameters:
-----------
padding: tuple
The amount of padding along the height and width dimension of the input.
If (pad_h, pad_w) the same symmetric padding is applied along height and width dimension.
If ((pad_h0, pad_h1), (pad_w0, pad_w1)) the specified padding is added to beginning and end of
the height and width dimension.
padding_value: int or tuple
The value the is added as padding."""
def __init__(self, padding, padding_value=0):
self.padding = padding
self.trainable = True
if not isinstance(padding[0], tuple):
self.padding = ((padding[0], padding[0]), padding[1])
if not isinstance(padding[1], tuple):
self.padding = (self.padding[0], (padding[1], padding[1]))
self.padding_value = padding_value
def forward_pass(self, x, training=True):
output = np.pad(x,
pad_width=((0, 0), (0, 0),
self.padding[0], self.padding[1]),
mode="constant",
constant_values=self.padding_value)
return output
def backward_pass(self, gradient):
pad_top, pad_left = self.padding[0][0], self.padding[1][0]
height, width = self.input_shape[1], self.input_shape[2]
gradient = gradient[:, :, pad_top:pad_top +
height, pad_left:pad_left+width]
return gradient
def output_shape(self):
new_height = self.input_shape[1] + np.sum(self.padding[0])
new_width = self.input_shape[2] + np.sum(self.padding[1])
return (self.input_shape[0], new_height, new_width)
class ZeroPadding2D(ConstantPadding2D):
"""Adds rows and columns of zero values to the input."""
def __init__(self, padding):
self.padding = padding
if isinstance(padding[0], int):
self.padding = ((padding[0], padding[0]), padding[1])
if isinstance(padding[1], int):
self.padding = (self.padding[0], (padding[1], padding[1]))
self.padding_value = 0
class PoolingLayer(Layer):
"""A parent class of MaxPooling and AveragePooling."""
def __init__(self, pool_shape=(2, 2), stride=1, padding=0):
self.pool_shape = pool_shape
self.stride = stride
self.padding = padding
self.trainable = True
def forward_pass(self, x, training=True):
self.layer_input = x
batch_size, channels, height, width = x.shape
_, out_height, out_width = self.output_shape()
x = x.reshape(batch_size*channels, 1, height, width)
x_col = image_to_column(x, self.pool_shape, self.stride, self.padding)
# MaxPool or AveragePool method
output = self._pool_forward(x_col)
output = output.reshape(out_height, out_width, batch_size, channels)
output = output.transpose(2, 3, 0, 1)
return output
def backward_pass(self, gradient):
batch_size, _, _, _ = gradient.shape
channels, height, width = self.input_shape
accum_grad = gradient.transpose(2, 3, 0, 1).ravel()
# MaxPool or AveragePool method
accum_grad_col = self._pool_backward(accum_grad)
accum_grad = column_to_image(
accum_grad_col, (batch_size * channels, 1, height, width), self.pool_shape, self.stride, 0)
accum_grad = accum_grad.reshape((batch_size,) + self.input_shape)
return accum_grad
def output_shape(self):
channels, height, width = self.input_shape
out_height = (height - self.pool_shape[0]) / self.stride + 1
out_width = (width - self.pool_shape[1]) / self.stride + 1
assert out_height % 1 == 0
assert out_width % 1 == 0
return channels, int(out_height), int(out_width)
class MaxPooling2D(PoolingLayer):
def _pool_forward(self, x_col):
arg_max = np.argmax(x_col, axis=0).flatten()
output = x_col[arg_max, range(arg_max.size)]
self.cache = arg_max
return output
def _pool_backward(self, gradient):
gradient_col = np.zeros((np.prod(self.pool_shape), gradient.size))
arg_max = self.cache
gradient_col[arg_max, range(gradient.size)] = gradient
return gradient_col
class AveragePooling2D(PoolingLayer):
def _pool_forward(self, x_col):
output = np.mean(x_col, axis=0)
return output
def _pool_backward(self, gradient):
gradient_col = np.zeros((np.prod(self.pool_shape), gradient.size))
gradient_col[:, range(gradient.size)] = 1. / \
gradient_col.shape[0] * gradient
return gradient_col
def determine_padding(filter_shape, output_shape="same"):
"""Method which calculates the padding based on the specified output shape
and the shape of the filters."""
if output_shape == "valid":
return (0, 0), (0, 0)
elif output_shape == "same":
filter_height, filter_width = filter_shape
# output_height = (height + pad_h - filter_height) / stride + 1
pad_h1 = int(math.floor((filter_height - 1)/2))
pad_h2 = int(math.ceil((filter_height - 1)/2))
pad_w1 = int(math.floor((filter_width - 1)/2))
pad_w2 = int(math.ceil((filter_width - 1)/2))
return (pad_h1, pad_h2), (pad_w1, pad_w2)
def get_im2col_indices(images_shape, filter_shape, padding, stride=1):
# First figure out what the size of the output should be
batch_size, channels, height, width = images_shape
filter_height, filter_width = filter_shape
pad_h, pad_w = padding
out_height = int((height + np.sum(pad_h) - filter_height) / stride + 1)
out_width = int((width + np.sum(pad_w) - filter_width) / stride + 1)
i0 = np.repeat(np.arange(filter_height), filter_width)
i0 = np.tile(i0, channels)
i1 = stride * np.repeat(np.arange(out_height), out_width)
j0 = np.tile(np.arange(filter_width), filter_height * channels)
j1 = stride * np.tile(np.arange(out_width), out_height)
i = i0.reshape(-1, 1) + i1.reshape(1, -1)
j = j0.reshape(-1, 1) + j1.reshape(1, -1)
k = np.repeat(np.arange(channels), filter_height *
filter_width).reshape(-1, 1)
return (k, i, j)
def image_to_column(images, filter_shape, stride, output_shape="same"):
filter_height, filter_width = filter_shape
pad_h, pad_w = determine_padding(filter_shape, output_shape)
# Add padding to the image
images_padded = np.pad(
images, ((0, 0), (0, 0), pad_h, pad_w), mode="constant")
# Calculate the indices where the dot products are to be applied between weights
# and the image
k, i, j = get_im2col_indices(
images.shape, filter_shape, (pad_h, pad_w), stride)
# Get content from image at those indices
cols = images_padded[:, k, i, j]
channels = images.shape[1]
# Reshape content into column shape
cols = cols.transpose(1, 2, 0).reshape(
filter_height * filter_width * channels, -1)
return cols
def column_to_image(cols, images_shape, filter_shape, stride, output_shape="same"):
batch_size, channels, height, width = images_shape
pad_h, pad_w = determine_padding(filter_shape, output_shape)
height_padded = height + np.sum(pad_h)
width_padded = width + np.sum(pad_w)
images_padded = np.zeros(
(batch_size, channels, height_padded, width_padded))
# Calculate the indices where the dot products are applied between weights
# and the image
k, i, j = get_im2col_indices(
images_shape, filter_shape, (pad_h, pad_w), stride)
cols = cols.reshape(channels * np.prod(filter_shape), -1, batch_size)
cols = cols.transpose(2, 0, 1)
# Add column content to the images at the indices
np.add.at(images_padded, (slice(None), k, i, j), cols)
return images_padded[:, :, pad_h[0]:height+pad_h[0], pad_w[0]:width+pad_w[0]]