-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathresLF_test.py
executable file
·348 lines (286 loc) · 13.7 KB
/
resLF_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import torch
import os
import numpy as np
from skimage.measure import compare_ssim
from math import log10
import cv2
import skimage.color as color
from resLF_model import resLF
from func_input import multi_input_all, image_input, uv_list_by_n
import sys
import time
import pandas as pd
from argparse import ArgumentParser, ArgumentTypeError
class Logger:
def __init__(self, filename='default.log', stream=sys.stdout):
self.terminal = stream
self.log = open(filename, 'a')
def write(self, message):
self.terminal.write(message)
self.log.write(message)
def flush(self):
pass
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise ArgumentTypeError('Unsupported value encountered.')
def opts_parser():
usage = "resLF Test"
parser = ArgumentParser(description=usage)
parser.add_argument(
'-I', '--image_path', type=str, default=None, dest='image_path',
help='Loading 4D LF images from this path: (default: %(default)s)')
parser.add_argument(
'-M', '--model', type=str, default='model_all/', dest='model_path',
help='Loading pre-trained model file from this path: (default: %(default)s)')
parser.add_argument(
'-S', '--save_path', type=str, default='test_result/', dest='save_path',
help='Save upsampled LF to this path: (default: %(default)s)')
parser.add_argument(
'-o', '--original_length', type=int, default=14, dest='original_length',
help='Original light field angular resolution: (default: %(default)s)')
parser.add_argument(
'-c', '--crop_length', type=int, default=7, dest='crop_length',
help='Crop light field with different angular resolution for test: (default: %(default)s)')
parser.add_argument(
'-s', '--scale', type=int, default=2, dest='scale',
help='Spatial upsampling scale: (default: %(default)s)')
parser.add_argument(
'-C', '--central', type=str2bool, default=True, dest='is_single',
help='Only super-resolve central view: (default: %(default)s)')
parser.add_argument(
'-i', '--interpolation', type=str, default='blur', dest='interpolation',
help='downsampling interpolation method (`blur`, `bicubic`): (default: %(default)s)')
parser.add_argument(
'-g', '--gpu_no', type=int, default=0, dest='gpu_no',
help='GPU used: (default: %(default)s)')
return parser
def main(image_path, model_path, save_path='result/', view_n_ori=14, view_n=7, scale=2, is_single=True,
interpolation='blur', gpu_no=0):
inter_type = ('bicubic', 'blur')
if interpolation not in inter_type:
raise ValueError('`{}` interpolation is not supported, Possible values are: bicubic, blur'.format(interpolation))
# choose GPU
os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_no)
print('=' * 40)
print('create save directory...')
if not os.path.exists(save_path):
os.makedirs(save_path)
sys.stdout = Logger(save_path + 'test_{}.log'.format(int(time.time())), sys.stdout)
print('done')
print('=' * 40)
print('build network and load model...')
if is_single:
model = resLF_model_reading_single(model_path, view_n, scale, interpolation)
else:
model = resLF_model_reading_all(model_path, view_n, scale, interpolation)
print('done')
print('=' * 40)
print('predict image...')
xls_list = []
psnr_list = []
ssim_list = []
time_list = []
files = os.listdir(image_path)
for index, image_name in enumerate(files):
print('-' * 100)
print('[{}/{}]'.format(index + 1, len(files)), image_name)
time_item_start = time.time()
gt_ycbcr, lr_ycbcr = image_input(image_path + image_name, scale, view_n, view_n_ori, interpolation)
lr_y, gt_hr_y, lr_cbcr = lr_ycbcr[:, :, 0] / 255.0, gt_ycbcr[:, :, 0] / 255.0, lr_ycbcr[:, :, 1:3]
psnr_image, ssim_image, hr_y = predict_y(lr_y, gt_hr_y, view_n, is_single, model, scale)
hr_cbcr = predict_cbcr(lr_cbcr, scale, view_n, is_single)
time_ = time.time() - time_item_start
time_list.append(time_)
result_image_path = save_path + image_name[0:-4] + '/'
if not os.path.exists(result_image_path):
os.makedirs(result_image_path)
if is_single:
view_n_central = view_n // 2
print('PSNR: {:.4f}, SSIM: {:.4f}, TIME: {:.4f}'.format(psnr_image[view_n_central, view_n_central],
ssim_image[view_n_central, view_n_central], time_))
hr_y_item = np.clip(hr_y[view_n_central, view_n_central, :, :] * 255.0, 16.0, 235.0)
hr_y_item = hr_y_item[:, :, np.newaxis]
hr_cb_item = hr_cbcr[0, 0, :, :, 1:2]
hr_cr_item = hr_cbcr[0, 0, :, :, 0:1]
hr_ycbcr_item = np.concatenate((hr_y_item, hr_cb_item, hr_cr_item), 2)
hr_rgb_item = color.ycbcr2rgb(hr_ycbcr_item) * 255.0
img_save_path = result_image_path + 'central.png'
cv2.imwrite(img_save_path, hr_rgb_item)
psnr_ = psnr_image[view_n_central, view_n_central]
psnr_list.append(psnr_)
ssim_ = ssim_image[view_n_central, view_n_central]
ssim_list.append(ssim_)
else:
for i in range(view_n):
for j in range(view_n):
print('{:6.4f}/{:6.4f}'.format(psnr_image[i, j], ssim_image[i, j]), end='\t\t')
print('')
print(
'PSNR Avr: {:.4f}, Max: {:.4f}, Min: {:.4f}, SSIM: Avr: {:.4f}, Max: {:.4f}, Min: {:.4f}, TIME: {:.4f}'
.format(np.mean(psnr_image), np.max(psnr_image), np.min(psnr_image),
np.mean(ssim_image), np.max(ssim_image), np.min(ssim_image), time_))
for i in range(view_n):
for j in range(view_n):
hr_y_item = np.clip(hr_y[i, j, :, :] * 255.0, 16.0, 235.0)
hr_y_item = hr_y_item[:, :, np.newaxis]
hr_cb_item = hr_cbcr[i, j, :, :, 1:2]
hr_cr_item = hr_cbcr[i, j, :, :, 0:1]
hr_ycbcr_item = np.concatenate((hr_y_item, hr_cb_item, hr_cr_item), 2)
hr_rgb_item = color.ycbcr2rgb(hr_ycbcr_item) * 255.0
img_save_path = result_image_path + str(i) + str(j) + '.png'
cv2.imwrite(img_save_path, hr_rgb_item)
psnr_ = np.mean(psnr_image)
psnr_list.append(psnr_)
ssim_ = np.mean(ssim_image)
ssim_list.append(ssim_)
xls_list.append([image_name, psnr_, ssim_, time_])
xls_list.append(['average', np.mean(psnr_list), np.mean(ssim_list), np.mean(time_list)])
xls_list = np.array(xls_list)
result = pd.DataFrame(xls_list, columns=['image', 'psnr', 'ssim', 'time'])
result.to_csv(save_path + 'result.csv')
print('-' * 100)
print('AVR: PSNR: {:.4f}, SSIM: {:.4f}, TIME: {:.4f}'.format(np.mean(psnr_list), np.mean(ssim_list),
np.mean(time_list)))
print('all done')
def predict_y(lr_y, gt_hr_y, view_n, is_single, model_dic, scale):
"""
perdict channel Y
:param lr_y:
:param gt_hr_y:
:param view_n:
:param model: tuple of model
:return:
"""
lr_y, gt_hr_y = torch.from_numpy(lr_y.copy()), torch.from_numpy(gt_hr_y.copy())
torch.no_grad()
psnr_image = np.zeros((view_n, view_n))
ssim_image = np.zeros((view_n, view_n))
image_h = gt_hr_y.shape[0] // view_n
image_w = gt_hr_y.shape[1] // view_n
hr_y = np.zeros((view_n, view_n, image_h, image_w), dtype=np.float32)
# model reading
if is_single:
model = model_dic['single']
# for central image
u_list = [view_n // 2]
v_list = [view_n // 2]
psnr_image, ssim_image, hr_y = test_all(lr_y, gt_hr_y, view_n, u_list, v_list, model, psnr_image, ssim_image,
hr_y, scale)
return psnr_image, ssim_image, hr_y
uv_dic = uv_list_by_n(view_n)
for item in range(3, view_n + 1, 2):
if item == 3:
model = model_dic['3h']
u_list = uv_dic['u3h']
v_list = uv_dic['v3h']
psnr_image, ssim_image, hr_y = test_all(lr_y, gt_hr_y, view_n, u_list, v_list, model,
psnr_image, ssim_image, hr_y, scale)
model = model_dic['3v']
u_list = uv_dic['u3v']
v_list = uv_dic['v3v']
psnr_image, ssim_image, hr_y = test_all(lr_y, gt_hr_y, view_n, u_list, v_list, model,
psnr_image, ssim_image, hr_y, scale)
model = model_dic['3hv']
u_list = uv_dic['u3hv']
v_list = uv_dic['v3hv']
psnr_image, ssim_image, hr_y = test_all(lr_y, gt_hr_y, view_n, u_list, v_list, model,
psnr_image, ssim_image, hr_y, scale)
model = model_dic[str(item)]
u_list = uv_dic['u' + str(item)]
v_list = uv_dic['v' + str(item)]
psnr_image, ssim_image, hr_y = test_all(lr_y, gt_hr_y, view_n, u_list, v_list, model,
psnr_image, ssim_image, hr_y, scale)
return psnr_image, ssim_image, hr_y
def predict_cbcr(lr_cbcr, scale, view_n, is_single=True):
if is_single:
hr_cbcr = np.zeros((1, 1, lr_cbcr.shape[0] // view_n * scale, lr_cbcr.shape[1] // view_n * scale, 2))
image_bicubic = cv2.resize(lr_cbcr[view_n // scale::view_n, view_n // scale::view_n, :],
(hr_cbcr.shape[3], hr_cbcr.shape[2]),
interpolation=cv2.INTER_CUBIC)
hr_cbcr[0, 0, :, :, :] = image_bicubic
return hr_cbcr
hr_cbcr = np.zeros((view_n, view_n, lr_cbcr.shape[0] // view_n * scale, lr_cbcr.shape[1] // view_n * scale, 2))
for i in range(view_n):
for j in range(view_n):
image_bicubic = cv2.resize(lr_cbcr[i::view_n, j::view_n, :], (hr_cbcr.shape[3], hr_cbcr.shape[2]),
interpolation=cv2.INTER_CUBIC)
hr_cbcr[i, j, :, :, :] = image_bicubic
return hr_cbcr
def resLF_model_reading_single(model_path, view_n, scale, interpolation):
model = {}
model_item = resLF(n_view=view_n, scale=scale)
model_item.cuda()
state_dict = torch.load(model_path + '{}_{}_{}.pkl'.format(scale, view_n, interpolation))
model_item.load_state_dict(state_dict)
model['single'] = model_item
return model
def resLF_model_reading_all(model_path, view_n, scale, interpolation):
model_dic = {}
for item in range(3, view_n + 1, 2):
task = ['3h', '3v', '3hv']
if item == 3:
for i in task:
model = resLF(n_view=item, scale=scale)
model.cuda()
state_dict = torch.load(model_path + '{}_{}_{}.pkl'.format(scale, i, interpolation))
model.load_state_dict(state_dict)
model_dic[i] = model
model = resLF(n_view=item, scale=scale)
model.cuda()
state_dict = torch.load(model_path + '{}_{}_{}.pkl'.format(scale, item, interpolation))
model.load_state_dict(state_dict)
model_dic[str(item)] = model
return model_dic
def test_all(test_image, gt_image, view_num_all, u_list, v_list, model, psnr_image, ssim_image, pre_lf, scale):
for i in range(0, len(u_list), 1):
u = u_list[i]
v = v_list[i]
model.eval()
train_data_0, train_data_90, train_data_45, train_data_135, gt_data = \
multi_input_all(test_image, gt_image, view_num_all, u, v, scale)
train_data_0, train_data_90, train_data_45, train_data_135, gt_data = \
train_data_0.cuda(), train_data_90.cuda(), train_data_45.cuda(), train_data_135.cuda(), gt_data.cuda()
# Forward pass: Compute predicted y by passing x to the model
with torch.no_grad():
gt_pred = model(train_data_0, train_data_90, train_data_45, train_data_135)
# calculate the PSNR and SSIM values
output = gt_pred[0, 0, :, :]
img_pre = output.cpu().numpy()
img_pre = np.clip(img_pre, 16/255, 235/255)
output = gt_data[0, :, :]
gt_img = output.cpu().numpy()
image_h = gt_img.shape[0]
image_w = gt_img.shape[1]
compare_loss = (img_pre - gt_img) ** 2
compare_loss = compare_loss.sum() / (image_w * image_h)
psnr = 10 * log10(1 / compare_loss)
ssim = compare_ssim(img_pre, gt_img)
psnr_image[u, v] = psnr
ssim_image[u, v] = ssim
pre_lf[u, v, :, :] = img_pre
return psnr_image, ssim_image, pre_lf
if __name__ == '__main__':
parser = opts_parser()
args = parser.parse_args()
image_path = args.image_path
model_path = args.model_path
save_path = args.save_path
view_n_ori = args.original_length
view_n = args.crop_length
is_single = args.is_single
scale = args.scale
interpolation = args.interpolation
gpu_no = args.gpu_no
main(image_path=image_path,
model_path=model_path,
save_path=save_path,
view_n_ori=view_n_ori,
view_n=view_n,
scale=scale,
is_single=is_single,
interpolation=interpolation,
gpu_no=gpu_no)