-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathprompting_utils.py
628 lines (527 loc) · 29 KB
/
prompting_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
# coding=utf-8
# Copyright 2024 NUS Show Lab.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
# TODO - SHOULD BE FURTHER IMPROVED.
class UniversalPrompting():
def __init__(self, text_tokenizer,
special_tokens=("<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>"),
max_text_len=8000, max_seq_len=377, ignore_id=-100, cond_dropout_prob=0.1):
"""
:param text_tokenizer: original text tokenizer
"""
self.text_tokenizer = text_tokenizer
self.text_tokenizer.add_special_tokens({'pad_token': '[PAD]'})
self.text_tokenizer.add_tokens(list(special_tokens))
self.sptids_dict = {token: torch.tensor(self.text_tokenizer.convert_tokens_to_ids([token])) for token in
special_tokens}
self.sptids_dict['<|sot|>'] = torch.tensor([self.text_tokenizer.bos_token_id])
self.sptids_dict['<|eot|>'] = torch.tensor([self.text_tokenizer.eos_token_id])
self.sptids_dict['<|pad|>'] = torch.tensor([self.text_tokenizer.pad_token_id])
# plus 1 because at this time we add a task token before
self.max_text_len = max_text_len + 1
self.pad_id = self.text_tokenizer.convert_tokens_to_ids('[PAD]')
self.ignore_id = ignore_id
self.cond_dropout_prob = cond_dropout_prob
def t2i_prompt(self, text_ids, image_ids, labels):
device = image_ids.device
sequence_ids = []
attention_masks = []
label_ids = []
probs = torch.rand(len(text_ids))
for i in range(len(text_ids)):
if len(text_ids[i]) == 0:
text_ids[i] = [self.text_tokenizer.bos_token_id]
elif text_ids[i][0] != self.text_tokenizer.bos_token_id:
text_ids[i] = [self.text_tokenizer.bos_token_id] + text_ids[i]
temp_ids = [int(self.sptids_dict['<|t2i|>'])] + text_ids[i] + [self.text_tokenizer.eos_token_id]
# randomly dropout text condition
if probs[i] < self.cond_dropout_prob:
temp_ids = [int(self.sptids_dict['<|t2i|>']), self.text_tokenizer.bos_token_id, self.text_tokenizer.eos_token_id]
if self.max_text_len >= len(temp_ids):
temp_ids = [self.pad_id] * (self.max_text_len - len(temp_ids)) + temp_ids
temp_masks = [0] * (self.max_text_len - len(temp_ids)) + [1] * (len(temp_ids) + image_ids.shape[-1] + 3)
else:
# should add the eos token
temp_ids = temp_ids[:self.max_text_len - 1] + [self.text_tokenizer.eos_token_id]
temp_masks = [1] * (len(temp_ids) + image_ids.shape[-1] + 3) # +2 for two special tokens
# prompting -- [task token] [sot] [text tokens] [eot] [soi] [image tokens] [eoi]
temp_label_ids = torch.cat([
# should we predict text tokens when doing image reconstruction?
torch.tensor(temp_ids).to(device),
self.sptids_dict['<|soi|>'].to(device),
labels[i],
self.sptids_dict['<|eoi|>'].to(device)
], dim=0)
temp_label_ids = torch.where(temp_label_ids == self.pad_id, self.ignore_id, temp_label_ids)
temp_ids = torch.cat([
torch.tensor(temp_ids).to(device),
self.sptids_dict['<|soi|>'].to(device),
image_ids[i],
self.sptids_dict['<|eoi|>'].to(device)
], dim=0)
temp_masks = torch.tensor(temp_masks).to(device)
sequence_ids.append(temp_ids.unsqueeze(0))
attention_masks.append(temp_masks.unsqueeze(0))
label_ids.append(temp_label_ids.unsqueeze(0))
return torch.cat(sequence_ids, dim=0), torch.cat(attention_masks, dim=0), torch.cat(label_ids, dim=0)
def t2i_gen_prompt(self, text_ids, image_ids):
device = image_ids.device
sequence_ids = []
attention_masks = []
for i in range(len(text_ids)):
if len(text_ids[i]) == 0:
text_ids[i] = [self.text_tokenizer.bos_token_id]
elif text_ids[i][0] != self.text_tokenizer.bos_token_id:
text_ids[i] = [self.text_tokenizer.bos_token_id] + text_ids[i]
# note that, llama3 tokenizer automatically add the bot token at first but without eot
temp_ids = [int(self.sptids_dict['<|t2i|>'])] + text_ids[i] + [self.text_tokenizer.eos_token_id]
if self.max_text_len >= len(temp_ids):
temp_ids = [self.pad_id] * (self.max_text_len - len(temp_ids)) + temp_ids
temp_masks = [0] * (self.max_text_len - len(temp_ids)) + [1] * len(temp_ids)
else:
temp_ids = temp_ids[:self.max_text_len - 1] + [self.text_tokenizer.eos_token_id]
temp_masks = [1] * len(temp_ids) # +2 for two special tokens
# prompting -- [task token] [sot] [text tokens] [eot] [soi] [image tokens] [eoi]
temp_ids = torch.cat([
torch.tensor(temp_ids).to(device),
self.sptids_dict['<|soi|>'].to(device),
image_ids[i],
self.sptids_dict['<|eoi|>'].to(device)
], dim=0)
temp_masks = torch.tensor(temp_masks).to(device)
sequence_ids.append(temp_ids.unsqueeze(0))
attention_masks.append(temp_masks.unsqueeze(0))
return torch.cat(sequence_ids, dim=0), torch.cat(attention_masks, dim=0)
# language modeling
def lm_prompt(self, text_ids, max_seq_len):
sequence_ids = []
attention_masks = []
label_ids = []
for i in range(len(text_ids)):
if len(text_ids[i]) == 0:
text_ids[i] = [self.text_tokenizer.bos_token_id]
elif text_ids[i][0] != self.text_tokenizer.bos_token_id:
text_ids[i] = [self.text_tokenizer.bos_token_id] + text_ids[i]
temp_ids = text_ids[i] + [self.text_tokenizer.eos_token_id]
if max_seq_len >= len(temp_ids):
temp_labels_ids = temp_ids + [self.ignore_id] * (max_seq_len - len(temp_ids))
temp_ids = temp_ids + [self.pad_id] * (max_seq_len - len(temp_ids))
temp_masks = [1] * len(temp_ids) + [0] * (max_seq_len - len(temp_ids))
else:
# In language modeling, we only process text tokens. We do not add the eos token if the text length
# exceeds the max sequence length
temp_labels_ids = temp_ids[:max_seq_len]
temp_ids = temp_ids[:max_seq_len]
temp_masks = [1] * len(temp_ids) # +2 for two special tokens
# prompting -- [task token] [sot] [text tokens] [eot] [soi] [image tokens] [eoi]
temp_ids = torch.tensor(temp_ids)
temp_masks = torch.tensor(temp_masks)
temp_labels_ids = torch.tensor(temp_labels_ids)
sequence_ids.append(temp_ids.unsqueeze(0))
attention_masks.append(temp_masks.unsqueeze(0))
label_ids.append(temp_labels_ids.unsqueeze(0))
# input_ids, masks, labels
return torch.cat(sequence_ids, dim=0), torch.cat(attention_masks, dim=0), torch.cat(label_ids, dim=0)
def mmu_prompt(self, image_ids, text_ids):
device = image_ids.device
sequence_ids = []
attention_masks = []
label_ids = []
max_text_len = self.max_text_len - 1
for i in range(len(text_ids)):
# note that, llama3 tokenizer automatically add the bot token at first but without eot
# for empty list []
if len(text_ids[i]) == 0:
text_ids[i] = [self.text_tokenizer.bos_token_id]
elif text_ids[i][0] != self.text_tokenizer.bos_token_id:
text_ids[i] = [self.text_tokenizer.bos_token_id] + text_ids[i]
temp_ids = text_ids[i] + [self.text_tokenizer.eos_token_id]
if max_text_len >= len(temp_ids):
# minus 1 because task token was prepended to the former image tokens
temp_ids = temp_ids + [self.pad_id] * (max_text_len - len(temp_ids))
temp_masks = [1] * (len(temp_ids) + image_ids.shape[-1] + 3) + [0] * (max_text_len - len(temp_ids))
else:
# should add the eos token
temp_ids = temp_ids[:max_text_len - 1] + [self.text_tokenizer.eos_token_id]
temp_masks = [1] * (len(temp_ids) + image_ids.shape[-1] + 3) # +2 for two special tokens
# prompting -- [task token] [sot] [text tokens] [eot] [soi] [image tokens] [eoi]
temp_label_ids = torch.cat([
torch.tensor([self.ignore_id]).to(device),
torch.tensor([self.ignore_id]).to(device),
torch.ones_like(image_ids[i]) * self.ignore_id,
torch.tensor([self.ignore_id]).to(device),
torch.tensor(temp_ids).to(device),
], dim=0)
temp_label_ids = torch.where(temp_label_ids == self.pad_id, self.ignore_id, temp_label_ids)
temp_ids = torch.cat([
self.sptids_dict['<|mmu|>'].to(device), # task token
self.sptids_dict['<|soi|>'].to(device),
image_ids[i],
self.sptids_dict['<|eoi|>'].to(device),
torch.tensor(temp_ids).to(device),
], dim=0)
temp_masks = torch.tensor(temp_masks).to(device)
sequence_ids.append(temp_ids.unsqueeze(0))
attention_masks.append(temp_masks.unsqueeze(0))
label_ids.append(temp_label_ids.unsqueeze(0))
return torch.cat(sequence_ids, dim=0), torch.cat(attention_masks, dim=0), torch.cat(label_ids, dim=0)
def t2v_prompt(self, text_ids, image_ids, labels):
device = image_ids.device
sequence_ids = []
attention_masks = []
label_ids = []
probs = torch.rand(len(text_ids))
for i in range(len(text_ids)):
if len(text_ids[i]) == 0:
text_ids[i] = [self.text_tokenizer.bos_token_id]
elif text_ids[i][0] != self.text_tokenizer.bos_token_id:
text_ids[i] = [self.text_tokenizer.bos_token_id] + text_ids[i]
temp_ids = [int(self.sptids_dict['<|t2v|>'])] + text_ids[i] + [self.text_tokenizer.eos_token_id]
# randomly dropout text condition
if probs[i] < self.cond_dropout_prob:
temp_ids = [int(self.sptids_dict['<|t2v|>']), self.text_tokenizer.bos_token_id,
self.text_tokenizer.eos_token_id]
if self.max_text_len >= len(temp_ids):
temp_ids = [self.pad_id] * (self.max_text_len - len(temp_ids)) + temp_ids
temp_masks = [0] * (self.max_text_len - len(temp_ids)) + [1] * (len(temp_ids) + image_ids.shape[-1] + 3)
else:
# should add the eos token
temp_ids = temp_ids[:self.max_text_len - 1] + [self.text_tokenizer.eos_token_id]
temp_masks = [1] * (len(temp_ids) + image_ids.shape[-1] + 3) # +2 for two special tokens
# prompting -- [task token] [sot] [text tokens] [eot] [soi] [image tokens] [eoi]
temp_label_ids = torch.cat([
# should we predict text tokens when doing image reconstruction?
torch.tensor(temp_ids).to(device),
self.sptids_dict['<|sov|>'].to(device),
labels[i],
self.sptids_dict['<|eov|>'].to(device)
], dim=0)
temp_label_ids = torch.where(temp_label_ids == self.pad_id, self.ignore_id, temp_label_ids)
temp_ids = torch.cat([
torch.tensor(temp_ids).to(device),
self.sptids_dict['<|sov|>'].to(device),
image_ids[i],
self.sptids_dict['<|eov|>'].to(device)
], dim=0)
temp_masks = torch.tensor(temp_masks).to(device)
sequence_ids.append(temp_ids.unsqueeze(0))
attention_masks.append(temp_masks.unsqueeze(0))
label_ids.append(temp_label_ids.unsqueeze(0))
return torch.cat(sequence_ids, dim=0), torch.cat(attention_masks, dim=0), torch.cat(label_ids, dim=0)
def t2v_gen_prompt(self, text_ids, image_ids):
device = image_ids.device
sequence_ids = []
attention_masks = []
for i in range(len(text_ids)):
if len(text_ids[i]) == 0:
text_ids[i] = [self.text_tokenizer.bos_token_id]
elif text_ids[i][0] != self.text_tokenizer.bos_token_id:
text_ids[i] = [self.text_tokenizer.bos_token_id] + text_ids[i]
# note that, llama3 tokenizer automatically add the bot token at first but without eot
temp_ids = [int(self.sptids_dict['<|t2v|>'])] + text_ids[i] + [self.text_tokenizer.eos_token_id]
if self.max_text_len >= len(temp_ids):
temp_ids = [self.pad_id] * (self.max_text_len - len(temp_ids)) + temp_ids
temp_masks = [0] * (self.max_text_len - len(temp_ids)) + [1] * len(temp_ids)
else:
temp_ids = temp_ids[:self.max_text_len - 1] + [self.text_tokenizer.eos_token_id]
temp_masks = [1] * len(temp_ids) # +2 for two special tokens
# prompting -- [task token] [sot] [text tokens] [eot] [soi] [image tokens] [eoi]
temp_ids = torch.cat([
torch.tensor(temp_ids).to(device),
self.sptids_dict['<|sov|>'].to(device),
image_ids[i],
self.sptids_dict['<|eov|>'].to(device)
], dim=0)
temp_masks = torch.tensor(temp_masks).to(device)
sequence_ids.append(temp_ids.unsqueeze(0))
attention_masks.append(temp_masks.unsqueeze(0))
return torch.cat(sequence_ids, dim=0), torch.cat(attention_masks, dim=0)
def i2v_prompt(self, image_ids, video_ids):
"""
:param image_ids:
:param video_ids:
:return:
"""
pass
def lvg_prompt(self, text_ids, image_ids, labels):
device = image_ids.device
sequence_ids = []
attention_masks = []
label_ids = []
probs = torch.rand(len(text_ids))
probs2 = torch.rand(len(text_ids))
for i in range(len(text_ids)):
if len(text_ids[i]) == 0:
text_ids[i] = [self.text_tokenizer.bos_token_id]
elif text_ids[i][0] != self.text_tokenizer.bos_token_id:
text_ids[i] = [self.text_tokenizer.bos_token_id] + text_ids[i]
temp_ids = [int(self.sptids_dict['<|t2i|>'])] + text_ids[i] + [self.text_tokenizer.eos_token_id]
# randomly dropout text condition
if probs[i] < self.cond_dropout_prob:
temp_ids = [int(self.sptids_dict['<|t2i|>']), self.text_tokenizer.bos_token_id,
self.text_tokenizer.eos_token_id]
if self.max_text_len >= len(temp_ids):
temp_ids = [self.pad_id] * (self.max_text_len - len(temp_ids)) + temp_ids
temp_masks = [0] * (self.max_text_len - len(temp_ids)) + [1] * (len(temp_ids) + image_ids.shape[-1] + 3)
else:
# should add the eos token
temp_ids = temp_ids[:self.max_text_len - 1] + [self.text_tokenizer.eos_token_id]
temp_masks = [1] * (len(temp_ids) + image_ids.shape[-1] + 3) # +2 for two special tokens
# prompting -- [task token] [sot] [text tokens] [eot] [soi] [image tokens] [eoi]
temp_label_ids = torch.cat([
# should we predict text tokens when doing image reconstruction?
torch.tensor(temp_ids).to(device),
self.sptids_dict['<|soi|>'].to(device),
labels[i],
self.sptids_dict['<|eoi|>'].to(device)
], dim=0)
temp_label_ids = torch.where(temp_label_ids == self.pad_id, self.ignore_id, temp_label_ids)
temp_ids = torch.cat([
torch.tensor(temp_ids).to(device),
self.sptids_dict['<|soi|>'].to(device),
image_ids[i],
self.sptids_dict['<|eoi|>'].to(device)
], dim=0)
temp_masks = torch.tensor(temp_masks).to(device)
sequence_ids.append(temp_ids.unsqueeze(0))
attention_masks.append(temp_masks.unsqueeze(0))
label_ids.append(temp_label_ids.unsqueeze(0))
return torch.cat(sequence_ids, dim=0), torch.cat(attention_masks, dim=0), torch.cat(label_ids, dim=0)
def lvg_gen_prompt(self, text_ids, image_ids):
device = image_ids.device
sequence_ids = []
attention_masks = []
for i in range(len(text_ids)):
if len(text_ids[i]) == 0:
text_ids[i] = [self.text_tokenizer.bos_token_id]
elif text_ids[i][0] != self.text_tokenizer.bos_token_id:
text_ids[i] = [self.text_tokenizer.bos_token_id] + text_ids[i]
# note that, llama3 tokenizer automatically add the bot token at first but without eot
temp_ids = [int(self.sptids_dict['<|t2i|>'])] + text_ids[i] + [self.text_tokenizer.eos_token_id]
if self.max_text_len >= len(temp_ids):
temp_ids = [self.pad_id] * (self.max_text_len - len(temp_ids)) + temp_ids
temp_masks = [0] * (self.max_text_len - len(temp_ids)) + [1] * len(temp_ids)
else:
temp_ids = temp_ids[:self.max_text_len - 1] + [self.text_tokenizer.eos_token_id]
temp_masks = [1] * len(temp_ids) # +2 for two special tokens
# prompting -- [task token] [sot] [text tokens] [eot] [soi] [image tokens] [eoi]
temp_ids = torch.cat([
torch.tensor(temp_ids).to(device),
self.sptids_dict['<|soi|>'].to(device),
image_ids[i],
self.sptids_dict['<|eoi|>'].to(device)
], dim=0)
temp_masks = torch.tensor(temp_masks).to(device)
sequence_ids.append(temp_ids.unsqueeze(0))
attention_masks.append(temp_masks.unsqueeze(0))
return torch.cat(sequence_ids, dim=0), torch.cat(attention_masks, dim=0)
def mask_prompt(self):
pass
def __call__(self, input, task, padding=True, config=None):
"""
input (tuple) : data pairs contain text(str), image(tensor), or videos(tensor).
task (str) : a flag indicates the current task.
"""
if task == "t2i":
text_ids = self.text_tokenizer(input[0])['input_ids'] # (B, max_len)
image_ids = input[1] # (B, #tokens)
sequence_ids_with_masks = self.t2i_prompt(text_ids, image_ids, input[2])
elif task == "t2v":
text_ids = self.text_tokenizer(input[0])['input_ids'] # (B, max_len)
image_ids = input[1] # (B, #tokens)
sequence_ids_with_masks = self.t2v_prompt(text_ids, image_ids, input[2])
elif task == "t2i_plus_lm":
text_ids = self.text_tokenizer(input[0])['input_ids'] # (B, max_len)
image_ids = input[1] # (B, #tokens)
sequence_ids_with_masks = self.t2i_prompt(text_ids[:config.training.batch_size], image_ids,
input[2])
sequence_ids_with_masks_lm = self.lm_prompt(text_ids[config.training.batch_size:], input[3])
return sequence_ids_with_masks, sequence_ids_with_masks_lm
elif task == "t2i_gen":
text_ids = self.text_tokenizer(input[0])['input_ids'] # (B, max_len)
image_ids = input[1] # (B, #tokens)
sequence_ids_with_masks = self.t2i_gen_prompt(text_ids, image_ids)
elif task == "t2v_gen":
text_ids = self.text_tokenizer(input[0])['input_ids'] # (B, max_len)
image_ids = input[1] # (B, #tokens)
sequence_ids_with_masks = self.t2v_gen_prompt(text_ids, image_ids)
elif task == "lm":
text_ids = self.text_tokenizer(input[0], truncation=True)['input_ids'] # (B, max_len)
sequence_ids_with_masks = self.lm_prompt(text_ids, input[1])
elif task == "mmu":
image_ids = input[0]
text_ids = self.text_tokenizer(input[1])['input_ids']
sequence_ids_with_masks = self.mmu_prompt(image_ids, text_ids)
elif task == "t2v":
text_ids = self.text_tokenizer(input[0]['input_ids'])
video_ids = self.vision_tokenizer(input[1])
sequence_ids_with_masks = self.t2v_prompt(text_ids, video_ids)
elif task == "i2v":
image_ids = self.text_tokenizer(input[0])
video_ids = self.vision_tokenizer(input[1])
sequence_ids_with_masks = self.i2v_prompt(image_ids, video_ids)
elif task == "lvg":
text_ids = self.text_tokenizer(input[0])['input_ids'] # (B, max_len)
image_ids = input[1] # (B, #tokens)
sequence_ids_with_masks = self.lvg_prompt(text_ids, image_ids, input[2])
elif task == "lvg_gen":
text_ids = self.text_tokenizer(input[0])['input_ids'] # (B, max_len)
image_ids = input[1] # (B, #tokens)
sequence_ids_with_masks = self.lvg_gen_prompt(text_ids, image_ids)
else:
raise NotImplementedError
return sequence_ids_with_masks
def create_attention_mask_predict_next(sequence, pad_id=128256, soi_id=128257, eoi_id=128258, rm_pad_in_image=False,
return_inverse_mask=True):
# sequence is expected to be of shape [N, L]
N, L = sequence.shape
# Masks to identify different types of tokens
is_padding = sequence == pad_id
is_start_image = sequence == soi_id
is_end_image = sequence == eoi_id
# Create cumulative sum masks to identify regions of image tokens
cumulative_start = torch.cumsum(is_start_image, dim=1)
cumulative_end = torch.cumsum(is_end_image, dim=1)
in_image_segment = (cumulative_start > cumulative_end) | is_start_image | is_end_image
is_text = ~(in_image_segment)
causal_mask = torch.tril(torch.ones((L, L), dtype=torch.bool)).to(sequence.device)
mask_text = is_text[:, :, None] * causal_mask[None, :, :]
is_text_image = is_text | in_image_segment
mask_text_image_bi = is_text_image[:, :, None] * is_text_image[:, None, :]
if rm_pad_in_image:
sid_img = torch.where(sequence == soi_id)[1]
for i in range(mask_text_image_bi.shape[0]):
pad_end_idx = torch.where(sequence[i] == pad_id)
if len(pad_end_idx[0]) != 0:
pad_end_idx = pad_end_idx[0][-1]
mask_text[i][pad_end_idx + 1:, :pad_end_idx + 1] = 0
id_padding = torch.where(is_padding[i] == True)
mask_text_image_bi[i][sid_img[i]:, id_padding[0]] = 0
mask_text[in_image_segment] = mask_text_image_bi[in_image_segment]
# No token attends to padding tokens and padding tokens do not attend to any token
if return_inverse_mask:
inverted_mask = 1.0 - mask_text.type(sequence.dtype)
inverted_mask = inverted_mask.masked_fill(
inverted_mask.to(torch.bool), torch.iinfo(sequence.dtype).min
)
return inverted_mask.unsqueeze(1)
else:
return mask_text.unsqueeze(1)
def create_attention_mask_lvg(sequence, pad_id=128256, soi_id=128257, eoi_id=128258, return_inverse_mask=True):
# sequence is expected to be of shape [N, L]
N, L = sequence.shape
# Masks to identify different types of tokens
is_padding = sequence == pad_id
mask_text_image_bi = torch.tril(torch.ones(N, L, L), diagonal=0).to(sequence.device)
sid_img = torch.where(sequence == soi_id)[1].reshape(mask_text_image_bi.shape[0], -1)[:, 0]
sid_img_for_bi = torch.where(sequence == soi_id)[1].reshape(mask_text_image_bi.shape[0], -1)
eid_img_for_bi = torch.where(sequence == eoi_id)[1].reshape(mask_text_image_bi.shape[0], -1)
for i in range(N):
id_padding = torch.where(is_padding[i] == True)
mask_text_image_bi[i][sid_img[i]:, id_padding[0]] = 0
for j in range(sid_img_for_bi.shape[-1]):
mask_text_image_bi[i][sid_img_for_bi[i, j]:eid_img_for_bi[i, j] + 1,
sid_img_for_bi[i, j]:eid_img_for_bi[i, j] + 1] = 1
# No token attends to padding tokens and padding tokens do not attend to any token
if return_inverse_mask:
inverted_mask = 1.0 - mask_text_image_bi.type(sequence.dtype)
inverted_mask = inverted_mask.masked_fill(
inverted_mask.to(torch.bool), torch.iinfo(sequence.dtype).min
)
return inverted_mask.unsqueeze(1)
else:
return mask_text_image_bi.unsqueeze(1)
# texts without attending image regions
def create_attention_mask_lvg_v2(sequence, pad_id=128256, soi_id=128257, eoi_id=128258, sot_id=1000, eot_id=1001, return_inverse_mask=True):
# sequence is expected to be of shape [N, L]
N, L = sequence.shape
# Masks to identify different types of tokens
is_padding = sequence == pad_id
# is_text = torch.where(sequence < 2000, True, False)
is_text = torch.where(sequence < pad_id, True, False)
mask_text_image_bi = torch.tril(torch.ones(N, L, L), diagonal=0).to(sequence.device).int()
sid_text_for_bi = torch.where(sequence == sot_id)[1].reshape(mask_text_image_bi.shape[0], -1)
eid_text_for_bi = torch.where(sequence == eot_id)[1].reshape(mask_text_image_bi.shape[0], -1)
# import ipdb
# ipdb.set_trace()
if sot_id == eot_id:
if sid_text_for_bi.shape[-1] % 2 != 0:
sid_text_for_bi = sid_text_for_bi[:, :-1]
eid_text_for_bi = eid_text_for_bi[:, :-1]
select_idx = [i for i in range(0, sid_text_for_bi.shape[1], 2)]
sid_text_for_bi = sid_text_for_bi[:, select_idx]
select_idx = [i+1 for i in range(0, eid_text_for_bi.shape[1], 2)]
eid_text_for_bi = eid_text_for_bi[:, select_idx]
sid_img_for_bi = torch.where(sequence == soi_id)[1].reshape(mask_text_image_bi.shape[0], -1)
eid_img_for_bi = torch.where(sequence == eoi_id)[1].reshape(mask_text_image_bi.shape[0], -1)
all_zeros = torch.zeros_like(mask_text_image_bi).int()
for i in range(N):
all_zeros[i, :, is_text[i]] = 1
for j in range(sid_text_for_bi.shape[-1]):
all_zeros[i][is_text[i], sid_text_for_bi[i, j]:eid_text_for_bi[i, j]+1] = 1
all_zeros[i][~is_text[i], sid_text_for_bi[i, j]:eid_text_for_bi[i, j]+1] = 1
for j in range(sid_img_for_bi.shape[-1]):
all_zeros[i][~is_text[i], sid_img_for_bi[i, j]:eid_img_for_bi[i, j]+1] = 1
mask_text_image_bi = mask_text_image_bi * all_zeros
sid_img = torch.where(sequence == soi_id)[1].reshape(mask_text_image_bi.shape[0], -1)[:, 0]
for i in range(N):
id_padding = torch.where(is_padding[i] == True)
mask_text_image_bi[i][sid_img[i]:, id_padding[0]] = 0
for j in range(sid_img_for_bi.shape[-1]):
mask_text_image_bi[i][sid_img_for_bi[i, j]:eid_img_for_bi[i, j]+1, sid_img_for_bi[i, j]:eid_img_for_bi[i, j]+1] = 1
mask_text_image_bi[:, :, 0] = 1
# No token attends to padding tokens and padding tokens do not attend to any token
if return_inverse_mask:
inverted_mask = 1.0 - mask_text_image_bi.type(sequence.dtype)
inverted_mask = inverted_mask.masked_fill(
inverted_mask.to(torch.bool), torch.iinfo(sequence.dtype).min
)
return inverted_mask.unsqueeze(1)
else:
return mask_text_image_bi.unsqueeze(1)
def create_attention_mask_for_mmu(sequence, eoi_id=128258, return_inverse_mask=True):
N, L = sequence.shape
causal_mask = torch.tril(torch.ones((N, 1, L, L), dtype=torch.bool)).to(sequence.device)
eoi_image = torch.where(sequence == eoi_id)[1]
causal_mask[:, :, :, :eoi_image[0] + 1] = 1
if return_inverse_mask:
inverted_mask = 1.0 - causal_mask.type(sequence.dtype)
inverted_mask = inverted_mask.masked_fill(
inverted_mask.to(torch.bool), torch.iinfo(sequence.dtype).min
)
return inverted_mask
else:
return causal_mask
def create_attention_mask_for_mmu_vit(
sequence,
return_inverse_mask=True,
system_prompt_len=0
):
N, L, H = sequence.shape
causal_mask = torch.tril(torch.ones((N, 1, L, L), dtype=torch.bool)).to(sequence.device)
index = 1 + system_prompt_len + 1 + 576
# PART OF SYSTEM PROMPT SHOULD BE CAUSAL ALSO
# causal_mask[:, :, :, :index] = 1
causal_mask[:, :, :, 1+system_prompt_len+1:index] = 1
if return_inverse_mask:
inverted_mask = 1.0 - causal_mask.type(torch.int64)
inverted_mask = inverted_mask.masked_fill(
inverted_mask.to(torch.bool), torch.iinfo(torch.int64).min
)
return inverted_mask
else:
return causal_mask
if __name__ == '__main__':
pass