-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathbenchmarks.py
181 lines (147 loc) · 5.77 KB
/
benchmarks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import csv
import io
import json
import pickle
import struct
import ujson
from functools import partial
import bson
import cbor
import msgpack
import pandas as pd
import pyarrow as pa
from pyarrow import parquet as pq
from bench_helper import bench_function, baseline_ratio, get_machine_info
from book_pb2 import Book as PBBook
from gendata import get_json_data, get_tuples_data, Book
# [De]Serializers functions
def parquet_dumps(seq):
df = pd.DataFrame(
{field: [x[field] for x in seq] for field in range(len(Book._fields))}
)
table = pa.Table.from_pandas(df)
out = io.BytesIO()
pq.write_table(table, out)
out.seek(0)
return out.getvalue()
def parquet_loads(raw):
# Note: usually want to call to_pandas()
return pq.read_table(io.BytesIO(raw))
def protobuf_dumps(tuples):
def to_raw_book(tup):
book = PBBook()
book.title = tup[0]
book.author = tup[1]
book.sales = tup[2]
book.is_published = tup[3]
book.languages.extend(tup[4])
for review_data in tup[5]:
review = book.reviews.add()
review.author = review_data[0]
review.comment = review_data[1]
book.price = tup[6]
return book.SerializeToString()
raw_books = map(to_raw_book, tuples)
# encode every message with a prefix of its length
return b''.join(struct.pack('i', len(raw)) + raw for raw in raw_books)
def protobuf_loads(raw):
books = []
len_idx = 0
while len_idx < len(raw):
msg_idx = len_idx + 4
msg_len = struct.unpack('i', raw[len_idx: msg_idx])[0]
book = PBBook()
book.ParseFromString(raw[msg_idx: msg_idx + msg_len])
books.append(book)
len_idx = msg_idx + msg_len
return books
SERIALIZERS = (
('json', json.dumps, json.loads),
('pickle', pickle.dumps, pickle.loads),
('bson', lambda seq: b''.join(map(bson.BSON.encode, seq)), bson.decode_all),
('ujson', ujson.dumps, ujson.loads),
('parquet', parquet_dumps, parquet_loads),
('protobuf', protobuf_dumps, protobuf_loads),
('cbor', cbor.dumps, cbor.loads),
('msgpack', msgpack.dumps, partial(msgpack.loads, raw=False)),
)
BASELINE = 'json'
ITEMS = (1, 1_000, 10_000, 100_000, 1_000_000)
SKIP_LIST = [
('dicts', 'parquet'), # parquet requires schema
('dicts', 'protobuf'), # protobuf requires schema
('tuples', 'bson'), # cannot make bson to work with tuples
]
def main():
name_tmpl = '{name}_{dtype}_{fn}_{items}'
results = {}
print('machine info:')
print(f'{get_machine_info()}')
print(f'generating {max(ITEMS)} random data items..', end=' ')
max_dict_data = get_json_data(n=max(ITEMS))
max_tuples_data = get_tuples_data(max_dict_data)
print('done')
for i, items in enumerate(ITEMS):
dict_data = max_dict_data[:items]
tuples_data = max_tuples_data[:items]
for dtype, data in (('dicts', dict_data), ('tuples', tuples_data)):
for name, ser_fn, deser_fn in SERIALIZERS:
print(f'{name} {dtype} {items}..', end=' ')
# some tests cannot be run (see SKIP_LIST for details)
if (dtype, name) in SKIP_LIST:
print('skip')
continue
# benchmark the format's load & dump
ser_took, deser_took, ser_size, err = bench_function(name, ser_fn, deser_fn, data)
# fomat nice name for results
dump_name = name_tmpl.format(name=name, dtype=dtype, fn='dump', items=items)
baseline_dump_name = name_tmpl.format(name=BASELINE, dtype=dtype, fn='dump', items=items)
load_name = name_tmpl.format(name=name, dtype=dtype, fn='load', items=items)
baseline_load_name = name_tmpl.format(name=BASELINE, dtype=dtype, fn='load', items=items)
avg_serde = (ser_took.avg + deser_took.avg) / 2.
common_values = {
'err': err,
'name': name,
'dtype': dtype,
'items': items,
}
results[dump_name] = {
'fn': 'dump',
'avg_serde': avg_serde,
'serialized_size': ser_size, **common_values,
**ser_took._asdict()
}
results[load_name] = {
'fn': 'load',
'avg_serde': avg_serde,
'serialized_size': ser_size, **common_values,
**deser_took._asdict()
}
baseline_ser_took = results[baseline_dump_name]
baseline_deser_took = results[baseline_load_name]
results[dump_name].update(
baseline_ratio(results[dump_name], baseline_ser_took))
results[load_name].update(
baseline_ratio(results[load_name], baseline_deser_took))
print('done')
# write results as detailed json
with open('detailed-results.json', 'w') as fp:
json.dump(results, fp, indent=4)
# write csv results summary
with open('results-summary.csv', 'w') as fp:
writer = csv.DictWriter(fp, extrasaction='ignore', fieldnames=(
'name', 'dtype', 'fn', 'items', 'avg', 'avg_serde',
'baseline-ratio', 'baseline-speedup', 'serialized_size',
))
writer.writeheader()
for name, result in sorted(results.items()):
writer.writerow(result)
for name, result in sorted(results.items()):
print(
f'{name: <40} avg: {result["avg"]:.5f}\t'
f'baseline-ratio: {result["baseline-ratio"]:.2f}%\t'
f'speedup: x{result["baseline-speedup"]:.2f}\t'
f'{result["err"]}'
)
if __name__ == '__main__':
main()