-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
476 lines (419 loc) · 20.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
import argparse
import pickle as pkl
import numpy as np
import json
import glob
import os #for checkpoint management
os.environ['CUDA_LAUNCH_BLOCKING'] = "1"
import torch
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
from torch.autograd import Variable
from torch.nn.utils import clip_grad_norm_
from data_iter import real_data_loader, dis_data_loader
from utils import recurrent_func, loss_func, get_sample, get_rewards
from Discriminator import Discriminator
from Generator import Generator
from target_lstm import TargetLSTM
#Arguments
parser = argparse.ArgumentParser(description="LeakGAN")
parser.add_argument("--hpc", action="store_true", default=False)
parser.add_argument("--data_path", type=str, default="/save_files/", metavar="PATH",
help="Data path to save files (default: /save_files/)")
parser.add_argument("--rounds", type=int, default=15, metavar="N",
help="Rounds of adversarial training (default:150)")
parser.add_argument("--g_pretrain_steps", type=int, default=12, metavar="N",
help="Steps of pre-training generator (defaul: 120)")
parser.add_argument("--d_pretrain_steps", type=int, default=5, metavar="N",
help="Steps of pre-training discriminator (defaul: 50)")
parser.add_argument("--g_steps", type=int, default=1, metavar="N",
help="Steps of generator updates in one round of adversarial training (defaul: 1)") #gen_train_num
parser.add_argument("--d_steps", type=int, default=3, metavar="N",
help="Steps of discriminator updates in one round of adversarial training (defaul: 3)")
parser.add_argument("--gk_epochs", type=int, default=1, metavar="N",
help="Epochs of generator updates in one step of generate update (defaul: 1)")
parser.add_argument("--dk_epochs", type=int, default=3, metavar="N",
help="Epochs of discriminator updates in one step of generate update (defaul: 3)")
parser.add_argument("--update_rate", type=float, default=0.8, metavar="UR",
help="Update rate of rollout model (defaul: 0.8)")
parser.add_argument("--n_rollout", type=int, default=16, metavar="N",
help="Number of rollouts (defaul: 16)") #rollout_num
parser.add_argument("--vocab_size", type=int, default=10, metavar="N",
help="Vocabulary size (defaul: 10)")
parser.add_argument("--batch_size", type=int, default=64, metavar="N",
help="Batch size(defaul: 64)")
parser.add_argument("--n_samples", type=int, default=6400, metavar="N",
help="Number of samples generated per time(defaul: 6400)")
parser.add_argument("--gen_lr", type=float, default=1e-3, metavar="LR",
help="Learning Rate of generator optimizer (defaul: 1e-3)")
parser.add_argument("--dis_lr", type=float, default=1e-3, metavar="LR",
help="Learning Rate of discriminator optimizer (defaul: 1e-3)")
parser.add_argument("--no_cuda", action="store_true", default=False,
help="Disable CUDA training (defaul: False)")
parser.add_argument("--seed", type=int, default=1, metavar="S",
help="Random seed (defaul: 1)")
#Files
POSITIVE_FILE = "real.data"
NEGATIVE_FILE = "gene.data"
# Genrator Parameters
g_embed_dim = 32
g_hidden_dim = 32
g_seq_len = 10
# MANAGER:
g_m_batch_size = 64
g_m_hidden_dim = 32
g_m_goal_out_size = 0
# WORKER:
g_w_batch_size = 64
g_w_vocab_size = 4797
g_w_embed_dim = 32
g_w_hidden_dim = 32
g_w_goal_out_size = 0
g_w_goal_size = 16
g_step_size = 5
# Discriminator Parameters
d_seq_len = 10
d_num_classes = 2
d_vocab_size = 4797
d_dis_emb_dim = 64
d_filter_sizes = [1,2,3,4,5,6,7,8,9,10],
d_num_filters = [100,200,200,200,200,100,100,100,100,100],
d_start_token = 0
d_goal_out_size = 0
d_step_size = 5
d_dropout_prob = 0.2
d_l2_reg_lambda = 0.2
def get_params(filePath):
with open(filePath, 'r') as f:
params = json.load(f)
f.close()
return params
def get_arguments():
train_params = get_params("./params/train_params.json")
leak_gan_params = get_params("./params/leak_gan_params.json")
target_params = get_params("./params/target_params.json")
dis_data_params = get_params("./params/dis_data_params.json")
real_data_params = get_params("./params/real_data_params.json")
return {
"train_params": train_params,
"leak_gan_params": leak_gan_params,
"target_params": target_params,
"dis_data_params": dis_data_params,
"real_data_params" : real_data_params
}
#List of models
def prepare_model_dict(use_cuda=False):
f = open("./params/leak_gan_params.json")
params = json.load(f)
f.close()
discriminator_params = params["discriminator_params"]
generator_params = params["generator_params"]
worker_params = generator_params["worker_params"]
manager_params = generator_params["manager_params"]
discriminator_params["goal_out_size"] = sum(
discriminator_params["num_filters"]
)
worker_params["goal_out_size"] = discriminator_params["goal_out_size"]
manager_params["goal_out_size"] = discriminator_params["goal_out_size"]
discriminator = Discriminator(**discriminator_params)
generator = Generator(worker_params, manager_params,
generator_params["step_size"])
if use_cuda:
generator = generator.cuda()
discriminator = discriminator.cuda()
model_dict = {"generator": generator, "discriminator": discriminator}
return model_dict
#List of optimizers
def prepare_optimizer_dict(model_dict, lr_dict): #lr_dict = learning rate
generator = model_dict["generator"]
discriminator = model_dict["discriminator"]
worker = generator.worker
manager = generator.manager
m_lr = lr_dict["manager"]
w_lr = lr_dict["worker"]
d_lr = lr_dict["discriminator"]
w_optimizer = optim.Adam(worker.parameters(), lr=w_lr)
m_optimizer = optim.Adam(manager.parameters(), lr=m_lr)
d_optimizer = optim.Adam(discriminator.parameters(), lr=d_lr)
return {"worker": w_optimizer, "manager": m_optimizer,
"discriminator": d_optimizer}
#List of Learning rate Schedulers
def prepare_scheduler_dict(optmizer_dict, step_size=200, gamma=0.99):
w_optimizer = optmizer_dict["worker"]
m_optimizer = optmizer_dict["manager"]
d_optimizer = optmizer_dict["discriminator"]
w_scheduler = optim.lr_scheduler.StepLR(w_optimizer, step_size=step_size,
gamma=gamma)
m_scheduler = optim.lr_scheduler.StepLR(m_optimizer, step_size=step_size,
gamma=gamma)
d_scheduler = optim.lr_scheduler.StepLR(d_optimizer, step_size=step_size,
gamma=gamma)
return {"worker": w_scheduler, "manager": m_scheduler,
"discriminator": d_scheduler}
#Pretraining the Generator
def pretrain_generator(model_dict, optimizer_dict, scheduler_dict, dataloader, vocab_size, max_norm=5.0, use_cuda=False, epoch=1, tot_epochs=100):
#get the models of generator
generator = model_dict["generator"]
worker = generator.worker
manager = generator.manager
#get the optimizers
m_optimizer = optimizer_dict["manager"]
w_optimizer = optimizer_dict["worker"]
m_optimizer.zero_grad()
w_optimizer.zero_grad()
m_lr_scheduler = scheduler_dict["manager"]
w_lr_scheduler = scheduler_dict["worker"]
"""
Perform pretrain step for real data
"""
for i, sample in enumerate(dataloader):
#print("DataLoader: {}".format(dataloader))
m_lr_scheduler.step()
w_lr_scheduler.step()
sample = Variable(sample)
if use_cuda:
sample = sample.cuda(async=True)
# Calculate pretrain loss
if (sample.size() == torch.zeros([64, 10]).size()): #sometimes smaller than 64 (16) is passed, so this if statement disables it
#print("Sample size: {}".format(sample.size()))
pre_rets = recurrent_func("pre")(model_dict, sample, use_cuda)
real_goal = pre_rets["real_goal"]
prediction = pre_rets["prediction"]
delta_feature = pre_rets["delta_feature"]
m_loss = loss_func("pre_manager")(real_goal, delta_feature)
torch.autograd.grad(m_loss, manager.parameters())
clip_grad_norm_(manager.parameters(), max_norm=max_norm)
m_optimizer.step()
m_optimizer.zero_grad()
w_loss = loss_func("pre_worker")(sample, prediction, vocab_size, use_cuda)
torch.autograd.grad(w_loss, worker.parameters())
clip_grad_norm_(worker.parameters(), max_norm=max_norm)
w_optimizer.step()
w_optimizer.zero_grad()
if i == 63:
print("Pre-Manager Loss: {:.5f}, Pre-Worker Loss: {:.5f}\n".format(m_loss, w_loss))
"""
Update model_dict, optimizer_dict, and scheduler_dict
"""
generator.woroker = worker
generator.manager = manager
model_dict["generator"] = generator
optimizer_dict["manager"] = m_optimizer
optimizer_dict["worker"] = w_optimizer
scheduler_dict["manager"] = m_lr_scheduler
scheduler_dict["worker"] = w_lr_scheduler
return model_dict, optimizer_dict, scheduler_dict
def generate_samples(model_dict, negative_file, batch_size,
use_cuda=False, temperature=1.0):
neg_data = []
for _ in range(batch_size):
sample = get_sample(model_dict, use_cuda, temperature)
sample = sample.cpu()
neg_data.append(sample.data.numpy())
neg_data = np.concatenate(neg_data, axis=0)
np.save(negative_file, neg_data)
def pretrain_discriminator(model_dict, optimizer_dict, scheduler_dict,
dis_dataloader_params, vocab_size, positive_file,
negative_file, batch_size, epochs, use_cuda=False, temperature=1.0):
discriminator = model_dict["discriminator"]
d_optimizer = optimizer_dict["discriminator"]
d_lr_scheduler = scheduler_dict["discriminator"]
generate_samples(model_dict, negative_file, batch_size, use_cuda, temperature)
dis_dataloader_params["positive_filepath"] = positive_file
dis_dataloader_params["negative_filepath"] = negative_file
#print(dis_dataloader_params)
dataloader = dis_data_loader(**dis_dataloader_params) #this is where data iterator is used
cross_entropy = nn.CrossEntropyLoss() #this one is similar to NLL (negative log likelihood)
if use_cuda:
cross_entropy = cross_entropy.cuda()
for epoch in range(epochs):
for i, sample in enumerate(dataloader):
d_optimizer.zero_grad()
data, label = sample["data"], sample["label"] #initialize sample variables
data = Variable(data)
label = Variable(label)
if use_cuda:
data = data.cuda()
label = label.cuda()
outs = discriminator(data)
loss = cross_entropy(outs["score"], label.view(-1)) + discriminator.l2_loss()
d_lr_scheduler.step()
loss.backward()
d_optimizer.step()
if i == 63:
print("Pre-Discriminator loss: {:.5f}".format(loss))
model_dict["discriminator"] = discriminator
optimizer_dict["discriminator"] = d_optimizer
scheduler_dict["discriminator"] = d_lr_scheduler
return model_dict, optimizer_dict, scheduler_dict
#Adversarial training
def adversarial_train(model_dict, optimizer_dict, scheduler_dict, dis_dataloader_params,
vocab_size, pos_file, neg_file, batch_size, gen_train_num=1,
dis_train_epoch=5, dis_train_num=3, max_norm=5.0,
rollout_num=4, use_cuda=False, temperature=1.0, epoch=1, tot_epoch=100):
"""
Get all the models, optimizer and schedulers
"""
generator = model_dict["generator"]
discriminator = model_dict ["discriminator"]
worker = generator.worker
manager = generator.manager
m_optimizer = optimizer_dict["manager"]
w_optimizer = optimizer_dict["worker"]
d_optimizer = optimizer_dict["discriminator"]
#Why zero grad only m and w?
m_optimizer.zero_grad()
w_optimizer.zero_grad()
m_lr_scheduler = scheduler_dict["manager"]
w_lr_scheduler = scheduler_dict["worker"]
d_lr_scheduler = scheduler_dict["discriminator"]
#Adversarial training for generator
for _ in range(gen_train_num):
m_lr_scheduler.step()
w_lr_scheduler.step()
m_optimizer.zero_grad()
w_optimizer.zero_grad()
#get all the return values
adv_rets = recurrent_func("adv")(model_dict, use_cuda)
real_goal = adv_rets["real_goal"]
all_goal = adv_rets["all_goal"]
prediction = adv_rets["prediction"]
delta_feature = adv_rets["delta_feature"]
delta_feature_for_worker = adv_rets["delta_feature_for_worker"]
gen_token = adv_rets["gen_token"]
rewards = get_rewards(model_dict, gen_token, rollout_num, use_cuda)
m_loss = loss_func("adv_manager")(rewards, real_goal, delta_feature)
w_loss = loss_func("adv_worker")(all_goal, delta_feature_for_worker, gen_token, prediction, vocab_size, use_cuda)
torch.autograd.grad(m_loss, manager.parameters()) #based on loss improve the parameters
torch.autograd.grad(w_loss, worker.parameters())
clip_grad_norm_(manager.parameters(), max_norm)
clip_grad_norm_(worker.parameters(), max_norm)
m_optimizer.step()
w_optimizer.step()
print("Adv-Manager loss: {:.5f} Adv-Worker loss: {:.5f}".format(m_loss, w_loss))
del adv_rets
del real_goal
del all_goal
del prediction
del delta_feature
del delta_feature_for_worker
del gen_token
del rewards
#Adversarial training for discriminator
for n in range(dis_train_epoch):
generate_samples(model_dict, neg_file, batch_size, use_cuda, temperature)
dis_dataloader_params["positive_filepath"] = pos_file
dis_dataloader_params["negative_filepath"] = neg_file
dataloader = dis_data_loader(**dis_dataloader_params)
cross_entropy = nn.CrossEntropyLoss()
if use_cuda:
cross_entropy = cross_entropy.cuda()
for _ in range(dis_train_num):
for i, sample in enumerate(dataloader):
data, label = sample["data"], sample["label"]
data = Variable(data)
label = Variable(label)
if use_cuda:
data = data.cuda(async=True)
label = label.cuda(async=True)
outs = discriminator(data)
loss = cross_entropy(outs["score"], label.view(-1)) + discriminator.l2_loss()
d_optimizer.zero_grad()
d_lr_scheduler.step()
loss.backward()
d_optimizer.step()
print("{}/{} Adv-Discriminator Loss: {:.5f}".format(n, range(dis_train_epoch),loss))
#Save all changes
model_dict["discriminator"] = discriminator
generator.worker = worker
generator.manager = manager
model_dict["generator"] = generator
optimizer_dict["manager"] = m_optimizer
optimizer_dict["worker"] = w_optimizer
optimizer_dict["discriminator"] = d_optimizer
scheduler_dict["manager"] = m_lr_scheduler
scheduler_dict["worker"] = w_lr_scheduler
scheduler_dict["disciminator"] = d_lr_scheduler
return model_dict, optimizer_dict, scheduler_dict
def save_checkpoint(model_dict, optimizer_dict, scheduler_dict, ckpt_num, replace=False):
file_name = "checkpoint" + str(ckpt_num) + ".pth.tar"
torch.save({"model_dict": model_dict, "optimizer_dict": optimizer_dict, "scheduler_dict": scheduler_dict, "ckpt_num": ckpt_num}, file_name)
if replace:
ckpts = glob.glob("checkpoint*")
ckpt_nums = [int(x.split('.')[0][10:]) for x in ckpts]
oldest_ckpt = "checkpoint" + str(min(ckpt_nums)) + ".pth.tar"
os.remove(oldest_ckpt)
def restore_checkpoint(ckpt_path):
checkpoint = torch.load(ckpt_path)
return checkpoint
def main():
"""
Get all parameters
"""
param_dict = get_arguments()
use_cuda = torch.cuda.is_available()
#Random seed
torch.manual_seed(param_dict["train_params"]["seed"])
#Pretrain step
checkpoint_path = param_dict["train_params"]["checkpoint_path"]
if checkpoint_path is not None:
checkpoint = restore_checkpoint(checkpoint_path)
model_dict = checkpoint["model_dict"]
optimizer_dict = checkpoint["optimizer_dict"]
scheduler_dict = checkpoint["scheduler_dict"]
ckpt_num = checkpoint["ckpt_num"]
else:
model_dict = prepare_model_dict(use_cuda)
lr_dict = param_dict["train_params"]["lr_dict"]
optimizer_dict = prepare_optimizer_dict(model_dict, lr_dict)
gamma = param_dict["train_params"]["decay_rate"]
step_size = param_dict["train_params"]["decay_step_size"]
scheduler_dict = prepare_scheduler_dict(optimizer_dict, gamma=gamma, step_size=step_size)
#Pretrain discriminator
print ("#########################################################################")
print ("Start Pretraining Discriminator...")
with open("./params/dis_data_params.json", 'r') as f:
dis_data_params = json.load(f)
if use_cuda:
dis_data_params["pin_memory"] = True
f.close()
pos_file = dis_data_params["positive_filepath"]
neg_file = dis_data_params["negative_filepath"]
batch_size = param_dict["train_params"]["generated_num"]
vocab_size = param_dict["leak_gan_params"]["discriminator_params"]["vocab_size"]
for i in range(param_dict["train_params"]["pre_dis_epoch_num"]):
print("Epoch: {}/{} Pre-Discriminator".format(i, param_dict["train_params"]["pre_dis_epoch_num"]))
model_dict, optimizer_dict, scheduler_dict = pretrain_discriminator(model_dict, optimizer_dict, scheduler_dict, dis_data_params, vocab_size=vocab_size, positive_file=pos_file, negative_file=neg_file, batch_size=batch_size, epochs=1, use_cuda=use_cuda)
ckpt_num = 0
save_checkpoint(model_dict, optimizer_dict, scheduler_dict, ckpt_num)
#Pretrain generator
print ("#########################################################################")
print ("Start Pretraining Generator...")
real_data_params = param_dict["real_data_params"]
if use_cuda:
real_data_params["pin_memory"] = True
r_dataloader = real_data_loader(**real_data_params)
for epoch in range(param_dict["train_params"]["pre_gen_epoch_num"]):
print("Epoch: {}/{} Pre-Generator".format(epoch, param_dict["train_params"]["pre_gen_epoch_num"]))
model_dict, optimizer_dict, scheduler_dict = pretrain_generator(model_dict, optimizer_dict, scheduler_dict, r_dataloader, vocab_size=vocab_size, use_cuda=use_cuda, epoch=epoch, tot_epochs=range(param_dict["train_params"]["pre_gen_epoch_num"]))
#Finish pretrain and save the checkpoint
save_checkpoint(model_dict, optimizer_dict, scheduler_dict, ckpt_num)
ckpt_num = 1
#Adversarial train of D and G
print ("#########################################################################")
print ("Start Adversarial Training...")
vocab_size = param_dict["leak_gan_params"]["discriminator_params"]["vocab_size"]
save_num = param_dict["train_params"]["save_num"] #save checkpoint after this number of repetitions
replace_num = param_dict["train_params"]["replace_num"]
for epoch in range(param_dict["train_params"]["total_epoch"]):
print("Epoch: {}/{} Adv".format(epoch, param_dict["train_params"]["total_epoch"]))
model_dict, optimizer_dict, scheduler_dict = adversarial_train(model_dict, optimizer_dict, scheduler_dict, dis_data_params, vocab_size=vocab_size, pos_file=pos_file, neg_file=neg_file, batch_size=batch_size, use_cuda=use_cuda, epoch=epoch, tot_epoch=param_dict["train_params"]["total_epoch"])
if (epoch + 1) % save_num == 0:
ckpt_num += 1
if ckpt_num % replace_num == 0:
save_checkpoint(model_dict, optimizer_dict, scheduler_dict, ckpt_num, replace=True)
else:
save_checkpoint(model_dict, optimizer_dict, scheduler_dict, ckpt_num)
if __name__ == "__main__":
main()