diff --git a/README.md b/README.md index b0ad6d6..e03fbba 100644 --- a/README.md +++ b/README.md @@ -107,7 +107,7 @@ python -u -m stog.commands.predict \ ## 7. Data Postprocessing ```bash -./script/postprocess_2.0.sh test.pred.txt +./scripts/postprocess_2.0.sh test.pred.txt ``` ## 8. Evaluation @@ -116,6 +116,14 @@ Note that the evaluation tool works on `python2`, so please make sure `python2` ./scripts/compute_smatch.sh test.pred.txt data/AMR/amr_2.0/test.txt ``` +## Pre-trained Models +Here are pre-trained models: +[ckpt-amr-2.0.tar.gz](https://www.cs.jhu.edu/~s.zhang/data/AMR/ckpt-amr-2.0.tar.gz) +and [ckpt-amr-1.0.tar.gz](https://www.cs.jhu.edu/~s.zhang/data/AMR/ckpt-amr-1.0.tar.gz). +To use them for prediction, simply download & unzip them, and then run **Step 6-8**. + +In case that you only need the pre-trained model prediction (i.e., `test.pred.txt`), you can find it in the download. + ## Acknowledgements We adopted some modules or code snippets from [AllenNLP](https://github.com/allenai/allennlp),