-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathapp.py
125 lines (93 loc) · 4.81 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import gradio as gr
from dataclasses import dataclass
import PIL
import PIL.Image
import torch
import numpy as np
from gradio_editor3d import Editor3D as g3deditor
import copy
from loosecontrol import LooseControlNet
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
cn = LooseControlNet()
cn.pipe = cn.pipe.to(torch_device=device, torch_dtype=torch.float16)
# Need to figure out a better way how to do this per user, making 'cf attention' act like a state per user.
# For now, we just copy the model.
cn_with_cf = copy.deepcopy(cn)
cn_with_cf.set_cf_attention()
@dataclass
class FixedInputs:
prompt: str
seed: int
depth: PIL.Image.Image
negative_prompt = "blurry, text, caption, lowquality, lowresolution, low res, grainy, ugly"
def depth2image(prompt, seed, depth):
seed = int(seed)
gen = cn(prompt, control_image=depth, controlnet_conditioning_scale=1.0, generator=torch.Generator().manual_seed(seed), num_inference_steps=20, negative_prompt=negative_prompt)
return gen
def edit_previous(prompt, seed, depth, fixed_inputs):
seed = int(seed)
control_image = [fixed_inputs.depth, depth]
prompt = [fixed_inputs.prompt, prompt]
neg_prompt = [negative_prompt, negative_prompt]
generator = [torch.Generator().manual_seed(fixed_inputs.seed), torch.Generator().manual_seed(seed)]
gen = cn_with_cf(prompt, control_image=control_image, controlnet_conditioning_scale=1.0, generator=generator, num_inference_steps=20, negative_prompt=neg_prompt)[-1]
return gen
def run(prompt, seed, depth, should_edit, fixed_inputs):
depth = depth.convert("RGB")
# all values below [3,3,3] in depth should actually be set to [255,255,255]
# This is to due the nature of training data and is experimental right now.
# Not in use for now.
# depth = np.array(depth)
# depth[depth < 3] = 255
# depth = PIL.Image.fromarray(depth)
fixed_inputs = fixed_inputs[0]
if should_edit and fixed_inputs is not None:
return edit_previous(prompt, seed, depth, fixed_inputs)
else:
return depth2image(prompt, seed, depth)
def handle_edit_change(edit, prompt, seed, image_input, fixed_inputs):
if edit:
fixed_inputs[0] = FixedInputs(prompt, int(seed), image_input)
else:
fixed_inputs[0] = None
return fixed_inputs
css = """
#image_output {
width: 512px;
height: 512px;
"""
main_description = """
# LooseControl
This is the official demo for the paper [LooseControl: Lifting ControlNet for Generalized Depth Conditioning](https://shariqfarooq123.github.io/loose-control/).
Our 3D Box Editing allows users to interactively edit the 3D boxes representing objects in the scene. Users can change the position, size, and orientation of 3D boxes, allowing to quickly create and edit the scenes to their liking in a 3D-aware manner.
Best viewed on desktop.
"""
instructions_editor3d = """
## Instructions for Editor3D UI
- Use 'WASD' keys to move the camera.
- Click on an object to select it.
- Use the sliders to change the position, size, and orientation of the selected object. Sliders support click and drag for faster editing.
- Use the 'Add Box', 'Delete', and 'Duplicate' buttons to add, delete, and duplicate objects.
- Delete and Duplicate buttons work on the selected object. Duplicate creates a copy and selects it.
- Use the 'Toggle Mode' to switch between "normal" and "depth" mode. Final image sent to the model should be in "depth" mode.
- Use the 'Render' button to render the scene and send it to the model for generation.
### Lock style checkbox - Fixes the style of the latest generated image.
This allows users to edit the 3D boxes without changing the style of the generated image. This is useful when the user is satisfied with the style/content of the generated image and wants to edit the 3D boxes without changing the overall essence of the scene.
It can be used to create stop motion videos like those shown [here](https://shariqfarooq123.github.io/loose-control/).
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(main_description)
fixed_inputs = gr.State([None])
with gr.Row():
prompt = gr.Textbox(label="Prompt", placeholder="Write your prompt", elem_id="input")
seed = gr.Textbox(value=42, label="Seed", elem_id="seed")
should_edit = gr.Checkbox(label="Lock style", elem_id="edit")
with gr.Row():
image_input = g3deditor(elem_id="image_input")
with gr.Row():
image_output = gr.Image(elem_id="image_output", type='pil')
should_edit.change(fn=handle_edit_change, inputs=[should_edit, prompt, seed, image_input, fixed_inputs], outputs=[fixed_inputs])
image_input.change(fn=run, inputs=[prompt, seed, image_input, should_edit, fixed_inputs], outputs=[image_output])
with gr.Accordion("Instructions"):
gr.Markdown(instructions_editor3d)
demo.queue().launch()