-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathmetrics.py
69 lines (56 loc) · 2.44 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import numpy as np
import utils
#####################
# Scoring functions
#
# Code blocks taken from Toni Heittola's repository: http://tut-arg.github.io/sed_eval/
#
# Implementation of the Metrics in the following paper:
# Annamaria Mesaros, Toni Heittola, and Tuomas Virtanen, 'Metrics for polyphonic sound event detection',
# Applied Sciences, 6(6):162, 2016
#####################
def f1_overall_framewise(O, T):
if len(O.shape) == 3:
O, T = utils.reshape_3Dto2D(O), utils.reshape_3Dto2D(T)
TP = ((2 * T - O) == 1).sum()
Nref, Nsys = T.sum(), O.sum()
prec = float(TP) / float(Nsys + utils.eps)
recall = float(TP) / float(Nref + utils.eps)
f1_score = 2 * prec * recall / (prec + recall + utils.eps)
return f1_score
def er_overall_framewise(O, T):
if len(O.shape) == 3:
O, T = utils.reshape_3Dto2D(O), utils.reshape_3Dto2D(T)
FP = np.logical_and(T == 0, O == 1).sum(1)
FN = np.logical_and(T == 1, O == 0).sum(1)
S = np.minimum(FP, FN).sum()
D = np.maximum(0, FN-FP).sum()
I = np.maximum(0, FP-FN).sum()
Nref = T.sum()
ER = (S+D+I) / (Nref + 0.0)
return ER
def f1_overall_1sec(O, T, block_size):
if len(O.shape) == 3:
O, T = utils.reshape_3Dto2D(O), utils.reshape_3Dto2D(T)
new_size = int(np.ceil(O.shape[0] / block_size))
O_block = np.zeros((new_size, O.shape[1]))
T_block = np.zeros((new_size, O.shape[1]))
for i in range(0, new_size):
O_block[i, :] = np.max(O[int(i * block_size):int(i * block_size + block_size - 1), ], axis=0)
T_block[i, :] = np.max(T[int(i * block_size):int(i * block_size + block_size - 1), ], axis=0)
return f1_overall_framewise(O_block, T_block)
def er_overall_1sec(O, T, block_size):
if len(O.shape) == 3:
O, T = utils.reshape_3Dto2D(O), utils.reshape_3Dto2D(T)
new_size = int(O.shape[0] / block_size)
O_block = np.zeros((new_size, O.shape[1]))
T_block = np.zeros((new_size, O.shape[1]))
for i in range(0, new_size):
O_block[i, :] = np.max(O[int(i * block_size):int(i * block_size + block_size - 1), ], axis=0)
T_block[i, :] = np.max(T[int(i * block_size):int(i * block_size + block_size - 1), ], axis=0)
return er_overall_framewise(O_block, T_block)
def compute_scores(pred, y, frames_in_1_sec=50):
scores = dict()
scores['f1_overall_1sec'] = f1_overall_1sec(pred, y, frames_in_1_sec)
scores['er_overall_1sec'] = er_overall_1sec(pred, y, frames_in_1_sec)
return scores