-
Notifications
You must be signed in to change notification settings - Fork 5
/
main.py
344 lines (315 loc) · 16.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
from torchvision import datasets
from torchvision.transforms import ToTensor, transforms
from options import args_parser
from Dataset.long_tailed_cifar10 import train_long_tail
from Dataset.dataset import classify_label, show_clients_data_distribution, Indices2Dataset, TensorDataset, get_class_num
from Dataset.sample_dirichlet import clients_indices
from Dataset.Gradient_matching_loss import match_loss
import numpy as np
from torch import stack, max, eq, no_grad, tensor, unsqueeze, split
from torch.optim import SGD
from torch.nn import CrossEntropyLoss
from torch.utils.data.dataloader import DataLoader
from Model.Resnet8 import ResNet_cifar
from tqdm import tqdm
import copy
import torch
import random
import torch.nn as nn
import time
from Dataset.param_aug import DiffAugment
class Global(object):
def __init__(self,
num_classes: int,
device: str,
args,
num_of_feature):
self.device = device
self.num_classes = num_classes
self.fedavg_acc = []
self.fedavg_many = []
self.fedavg_medium = []
self.fedavg_few = []
self.ft_acc = []
self.ft_many = []
self.ft_medium = []
self.ft_few = []
self.num_of_feature = num_of_feature
self.feature_syn = torch.randn(size=(args.num_classes * self.num_of_feature, 256), dtype=torch.float,
requires_grad=True, device=args.device)
self.label_syn = torch.tensor([np.ones(self.num_of_feature) * i for i in range(args.num_classes)], dtype=torch.long,
requires_grad=False, device=args.device).view(-1) # [0,0,0, 1,1,1, ..., 9,9,9]
self.optimizer_feature = SGD([self.feature_syn, ], lr=args.lr_feature) # optimizer_img for synthetic data
self.criterion = CrossEntropyLoss().to(args.device)
self.syn_model = ResNet_cifar(resnet_size=8, scaling=4,
save_activations=False, group_norm_num_groups=None,
freeze_bn=False, freeze_bn_affine=False, num_classes=args.num_classes).to(device)
self.feature_net = nn.Linear(256, 10).to(args.device)
def update_feature_syn(self, args, global_params, list_clients_gradient):
feature_net_params = self.feature_net.state_dict()
for name_param in reversed(global_params):
if name_param == 'classifier.bias':
feature_net_params['bias'] = global_params[name_param]
if name_param == 'classifier.weight':
feature_net_params['weight'] = global_params[name_param]
break
self.feature_net.load_state_dict(feature_net_params)
self.feature_net.train()
net_global_parameters = list(self.feature_net.parameters())
gw_real_all = {class_index: [] for class_index in range(self.num_classes)}
for gradient_one in list_clients_gradient:
for class_num, gradient in gradient_one.items():
gw_real_all[class_num].append(gradient)
gw_real_avg = {class_index: [] for class_index in range(args.num_classes)}
# aggregate the real feature gradients
for i in range(args.num_classes):
gw_real_temp = []
list_one_class_client_gradient = gw_real_all[i]
if len(list_one_class_client_gradient) != 0:
weight_temp = 1.0 / len(list_one_class_client_gradient)
for name_param in range(2):
list_values_param = []
for one_gradient in list_one_class_client_gradient:
list_values_param.append(one_gradient[name_param] * weight_temp)
value_global_param = sum(list_values_param)
gw_real_temp.append(value_global_param)
gw_real_avg[i] = gw_real_temp
# update the federated features.
for ep in range(args.match_epoch):
loss_feature = torch.tensor(0.0).to(args.device)
for c in range(args.num_classes):
if len(gw_real_avg[c]) != 0:
feature_syn = self.feature_syn[c * self.num_of_feature:(c + 1) * self.num_of_feature].reshape((self.num_of_feature, 256))
lab_syn = torch.ones((self.num_of_feature,), device=args.device, dtype=torch.long) * c
output_syn = self.feature_net(feature_syn)
loss_syn = self.criterion(output_syn, lab_syn)
# compute the federated feature gradients of class c
gw_syn = torch.autograd.grad(loss_syn, net_global_parameters, create_graph=True)
loss_feature += match_loss(gw_syn, gw_real_avg[c], args)
self.optimizer_feature.zero_grad()
loss_feature.backward()
self.optimizer_feature.step()
def feature_re_train(self, fedavg_params, batch_size_local_training):
feature_syn_train_ft = copy.deepcopy(self.feature_syn.detach())
label_syn_train_ft = copy.deepcopy(self.label_syn.detach())
dst_train_syn_ft = TensorDataset(feature_syn_train_ft, label_syn_train_ft)
ft_model = nn.Linear(256, 10).to(args.device)
optimizer_ft_net = SGD(ft_model.parameters(), lr=args.lr_net) # optimizer_img for synthetic data
ft_model.train()
for epoch in range(args.crt_epoch):
trainloader_ft = DataLoader(dataset=dst_train_syn_ft,
batch_size=batch_size_local_training,
shuffle=True)
for data_batch in trainloader_ft:
images, labels = data_batch
images, labels = images.to(self.device), labels.to(self.device)
outputs = ft_model(images)
loss_net = self.criterion(outputs, labels)
optimizer_ft_net.zero_grad()
loss_net.backward()
optimizer_ft_net.step()
ft_model.eval()
feature_net_params = ft_model.state_dict()
for name_param in reversed(fedavg_params):
if name_param == 'classifier.bias':
fedavg_params[name_param] = feature_net_params['bias']
if name_param == 'classifier.weight':
fedavg_params[name_param] = feature_net_params['weight']
break
return copy.deepcopy(ft_model.state_dict()), copy.deepcopy(fedavg_params)
def initialize_for_model_fusion(self, list_dicts_local_params: list, list_nums_local_data: list):
# fedavg
fedavg_global_params = copy.deepcopy(list_dicts_local_params[0])
for name_param in list_dicts_local_params[0]:
list_values_param = []
for dict_local_params, num_local_data in zip(list_dicts_local_params, list_nums_local_data):
list_values_param.append(dict_local_params[name_param] * num_local_data)
value_global_param = sum(list_values_param) / sum(list_nums_local_data)
fedavg_global_params[name_param] = value_global_param
return fedavg_global_params
def global_eval(self, fedavg_params, data_test, batch_size_test):
self.syn_model.load_state_dict(fedavg_params)
self.syn_model.eval()
with no_grad():
test_loader = DataLoader(data_test, batch_size_test)
num_corrects = 0
for data_batch in test_loader:
images, labels = data_batch
images, labels = images.to(self.device), labels.to(self.device)
_, outputs = self.syn_model(images)
_, predicts = max(outputs, -1)
num_corrects += sum(eq(predicts.cpu(), labels.cpu())).item()
accuracy = num_corrects / len(data_test)
return accuracy
def download_params(self):
return self.syn_model.state_dict()
class Local(object):
def __init__(self,
data_client,
class_list: int):
args = args_parser()
self.data_client = data_client
self.device = args.device
self.class_compose = class_list
self.criterion = CrossEntropyLoss().to(args.device)
self.local_model = ResNet_cifar(resnet_size=8, scaling=4,
save_activations=False, group_norm_num_groups=None,
freeze_bn=False, freeze_bn_affine=False, num_classes=args.num_classes).to(
args.device)
self.optimizer = SGD(self.local_model.parameters(), lr=args.lr_local_training)
def compute_gradient(self, global_params, args):
# compute C^k
list_class, per_class_compose = get_class_num(self.class_compose) # class组成
images_all = []
labels_all = []
indices_class = {class_index: [] for class_index in list_class}
images_all = [unsqueeze(self.data_client[i][0], dim=0) for i in range(len(self.data_client))]
labels_all = [self.data_client[i][1] for i in range(len(self.data_client))]
for i, lab in enumerate(labels_all):
indices_class[lab].append(i)
images_all = torch.cat(images_all, dim=0).to(args.device)
labels_all = torch.tensor(labels_all, dtype=torch.long, device=args.device)
def get_images(c, n): # get random n images from class c
idx_shuffle = np.random.permutation(indices_class[c])[:n]
return images_all[idx_shuffle]
self.local_model.load_state_dict(global_params)
self.local_model.eval()
self.local_model.classifier.train()
net_parameters = list(self.local_model.classifier.parameters())
criterion = CrossEntropyLoss().to(args.device)
# gradients of all classes
truth_gradient_all = {index: [] for index in list_class}
truth_gradient_avg = {index: [] for index in list_class}
# choose to repeat 10 times
for num_compute in range(10):
for c, num in zip(list_class, per_class_compose):
img_real = get_images(c, args.batch_real)
# transform
if args.dsa:
seed = int(time.time() * 1000) % 100000
img_real = DiffAugment(img_real, args.dsa_strategy, seed=seed, param=args.dsa_param)
lab_real = torch.ones((img_real.shape[0],), device=args.device, dtype=torch.long) * c
feature_real, output_real = self.local_model(img_real)
loss_real = criterion(output_real, lab_real)
# compute the real feature gradients of class c
gw_real = torch.autograd.grad(loss_real, net_parameters)
gw_real = list((_.detach().clone() for _ in gw_real))
truth_gradient_all[c].append(gw_real)
for i in list_class:
gw_real_temp = []
gradient_all = truth_gradient_all[i]
weight = 1.0 / len(gradient_all)
for name_param in range(len(gradient_all[0])):
list_values_param = []
for client_one in gradient_all:
list_values_param.append(client_one[name_param] * weight)
value_global_param = sum(list_values_param)
gw_real_temp.append(value_global_param)
# the real feature gradients of all classes
truth_gradient_avg[i] = gw_real_temp
return truth_gradient_avg
def local_train(self, args, global_params):
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip()])
self.local_model.load_state_dict(global_params)
self.local_model.train()
for _ in range(args.num_epochs_local_training):
data_loader = DataLoader(dataset=self.data_client,
batch_size=args.batch_size_local_training,
shuffle=True)
for data_batch in data_loader:
images, labels = data_batch
images, labels = images.to(self.device), labels.to(self.device)
images = transform_train(images)
_, outputs = self.local_model(images)
loss = self.criterion(outputs, labels)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
return self.local_model.state_dict()
def CReFF():
args = args_parser()
print(
'imb_factor:{ib}, non_iid:{non_iid}\n'
'lr_net:{lr_net}, lr_feature:{lr_feature}, num_of_feature:{num_of_feature}\n '
'match_epoch:{match_epoch}, re_training_epoch:{crt_epoch}\n'.format(
ib=args.imb_factor,
non_iid=args.non_iid_alpha,
lr_net=args.lr_net,
lr_feature=args.lr_feature,
num_of_feature=args.num_of_feature,
match_epoch=args.match_epoch,
crt_epoch=args.crt_epoch))
random_state = np.random.RandomState(args.seed)
# Load data
transform_all = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
data_local_training = datasets.CIFAR10(args.path_cifar10, train=True, download=True, transform=transform_all)
data_global_test = datasets.CIFAR10(args.path_cifar10, train=False, transform=transform_all)
# Distribute data
list_label2indices = classify_label(data_local_training, args.num_classes)
# heterogeneous and long_tailed setting
_, list_label2indices_train_new = train_long_tail(copy.deepcopy(list_label2indices), args.num_classes,
args.imb_factor, args.imb_type)
list_client2indices = clients_indices(copy.deepcopy(list_label2indices_train_new), args.num_classes,
args.num_clients, args.non_iid_alpha, args.seed)
original_dict_per_client = show_clients_data_distribution(data_local_training, list_client2indices,
args.num_classes)
global_model = Global(num_classes=args.num_classes,
device=args.device,
args=args,
num_of_feature=args.num_of_feature)
total_clients = list(range(args.num_clients))
indices2data = Indices2Dataset(data_local_training)
re_trained_acc = []
temp_model = nn.Linear(256, 10).to(args.device)
syn_params = temp_model.state_dict()
for r in tqdm(range(1, args.num_rounds+1), desc='server-training'):
global_params = global_model.download_params()
syn_feature_params = copy.deepcopy(global_params)
for name_param in reversed(syn_feature_params):
if name_param == 'classifier.bias':
syn_feature_params[name_param] = syn_params['bias']
if name_param == 'classifier.weight':
syn_feature_params[name_param] = syn_params['weight']
break
online_clients = random_state.choice(total_clients, args.num_online_clients, replace=False)
list_clients_gradient = []
list_dicts_local_params = []
list_nums_local_data = []
# local training
for client in online_clients:
indices2data.load(list_client2indices[client])
data_client = indices2data
list_nums_local_data.append(len(data_client))
local_model = Local(data_client=data_client,
class_list=original_dict_per_client[client])
# compute the real feature gradients in local data
truth_gradient = local_model.compute_gradient(copy.deepcopy(syn_feature_params), args)
list_clients_gradient.append(copy.deepcopy(truth_gradient))
# local update
local_params = local_model.local_train(args, copy.deepcopy(global_params))
list_dicts_local_params.append(copy.deepcopy(local_params))
# aggregating local models with FedAvg
fedavg_params = global_model.initialize_for_model_fusion(list_dicts_local_params, list_nums_local_data)
global_model.update_feature_syn(args, copy.deepcopy(syn_feature_params), list_clients_gradient)
# re-trained classifier
syn_params, ft_params = global_model.feature_re_train(copy.deepcopy(fedavg_params), args.batch_size_local_training)
# global eval
one_re_train_acc = global_model.global_eval(ft_params, data_global_test, args.batch_size_test)
re_trained_acc.append(one_re_train_acc)
global_model.syn_model.load_state_dict(copy.deepcopy(fedavg_params))
if r % 10 == 0:
print(re_trained_acc)
print(re_trained_acc)
if __name__ == '__main__':
torch.manual_seed(7) # cpu
torch.cuda.manual_seed(7) # gpu
np.random.seed(7) # numpy
random.seed(7) # random and transforms
torch.backends.cudnn.deterministic = True # cudnn
args = args_parser()
CReFF()