-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
204 lines (147 loc) · 6.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import torchvision
import numpy as np
import matplotlib.pyplot as plt
from datetime import datetime
import copy
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
import json
from dataset import ImagenetteDataset
from moco_model import MOCO
from image_clf import *
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
data_path = '../imagenette2/'
res_path = './results/Moco'
os.makedirs(res_path, exist_ok=True)
def train_moco():
start_epoch,epochs = 0, 1000
print_every = 10
q_size = 4096
batch_size = 256
contrast_momentum = 0.999
# for gamble softmax
T = 0.07
# optimizer
lr = 0.001
wd = 0.0001
#moshe: if implement distributed training, remember to change shuffle...
train_ds = ImagenetteDataset(data_path, crop_size=112, train=True, augment=2, num_augmentations=2)
train_loader = torch.utils.data.DataLoader(train_ds,batch_size=batch_size, shuffle=True)
# Model
Q_enc = MOCO().to(device=device)
Q_enc.load_state_dict(torch.load('./moco_checkpoint_fq.pt', map_location=device)['model_state_dict']) #load model from file (only when exists) #TODO: remove this loadings when done training
# Create K_enc and make sure not to track any gradient... note there is no optimizer but we don't even want to use
# too much memory
#K_enc = copy.deepcopy(Q_enc).to(device) #TODO: return this line and remove the two lines below
K_enc = MOCO().to(device=device)
K_enc.load_state_dict(torch.load('./moco_checkpoint_fk.pt', map_location=device)['model_state_dict'])
for param in K_enc.parameters():
param.requires_grad = False
# optimizers
optimizer = torch.optim.Adam(Q_enc.parameters(), lr=lr, weight_decay=wd)
#todo: add scedulare (LRSTep or CosineAniling...)
loss_func = torch.nn.CrossEntropyLoss()
loss_list = []
# initialize queue of augmented data
queue = F.normalize(torch.randn(128, q_size), dim=0).to(device)
# log file
f = open(res_path + '/moco_log.txt', "a+")
for epoch in range(start_epoch,epochs):
# Training
Q_enc.train()
K_enc.train()
avg_loss = []
bar = tqdm(train_loader)
i, tot_loss, tot_samples = 0, 0.0, 0
#labels = torch.zeros(b_size, dtype=torch.int64).to(device)
for q_batch, k_batch, labels in bar:
optimizer.zero_grad()
q_batch, k_batch = q_batch.to(device), k_batch.to(device)
_, q_emb_b = Q_enc(q_batch.type(torch.float))
_, k_emb_b = K_enc(k_batch.type(torch.float))
k_emb_b = k_emb_b.detach()
#todo: use sqeeze and unsqeeze (1 for both)
b_size = k_emb_b.shape[0]
f_size = k_emb_b.shape[1]
l_pos = torch.bmm(q_emb_b.view(b_size, 1, f_size), k_emb_b.view(b_size, f_size, 1))
l_neg = torch.mm(q_emb_b.view(b_size, f_size), queue)
logits = torch.cat([l_pos.view(-1, 1), l_neg], dim=1)/T
labels = torch.zeros(b_size, dtype=torch.int64).to(device)
loss = loss_func(logits, labels)
avg_loss.append(loss.item())
loss.backward()
optimizer.step()
enc_params = zip(Q_enc.parameters(), K_enc.parameters())
for q_parameters, k_parameters in enc_params:
k_parameters.data = k_parameters.data * contrast_momentum + q_parameters.data * (1. - contrast_momentum)
queue = torch.cat([queue, k_emb_b.T], dim=1).to(device)
queue = queue[:, k_emb_b.T.shape[1]:]
# Save status
epoch_log = "Epoch: "+str(epoch+1)+", Iter: "+str(i+1)+', Loss: '+str(loss.item())
if (epoch+1) % print_every == 0:
print(epoch_log)
f.write(epoch_log + '\n')
tot_samples += k_emb_b.shape[0]
tot_loss += loss.item() * k_emb_b.shape[0]
bar.set_description(f'Train Epoch: [{epoch+1}/{epochs}] Loss: {tot_loss / tot_samples}')
epoch_loss = np.mean(avg_loss)
loss_list.append(epoch_loss)
torch.save({
'epoch': epoch,
'model_state_dict': Q_enc.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': epoch_loss,
}, res_path + '/moco_checkpoint_fq.pt')
torch.save({
'epoch': epoch,
'model_state_dict': K_enc.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': epoch_loss,
}, res_path + '/moco_checkpoint_fk.pt')
f.close()
print_losses(loss_list)
def print_losses(loss_list, graph_name='moco_loss_path', ylab='Accuracy', path=res_path):
plt.figure()
plt.plot(np.array(loss_list))
plt.title(graph_name.replace('_',' '))
plt.xlabel('Epoch')
plt.ylabel(ylab)
plt.savefig(res_path + '/' + graph_name +'.png')
def train_classifier():
epochs = 100
batch_size = 32
# for gamble softmax
T = 0.07
# optimizer
lr = 0.001
momentum = 0.9
wd = 0.0001
train_ds = ImagenetteDataset(data_path, crop_size=288, train=True, augment=1, num_augmentations=3) #return an original image and an augmented image
train_loader = torch.utils.data.DataLoader(train_ds,batch_size=batch_size, shuffle=True)
val_ds = ImagenetteDataset(data_path, crop_size=288, train=False, augment=0)
val_loader = torch.utils.data.DataLoader(val_ds, batch_size=batch_size, shuffle=False)
pretask = MOCO()
#load parameters
pretask.load_state_dict(torch.load('./moco_checkpoint_fq.pt')['model_state_dict'])
classifier = ImageClassifier(pretask_model=pretask).to(device)
losses = train_eval(classifier, train_loader, val_loader, epochs, lr, wd) #train loss, train acc, validation acc
#save losses logs and plot graph
for idx, name in enumerate(["train_loss", "train_accuracy", "validation_accuracy"]):
f = open(f"./results/{name}.txt", "w")
f.write(json.dumps(torch.tensor(losses[idx]).tolist()))
f.close()
print_losses(loss_list=losses[idx], graph_name=name, path="./results/")
print_stats(classifier, val_loader)
present_accuracy(classifier, val_loader)
def analyze_classifier(classifier):
batch_size = 32
val_ds = ImagenetteDataset(data_path, crop_size=288, train=False, augment=0)
val_loader = torch.utils.data.DataLoader(val_ds, batch_size=batch_size, shuffle=False)
print_stats(classifier, val_loader)
present_accuracy(classifier, val_loader)
if __name__ == '__main__':
train_moco()
train_classifier()