-
Notifications
You must be signed in to change notification settings - Fork 3
/
0-1 Knapsack problem.c
66 lines (58 loc) · 1.37 KB
/
0-1 Knapsack problem.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#include <cstdlib>
#include <algorithm>
#include <climits>
#include <cstdio>
using namespace std;
#define DUMMY 5454
int A[1000000];
int val[] = {DUMMY, 60, 100, 120};
int wt[] = {DUMMY, 10, 20, 30};
int knapSack(int N, int W){
for(int i = 0; i<= W; i++) A[i] = 0;
for(int i = 1; i<= N; i++)
for(int j = W; j>0; j--){
if(wt[i]<= j) A[j] = max(A[j], val[i] + A[j - wt[i]]);
}
return A[W];
}
int main()
{
int W = 50;
int n = sizeof(wt)/sizeof(wt[0]);
printf("%d", knapSack(n-1, W));
return 0;
}
/*
#include<stdio.h>
// A utility function that returns maximum of two integers
int max(int a, int b) { return (a > b)? a : b; }
// Returns the maximum value that can be put in a knapsack of capacity W
int knapSack(int W, int wt[], int val[], int n)
{
int i, w;
int K[n+1][W+1];
// Build table K[][] in bottom up manner
for (i = 0; i <= n; i++)
{
for (w = 0; w <= W; w++)
{
if (i==0 || w==0)
K[i][w] = 0;
else if (wt[i-1] <= w)
K[i][w] = max(val[i-1] + K[i-1][w-wt[i-1]], K[i-1][w]);
else
K[i][w] = K[i-1][w];
}
}
return K[n][W];
}
int main()
{
int val[] = {60, 100, 120};
int wt[] = {10, 20, 30};
int W = 50;
int n = sizeof(val)/sizeof(val[0]);
printf("%d", knapSack(W, wt, val, n));
return 0;
}
*/