-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
94 lines (75 loc) · 3.57 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import torch
from torch.utils.data import DataLoader
import os
from train.trainer_step import TrainStepper
from train.base_trainer import trainer, evaluator
from data.base_dataset import BaseDataset
from data.mixed_dataset import MixedDataset
from models.deco import DECO
from utils.config import parse_args, run_grid_search_experiments
def train(hparams):
deco_model = DECO(hparams.TRAINING.ENCODER, hparams.TRAINING.CONTEXT, device)
solver = TrainStepper(deco_model, hparams.TRAINING.CONTEXT, hparams.OPTIMIZER.LR, hparams.TRAINING.LOSS_WEIGHTS, hparams.TRAINING.PAL_LOSS_WEIGHTS, device)
vb_f1 = 0
start_ep = 0
num = 0
k = True
latest_model_path = hparams.TRAINING.BEST_MODEL_PATH.replace('best', 'latest')
if os.path.exists(latest_model_path):
_, vb_f1 = solver.load(hparams.TRAINING.BEST_MODEL_PATH)
start_ep, _ = solver.load(latest_model_path)
for epoch in range(start_ep+1, hparams.TRAINING.NUM_EPOCHS + 1):
# Train one epoch
trainer(epoch, train_loader, solver, hparams)
# Run evaluation
vc_f1 = None
for val_loader in val_loaders:
dataset_name = val_loader.dataset.dataset
vc_f1_ds = evaluator(val_loader, solver, hparams, epoch, dataset_name, normalize=hparams.DATASET.NORMALIZE_IMAGES)
if dataset_name == hparams.VALIDATION.MAIN_DATASET:
vc_f1 = vc_f1_ds
if vc_f1 is None:
raise ValueError('Main dataset not found in validation datasets')
print('Learning rate: ', solver.lr)
print('---------------------------------------------')
print('---------------------------------------------')
solver.save(epoch, vc_f1, latest_model_path)
if epoch % hparams.TRAINING.CHECKPOINT_EPOCHS == 0:
inter_model_path = latest_model_path.replace('latest', 'epoch_'+str(epoch).zfill(3))
solver.save(epoch, vc_f1, inter_model_path)
if vc_f1 < vb_f1:
num += 1
print('Not Saving model: Best Val F1 = ', vb_f1, ' Current Val F1 = ', vc_f1)
else:
num = 0
vb_f1 = vc_f1
print('Saving model...')
solver.save(epoch, vb_f1, hparams.TRAINING.BEST_MODEL_PATH)
if num >= hparams.OPTIMIZER.NUM_UPDATE_LR: solver.update_lr()
if num >= hparams.TRAINING.NUM_EARLY_STOP:
print('Early Stop')
k = False
if k: continue
else: break
if __name__ == '__main__':
args = parse_args()
hparams = run_grid_search_experiments(
args,
script='train.py',
)
if torch.cuda.is_available():
device = torch.device('cuda')
else:
device = torch.device('cpu')
train_dataset = MixedDataset(hparams.TRAINING.DATASETS, 'train', dataset_mix_pdf=hparams.TRAINING.DATASET_MIX_PDF, normalize=hparams.DATASET.NORMALIZE_IMAGES)
val_datasets = []
for ds in hparams.VALIDATION.DATASETS:
if ds in ['rich', 'prox']:
val_datasets.append(BaseDataset(ds, 'val', model_type='smplx', normalize=hparams.DATASET.NORMALIZE_IMAGES))
elif ds in ['damon']:
val_datasets.append(BaseDataset(ds, 'val', model_type='smpl', normalize=hparams.DATASET.NORMALIZE_IMAGES))
else:
raise ValueError('Dataset not supported')
train_loader = DataLoader(train_dataset, hparams.DATASET.BATCH_SIZE, shuffle=True, num_workers=hparams.DATASET.NUM_WORKERS)
val_loaders = [DataLoader(val_dataset, batch_size=hparams.DATASET.BATCH_SIZE, shuffle=False, num_workers=hparams.DATASET.NUM_WORKERS) for val_dataset in val_datasets]
train(hparams)