-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path42b_amp_f(-y)_(MinMaxScaler).py
159 lines (119 loc) · 5.21 KB
/
42b_amp_f(-y)_(MinMaxScaler).py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import pickle
import rompy
seed = 0
import os
os.environ['PYTHONHASHSEED'] = str(seed)
import numpy as np
import tensorflow as tf
import random as rn
np.random.seed(seed)
rn.seed(seed)
tf.random.set_seed(seed)
# #put the these lines before importing any module from keras.
gpus = tf.config.experimental.list_physical_devices('GPU')
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
from keras.callbacks import Callback
from keras.callbacks import ReduceLROnPlateau
from keras.callbacks import EarlyStopping
from keras import backend
from keras.optimizers import Adam, Adamax
from sklearn.preprocessing import MinMaxScaler, StandardScaler
# from tensorflow.keras import initializers
from keras.models import Sequential
from keras.layers import Dense
import matplotlib.pyplot as plt
# monitor the learning rate
class LearningRateMonitor(Callback):
# start of training
def on_train_begin(self, logs={}):
self.lrates = list()
# end of each training epoch
def on_epoch_end(self, epoch, logs={}):
# get and store the learning rate
lrate = float(backend.get_value(self.model.optimizer.lr))
self.lrates.append(lrate)
with open('q1to8_s0.99_both/amp_rel_sur/tol_1e-10.pkl', 'rb') as f:
[lambda_values, coeffs, eim_basis, eim_indices] = pickle.load(f)
# gia na tsekarw to evros twn coeffs
print(coeffs.max())
print(coeffs.min())
# SPLIT DATASETS
#gia kanonikopoiis khan kai green
lambda_values[:,0]=np.log10(lambda_values[:,0])
scaler_x=StandardScaler()
lambda_values_scaled = scaler_x.fit_transform(lambda_values)
amp_train_x = lambda_values_scaled
amp_train_y = coeffs
# print(amp_train_x.shape)
# print(amp_train_y.shape)
amp_scaler = MinMaxScaler() # scaling data to (0,1)
amp_train_y_scaled = amp_scaler.fit_transform(amp_train_y) # fitting scaler to training data .fit_transform
amp_train_y1 = 1 - amp_train_y_scaled
amp_train_y_aug=np.hstack([amp_train_y_scaled, amp_train_y1])
print(amp_train_y_aug.shape)
with open('q1to8_s0.99_both/amp_rel_sur/tol_1e-10_val.pkl', 'rb') as f:
[lambda_values_val, coeffs_val, eim_basis_val, eim_indices_val] = pickle.load(f)
lambda_values_val[:, 0] = np.log10(lambda_values_val[:, 0])
lambda_values_val_scaled = scaler_x.transform(lambda_values_val)
amp_val_x = lambda_values_val_scaled
amp_val_y = coeffs_val
print(amp_val_x.shape)
print(amp_val_y.shape)
amp_val_y_scaled = amp_scaler.transform(amp_val_y) # fitting validation data according to training data .transform
amp_val_y1 = 1 - amp_val_y_scaled
amp_val_y_aug = np.hstack([amp_val_y_scaled, amp_val_y1])
print(amp_val_y_aug.shape)
# constructing the model
amp_model = Sequential()
amp_model.add(Dense(320, activation= 'softplus'))
amp_model.add(Dense(320, activation='softplus'))
amp_model.add(Dense(320, activation='softplus'))
amp_model.add(Dense(320, activation='softplus'))
amp_model.add(Dense(36, activation=None))
# compile model
opt = Adamax(lr=0.01)
amp_model.compile(loss='mse', optimizer=opt, metrics=['mse'])
amp_rlrp = ReduceLROnPlateau(monitor='mse', factor=0.9, patience=15)
amp_lrm = LearningRateMonitor()
amp_stop = EarlyStopping(monitor='mse', patience=1000)
amp_history = amp_model.fit(amp_train_x, amp_train_y_aug, validation_data=(amp_val_x, amp_val_y_aug),
epochs=1000, batch_size=1000,
verbose=1, callbacks=[amp_rlrp, amp_lrm, amp_stop])
# Plot training & validation learning curves
plt.figure()
plt.plot(amp_history.history['mse'])
plt.plot(amp_history.history['val_mse'])
plt.yscale("log")
plt.title('Amplitude Model Mean Square Error')
plt.ylabel('mse')
plt.xlabel('Epoch')
plt.legend(['Train', 'Validation'], loc='upper right')
plt.savefig('Fig1: amp Model Train MSE')
plt.show()
# Learning Rate
plt.figure()
plt.plot(amp_lrm.lrates)
plt.yscale("log")
plt.title('Amplitude Learning Rate')
plt.xlabel('Epoch')
plt.savefig('Fig2: amp Model Learning Rate ')
plt.show()
train_evaluation = amp_model.evaluate(amp_train_x, amp_train_y_aug, batch_size=1000)
#thelw kai predictions apo validaion
amp_val_predictions_all_scaled = amp_model.predict(amp_val_x)
amp_val_predictions_18_scaled = amp_val_predictions_all_scaled[:,:18]
amp_val_predictions_36_scaled = amp_val_predictions_all_scaled[:,18:]
amp_val_predictions_36_scaled_inv = (amp_val_predictions_36_scaled*(-1))+1
amp_val_predictions_18 = amp_scaler.inverse_transform(amp_val_predictions_18_scaled)
amp_val_predictions_36_inv = amp_scaler.inverse_transform(amp_val_predictions_36_scaled_inv)
amp_val_predictions_ens = (amp_val_predictions_18 + amp_val_predictions_36_inv)/2
amp_val_mse_18_scaled = (np.square(amp_val_y_scaled - amp_val_predictions_18_scaled)).mean()
print('Validation y space mse: ', amp_val_mse_18_scaled)
amp_val_mse_36_scaled = (np.square(amp_val_y_scaled - amp_val_predictions_36_scaled_inv)).mean()
print('Validation -y space mse: ', amp_val_mse_36_scaled)
amp_val_predictions_ens_scaled = (amp_val_predictions_18_scaled + amp_val_predictions_36_scaled_inv)/2
amp_val_mse_ens = (np.square(amp_val_y_scaled - amp_val_predictions_ens_scaled)).mean()
print('Validation ensemble mse: ', amp_val_mse_ens)
with open('Amplitude_nn_predictions.pkl', 'wb') as f:
pickle.dump([amp_val_predictions_18, amp_val_predictions_36_inv, amp_val_predictions_ens], f)