-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimizers.py
345 lines (274 loc) · 12.1 KB
/
optimizers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import torch
from torch.optim.optimizer import Optimizer, required
import math
import copy
class A2GradUni(Optimizer):
def __init__(self, params, beta=10, lips=10):
defaults = dict(beta=beta, lips=lips)
super(A2GradUni, self).__init__(params, defaults)
def __setstate__(self, state):
super(A2GradUni, self).__setstate__(state)
def step(self, closure=None):
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
state = self.state[p]
if len(state) == 0:
state['step'] = 0
state['alpha_k'] = 1
state['v_k'] = 0
state['avg_grad'] = copy.deepcopy(grad)
state['x_k'] = copy.deepcopy(p.data)
gamma_k = 2 * group['lips'] / (state['step'] + 1)
avg_grad = state['avg_grad']
avg_grad.mul_(state['step'])
avg_grad.add_(grad)
avg_grad.div_(state['step']+1)
delta_k = torch.add(grad, -1, avg_grad)
state['v_k'] += torch.sum(delta_k * delta_k).item()
h_k = math.sqrt(state['v_k'])
alpha_k_1 = 2 / (state['step'] + 3)
coef = 1 / (gamma_k+group['beta'] * h_k)
x_k_1 = state['x_k']
x_k_1.add_(-coef, grad)
p.data.mul_(1 - alpha_k_1)
p.data.add_(alpha_k_1, x_k_1)
p.data.add_(-(1 - alpha_k_1) * state['alpha_k'] * coef, grad)
state['alpha_k'] = alpha_k_1
state['step'] += 1
return loss
class A2GradInc(Optimizer):
def __init__(self, params, beta=10, lips=10):
defaults = dict(beta=beta, lips=lips)
super(A2GradInc, self).__init__(params, defaults)
def __setstate__(self, state):
super(A2GradInc, self).__setstate__(state)
def step(self, closure=None):
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
state = self.state[p]
if len(state) == 0:
state['step'] = 0
state['alpha_k'] = 1
state['v_k'] = 0
state['avg_grad'] = copy.deepcopy(grad)
state['x_k'] = copy.deepcopy(p.data)
gamma_k = 2*group['lips']/(state['step']+1)
avg_grad = state['avg_grad']
avg_grad.mul_(state['step'])
avg_grad.add_(grad)
avg_grad.div_(state['step']+1)
delta_k = torch.add(grad, -1, avg_grad)
state['v_k'] *= (state['step'] / (state['step'] + 1)) ** 2
state['v_k'] += torch.sum(delta_k * delta_k).item()
h_k = math.sqrt(state['v_k'])
alpha_k_1 = 2/(state['step'] + 3)
coef = 1 / (gamma_k + group['beta'] * h_k)
x_k_1 = state['x_k']
x_k_1.add_(-coef, grad)
p.data.mul_(1 - alpha_k_1)
p.data.add_(alpha_k_1, x_k_1)
p.data.add_(-(1 - alpha_k_1) * state['alpha_k'] * coef, grad)
state['alpha_k'] = alpha_k_1
state['step'] += 1
return loss
class A2GradExp(Optimizer):
def __init__(self, params, beta=10, lips=10, rho=0.5):
defaults = dict(beta=beta, lips=lips, rho=rho)
super(A2GradExp, self).__init__(params, defaults)
def __setstate__(self, state):
super(A2GradExp, self).__setstate__(state)
def step(self, closure=None):
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
state = self.state[p]
if len(state) == 0:
state['step'] = 0
state['alpha_k'] = 1
state['v_k'] = 0
state['avg_grad'] = copy.deepcopy(grad)
state['x_k'] = copy.deepcopy(p.data)
gamma_k = 2*group['lips']/(state['step']+1)
avg_grad = state['avg_grad']
avg_grad.mul_(state['step'])
avg_grad.add_(grad)
avg_grad.div_(state['step']+1)
delta_k = torch.add(grad, -1, avg_grad)
if state['step'] == 0:
state['v_kk'] = torch.sum(delta_k*delta_k).item()
else:
state['v_kk']*=group['rho']
state['v_kk']+=(1-group['rho'])*torch.sum(delta_k*delta_k).item()
state['v_k'] = max([state['v_kk'], state['v_k']])
h_k = math.sqrt((state['step']+1)*state['v_k'])
alpha_k_1 = 2/(state['step']+3)
coef = -1/(gamma_k+group['beta']*h_k)
x_k_1 = state['x_k']
x_k_1.add_(coef, grad)
p.data.mul_(1-alpha_k_1)
p.data.add_(alpha_k_1, x_k_1)
p.data.add_((1 - alpha_k_1)*state['alpha_k']*coef, grad)
state['alpha_k'] = alpha_k_1
state['step'] += 1
return loss
# accelerated SGD
class AccSGD(Optimizer):
def __init__(self, params, lr=required, kappa = 1000.0, xi = 10.0, smallConst = 0.7, weight_decay=0):
defaults = dict(lr=lr, kappa=kappa, xi=xi, smallConst=smallConst,
weight_decay=weight_decay)
super(AccSGD, self).__init__(params, defaults)
def __setstate__(self, state):
super(AccSGD, self).__setstate__(state)
def step(self, closure=None):
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
weight_decay = group['weight_decay']
large_lr = (group['lr']*group['kappa'])/(group['smallConst'])
Alpha = 1.0 - ((group['smallConst']*group['smallConst']*group['xi'])/group['kappa'])
Beta = 1.0 - Alpha
zeta = group['smallConst']/(group['smallConst']+Beta)
for p in group['params']:
if p.grad is None:
continue
d_p = p.grad.data
if weight_decay != 0:
d_p.add_(weight_decay, p.data)
param_state = self.state[p]
if 'momentum_buffer' not in param_state:
param_state['momentum_buffer'] = copy.deepcopy(p.data)
buf = param_state['momentum_buffer']
buf.mul_((1.0/Beta)-1.0)
buf.add_(-large_lr,d_p)
buf.add_(p.data)
buf.mul_(Beta)
p.data.add_(-group['lr'],d_p)
p.data.mul_(zeta)
p.data.add_(1.0-zeta,buf)
return loss
# adaptive SGD
class SUG(Optimizer):
def __init__(self, params, l_0, d_0=0, prob=1., eps=1e-4, momentum=0, dampening=0,
weight_decay=0, nesterov=False):
if l_0 < 0.0:
raise ValueError("Invalid Lipsitz constant of gradient: {}".format(l_0))
if d_0 < 0.0:
raise ValueError("Invalid disperion of gradient: {}".format(d_0))
if momentum < 0.0:
raise ValueError("Invalid momentum value: {}".format(momentum))
if weight_decay < 0.0:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
defaults = dict(L=l_0, momentum=momentum, dampening=dampening,
weight_decay=weight_decay, nesterov=nesterov)
if nesterov and (momentum <= 0 or dampening != 0):
raise ValueError("Nesterov momentum requires a momentum and zero dampening")
self.Lips = l_0
self.prev_Lips = l_0
self.D_0 = d_0
self.eps = eps
self.prob = prob
self.start_param = params
self.upd_sq_grad_norm = None
self.sq_grad_norm = None
self.loss = torch.tensor(0.)
self.closure = None
super(SUG, self).__init__(params, defaults)
def __setstate__(self, state):
super(SUG, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('nesterov', False)
def comp_batch_size(self):
"""Returns optimal batch size for given d_0, eps and l_0;
"""
return math.ceil(2 * self.D_0 * self.eps / self.prev_Lips)
def step(self, loss, closure):
self.start_params = []
self.loss = loss
self.sq_grad_norm = 0
self.closure = closure
for gr_idx, group in enumerate(self.param_groups):
weight_decay = group['weight_decay']
momentum = group['momentum']
dampening = group['dampening']
nesterov = group['nesterov']
self.start_params.append([])
for p_idx, p in enumerate(group['params']):
self.start_params[gr_idx].append([p.data])
if p.grad is None:
continue
self.start_params[gr_idx][p_idx].append(p.grad.data)
d_p = self.start_params[gr_idx][p_idx][1]
p_ = self.start_params[gr_idx][p_idx][0]
self.sq_grad_norm += torch.sum(p.grad.data * p.grad.data)
if weight_decay != 0:
d_p.add_(weight_decay, p.data)
if momentum != 0:
param_state = self.state[p]
if 'momentum_buffer' not in param_state:
buf = param_state['momentum_buffer'] = torch.zeros_like(p.data)
buf.mul_(momentum).add_(d_p)
else:
buf = param_state['momentum_buffer']
buf.mul_(momentum).add_(1 - dampening, d_p)
if nesterov:
d_p = d_p.add(momentum, buf)
else:
d_p = buf
self.start_params[gr_idx][p_idx][1] = d_p
i = 0
difference = -1
while difference < 0:
self.Lips = max(self.prev_Lips * 2 ** (i - 1), 2.)
for gr_idx, group in enumerate(self.param_groups):
for p_idx, p in enumerate(group['params']):
if p.grad is None:
continue
start_param_val = self.start_params[gr_idx][p_idx][0]
start_param_grad = self.start_params[gr_idx][p_idx][1]
p.data = start_param_val - 1/(2*self.Lips) * start_param_grad
difference, upd_loss = self.stop_criteria()
i += 1
self.prev_Lips = self.Lips
return self.Lips, i
def stop_criteria(self):
"""Checks if the Lipsitz constant of gradient is appropriate
<g(x_k), w_k - x_k> + 2L_k / 2 ||x_k - w_k||^2 = - 1 / (2L_k)||g(x_k)||^2 + 1 / (4L_k)||g(x_k)||^2 = -1 / (4L_k)||g(x_k)||^2
"""
cur_loss = self.loss.item()
upd_loss = self.closure().item()
major = cur_loss - 1 / (4 * self.Lips) * self.sq_grad_norm
return major - upd_loss + self.eps / 10, upd_loss
def get_lipsitz_const(self):
"""Returns current Lipsitz constant of the gradient of the loss function
"""
return self.Lips
def get_sq_grad(self):
"""Returns the current second norm of the gradient of the loss function
calculated by the formula
||f'(p_1,...,p_n)||_2^2 ~ \sum\limits_{i=1}^n ((df/dp_i) * (df/dp_i))(p1,...,p_n))
"""
self.upd_sq_grad_norm = 0
for gr_idx, group in enumerate(self.param_groups):
for p_idx, p in enumerate(group['params']):
if p.grad is None:
continue
self.upd_sq_grad_norm += torch.sum(p.grad.data * p.grad.data)
return self.upd_sq_grad_norm