-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathplssem_postestimation.sthlp
775 lines (597 loc) · 27.4 KB
/
plssem_postestimation.sthlp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
{smcl}
{* *! version 0.6.3 10Oct2024}{...}
{vieweralsosee "plssem" "help plssem"}{...}
{vieweralsosee "plssemplot" "help plssemplot"}{...}
{viewerjumpto "Postestimation commands" "plssem postestimation##description"}{...}
{viewerjumpto "estat" "plssem postestimation##syntax_estat"}{...}
{viewerjumpto "estat options" "plssem postestimation##options_estat"}{...}
{viewerjumpto "estat indirect stored results" "plssem postestimation##results_indirect"}{...}
{viewerjumpto "estat mediate stored results" "plssem postestimation##results_mediate"}{...}
{viewerjumpto "estat f2 stored results" "plssem postestimation##results_f2"}{...}
{viewerjumpto "estat ic stored results" "plssem postestimation##results_ic"}{...}
{viewerjumpto "estat fit stored results" "plssem postestimation##results_fit"}{...}
{viewerjumpto "estat blindfolding stored results" "plssem postestimation##results_blind"}{...}
{viewerjumpto "predict" "plssem postestimation##syntax_predict"}{...}
{viewerjumpto "predict options" "plssem postestimation##options_predict"}{...}
{viewerjumpto "predict stored results" "plssem postestimation##results_predict"}{...}
{viewerjumpto "Examples" "plssem postestimation##examples"}{...}
{viewerjumpto "Authors" "plssem postestimation##authors"}{...}
{viewerjumpto "References" "plssem postestimation##references"}{...}
{title:Title}
{p 4 18 2}
{hi:plssem postestimation} {hline 2} Postestimation tools for {helpb plssem}
{marker description}{...}
{title:Postestimation commands}
{pstd}
The following postestimation commands are of special interest after
{cmd:plssem}:
{synoptset 22 tabbed}{...}
{p2coldent:Command}Description{p_end}
{synoptline}
{synopt:{helpb plssem postestimation##indirect:estat indirect}}estimation and
inference for indirect effects{p_end}
{synopt:{helpb plssem postestimation##total:estat total}}decomposition of
total effects{p_end}
{synopt:{helpb plssem postestimation##mediate:estat mediate}}testing of
a mediation effect{p_end}
{p2coldent:* {helpb plssem postestimation##vif:estat vif}}variance inflation
factors for the structural model equations sample{p_end}
{p2coldent:* {helpb plssem postestimation##unobshet:estat unobshet}}unobserved
heterogeneity assessment{p_end}
{synopt:{helpb plssem postestimation##htmt:estat htmt}}heterotrait-monotrait
ratio of correlations for assessing discriminant validity{p_end}
{synopt:{helpb plssem postestimation##ci:estat ci}}confidence intervals
for all model's coefficients{p_end}
{synopt:{helpb plssem postestimation##f2:estat f2}}Cohen's f^2 effect
sizes{p_end}
{synopt:{helpb plssem postestimation##ic:estat ic}}model's information and
selection criteria{p_end}
{synopt:{helpb plssem postestimation##fit:estat fit}}model's distance
and fit measures{p_end}
{synopt:{helpb plssem postestimation##blind:estat blindfolding}}blindfolding
procedure{p_end}
{synoptline}
{p2colreset}{...}
{p 4 6 2}
* {cmd:estat vif} and {cmd:estat unobshet} are not available for models fitted using bootstrap.
{p_end}
{pstd}
The following standard postestimation commands are also available:
{synoptset 20 tabbed}{...}
{p2coldent :Command}Description{p_end}
{synoptline}
{synopt :{helpb plssem postestimation##predict:predict}}fitted values and residuals{p_end}
{synoptline}
{p2colreset}{...}
{marker syntax_estat}{...}
{title:Syntax for estat}
{marker indirect}{...}
{pstd}
Display the estimation results for up to 5 indirect effects
{p 8 14 2}
{cmd:estat} {cmdab:in:direct}{cmd:,}
{cmdab:e:ffects(}{it:efflist}{cmd:)} [{opt b:oot(#)} {opt s:eed(#)} {opt l:evel(#)} {opt dig:its(#)}]
{marker total}{...}
{pstd}
Display the decomposition of the total effects in the corresponding direct and indirect effects
{p 8 14 2}
{cmd:estat} {cmdab:to:tal}
[{cmd:,} {opt dig:its(#)} {opt p:lot}]
{marker mediate}{...}
{pstd}
Display the mediation analysis using partial least squares structural equation modelling
{p 8 14 2}
{cmd:estat} {cmdab:me:diate}{cmd:,}
{cmdab:ind:ep(}{it:varname}{cmd:)} {cmdab:med:(}{it:varname}{cmd:)}
{cmdab:dep:(}{it:varname}{cmd:)} [{opt br:eps(#)} {opt s:eed(#)} {opt zlc:}
{opt rit:} {opt rid:} {opt bc:a} {opt l:evel(#)} {opt dig:its(#)}]
{marker vif}{...}
{pstd}
Display the variance inflation factors for the structural model equations
{p 8 14 2}
{cmd:estat} {cmdab:vi:f}
[{cmd:,} {opt dig:its(#)}]
{marker unobshet}{...}
{pstd}
Display the assessment for the presence of unobserved heterogeneity
{p 8 14 2}
{cmd:estat} {cmdab:un:obshet},
{cmdab:m:ethod(}{it:methodname}{cmd:)} [{opt n:umclass(#)} {opt maxcl:ass(#)}
{opt d:endrogram} {opt maxit:er(#)} {opt s:top(#)} {opt t:est} {opt r:eps(#)}
{opt res:tart(#)} {opth gr:oups(numlist)} {opt pop:size(#)} {opt numg:en(#)}
{opt pm:ut(#)} {opt pt:ransf(#)} {opt maxitg:as(#)} {opt se:ed(#)}
{opt p:lot} {cmdab:name(}{it:varname}{cmd:)} {opt dig:its(#)}]
{marker htmt}{...}
{pstd}
Display the assessment of discriminant validity using heterotrait-monotrait
ratios of correlations
{p 8 14 2}
{cmd:estat} {cmdab:ht:mt},
[{opt cut:off(#)} {opt dig:its(#)}]
{marker ci}{...}
{pstd}
Display the confidence intervals for all model's coefficients
{p 8 14 2}
{cmd:estat} {cmdab:ci},
{cmdab:t:ype(}{it:citype}{cmd:)} [{opt l:evel(#)} {opt dig:its(#)}]
{marker f2}{...}
{pstd}
Display the Cohen's f^2 effect sizes
{p 8 14 2}
{cmd:estat} {cmdab:f2},
[{opt dig:its(#)}]
{marker ic}{...}
{pstd}
Display the model's information and selection criteria
{p 8 14 2}
{cmd:estat} {cmdab:ic},
[{opt dig:its(#)}]
{marker fit}{...}
{pstd}
Display the model's distance and fit measures
{p 8 14 2}
{cmd:estat} {cmdab:fi:t},
[{opt dig:its(#)}]
{marker blind}{...}
{pstd}
Blindfolding procedure
{p 8 14 2}
{cmd:estat} {cmdab:bl:indfolding},
{opt dis:tance(#)} [{opt dig:its(#)}]
{marker desc_estat}{...}
{title:Description for estat}
{pstd}
{cmd:estat indirect}
estimates the (standardized) indirect effects and the corresponding tests of significance
using the Sobel's {it:z} statistic (default) as well as the bootstrap
approach ({help plssem_postestimation##Sobel1982:Sobel 1982},
{help plssem_postestimation##BaronKenny1986:Baron and Kenny 1986},
{help plssem_postestimation##VanderWeele2015:VanderWeele 2015}). The command can
estimate up to five different indirect effects at a time. Each of these should
specified by sequentially typing the dependent, mediator and independent variable
from any PLS-SEM model. By adding the sub-option {cmd:boot(#)}, you can obtain
the results based on the bootstrap approach. To facilitate the reproducibility of
bootstrap results, the sub-option {cmd:seed(#)} can further be added. Confidence intervals
({cmd:0.95} is the default) for the estimated indirect effects are also provided. To change
the level of confidence interval, the sub-option {cmd:level(#)} can be added. To change the
number of decimals used to display the model estimates, you can change the default ({cmd:3})
to any other value by adding the sub-option {cmd:digits(#)}.
{pstd}
{cmd:estat total}
produces the decomposition of the total effects into standardized direct and indirect effects.
Adding the sub-option {cmd:plot} generates a bar plot of the effects. You can change
the number decimals digits reported by setting the sub-option {cmd:digits(#)}.
{pstd}
{cmd:estat mediate}
conducts a mediation analysis based on a fitted PLS-SEM model estimated using the
{helpb plssem} command. Two methods are implemented, the
{help plssem_postestimation##BaronKenny1986:Baron and Kenny (1986)} approach adjusted by
{help plssem_postestimation##Iacobuccietal2007:Iacobucci et al. 2007},
and that by {help plssem_postestimation##Zhaoetal2010:Zhao et al. 2010}.
{pstd} {cmd:estat vif}
computes the variance inflation factors (VIFs) for the independent variables
of the equations in the structural part of a PLS-SEM model. With the
{cmd:digit(#)} sub-option you change the number decimals digits displayed.
{pstd} {cmd:estat unobshet}
assesses the presence of unobserved heterogeneity in the fitted PLS-SEM model
using the {it:methodname} approach. Currently, the REBUS-PLS
({help plssem_postestimation##Trinchera2007:Trinchera 2007}), FIMIX-PLS
({help plssem_postestimation##Hahnetal2002:Hahn et al. 2007}) and PLS-GAS
({help plssem_postestimation##Ringleetal2014:Ringle et al. 2014}) approaches are implemented.
{pstd} {cmd:estat htmt}
assesses discriminant validity using heterotrait-monotrait ratios of correlations; both
the HTMT (arithmetic average of correlations) and HTMT2 (geometric average of correlations)
approaches are available.
{pstd} {cmd:estat ci}
computes the confidence intervals for both the measurement and structural models'
coefficients; different types of confidence intervals are available.
{pstd} {cmd:estat f2}
computes the Cohen's f^2 effect sizes ({help plssem_postestimation##Cohen1988:Cohen 1988}).
{pstd} {cmd:estat ic}
computes some information and selection criteria for the fitted model for each
structural equation of the model separately, as suggested by
{help plssemc_postestimation##Sharma2019:Sharma et al. 2019}. More specifically,
the command provides the following indexes: Akaike information criterion (AIC),
Corrected AIC (AICc), Unbiased AIC (AICu), Bayesian information criterion (BIC),
final prediction error (FPE), Hannan-Quinn criterion (HQ) and Corrected HQ criterion
(HQc). The definitions used by the commend for these indexes can be found in table B1
of {help plssemc_postestimation##Sharma2019:Sharma et al. 2019}.
{pstd} {cmd:estat fit}
computes some measures of the distance between the empirical and the model-implied
indicator correlation matrices. Currently, the geodesic distance, the squared Euclidean
distance and the the maximum likelihood-based distance function are implemented.
In addition, the command reports many model's fit measures like the Chi square,
Chi square degrees freedom, CFI, CN, GFI, IFI, NFI, NNFI, RMSEA, RMS theta and
SRMR indexes (more details on these indexes can be found in
{help plssem_postestimation##Henseler2021:Henseler 2021}).
{pstd} {cmd:estat blindfolding}
computes the Q2 and q2 values ({help plssem_postestimation##Geisser1974:Geisser 1974};
{help plssem_postestimation##Stone1974:Stone 1974}) to assess the out-of-sample
predictive relevance. These measures are obtained by using the blindfolding procedure
for a specified omission distance.
{marker options_estat}{...}
{title:Options for estat}
{phang}
{opt boot(#)},
an option used with {cmd:estat indirect}, allows to estimate the indirect
effects using bootstrap; the number of replications is specified via {#}.
{phang}
{opt seed(#)},
an option used with {cmd:estat indirect} and {cmd:estat mediate}, allows to set
the bootstrap seed number.
{phang}
{opt level(#)},
an option used with {cmd:estat indirect}, {cmd:estat mediate} and {cmd:estat ci},
allows to set the confidence level to use for indirect effects confidence intervals;
default is {cmd:0.95}.
{phang}
{opt digits(#)},
specifies the number of decimal digits to display in the output.
{phang}
{opt plot},
an option used with {cmd:estat total}, provides a graphical representation of
the total effects decomposition.
{phang}
{opt method(methodname)},
an option used with {cmd:estat unobshet}, allows choosing the method to use for
assessing the presence of unobserved heterogeneity; available methods are {cmd:rebus},
{cmd:fimix} and {cmd:gas}; default is {cmd:rebus}.
{phang}
{opt numclass(#)},
an option used with {cmd:estat unobshet}, allows to manually set the number of
classes to use in the REBUS-PLS analysis; minimum is 2. If not specified, the
number of classes is automatically chosen based on the Calinski-Harabasz
pseudo-F index stopping rule as implemented in {helpb cluster stop:cluster stop}. In
this case, a Ward hierarchical clustering algorithm is used.
{phang}
{opt maxclass(#)},
an option used with {cmd:estat unobshet}, allows to set the maximum number of
classes for which the automatic stopping rule is to be computed when
{cmd: numclass(#)} is not specified; default is {cmd:20}.
{phang}
{opt dendrogram},
an option used with {cmd:estat unobshet}, allows to visualize the dendrogram
for a Ward hierarchical clustering algorithm on the base of the residuals of
the global model. The dendrogram allows to assess the quality of choice for the
number of classes. This option is available only when {cmd: method(rebus)} is
chosen.
{phang}
{opt maxiter(#)},
an option used with {cmd:estat unobshet}, allows to set the maximum number
of iterations the REBUS-PLS algorithm runs; default is {cmd:50}.
{phang}
{opt stop(#)},
an option used with {cmd:estat unobshet}, allows to set the stopping rule for
the chosen algorithm; for REBUS-PLS this refers to the stability in class
composition from one iteration to the other (i.e. percentage of units changing
class at each iteration); for FIMIX-PLS it refers to the (absolute) change in the
complete loglikelihood value in the EM alogrithm. Default is {cmd:0.005}
(i.e. 0.5%) when REBUS-PLS is chosen and {cmd:1e-5} when FIMIX-PLS is used.
{phang}
{opt test},
an option used with {cmd:estat unobshet}, allows to specify whether a
permutation test for the Global Quality Index (GQI) of a REBUS-PLS solution must
be performed. This option is available only when {cmd: method(rebus)} is
chosen.
{phang}
{opt reps(#)},
an option used with {cmd:estat unobshet}, allows to set the number of replications
of the permutation test on the GQI; default is {cmd:50}. This option is available
only when {cmd: method(rebus)} is chosen.
{phang}
{opt restart(#)},
an option used with {cmd:estat unobshet} when the FIMIX-PLS method is chosen,
allows to set the number of EM algortihm runs in the estimation of the
mixture model's parameters; default is {cmd:10}.
{phang}
{opth groups(numlist)},
an option used with {cmd:estat unobshet} when the FIMIX-PLS method is chosen,
allows to compute the solution for a range of selected group number values and
compare them using a set of fit indices, namely Akaike's information criterion
(AIC), modified AIC with factor 3 (AIC3), modified AIC with factor 4 (AIC4),
Bayesian information criterion (BIC), consistent AIC (CAIC),
Hannan-Quinn criterion (HQ), minimum description length with factor 5 (MDL5),
log-likelihood (LnL), entropy statistic (EN), non-fuzzy index (NFI),
normalized entropy criterion (NEC).
{phang}
{opt popsize(#)},
an option used with {cmd:estat unobshet} when the PLS-GAS method is chosen,
allows to set the size of each generation in the genetic algorithm; deafult
is 100.
{phang}
{opt numgen(#)},
an option used with {cmd:estat unobshet} when the PLS-GAS method is chosen,
allows to set the number of generations to create during the genetic algorithm;
deafult is 1000.
{phang}
{opt pmut(#)},
an option used with {cmd:estat unobshet} when the PLS-GAS method is chosen,
allows to set the probability to mutate for a chromosome (i.e. an individual in a
a generation) in the genetic algorithm; deafult is 0.3.
{phang}
{opt ptransf(#)},
an option used with {cmd:estat unobshet} when the PLS-GAS method is chosen,
allows to set the probability to mutate for a single gene in a chromosome during
the genetic algorithm calculation; deafult is 0.1.
{phang}
{opt maxitgas(#)},
an option used with {cmd:estat unobshet}, allows to set the maximum number
of iterations the PLS-GAS algorithm; default is {cmd:30}.
{phang}
{opt seed(#)},
allows to set the seed for reproducing results.
{phang}
{opt plot},
an option used with {cmd:estat unobshet} when the REBUS-PLS method is chosen,
allows to visualize the empirical distribution (i.e. the histogram)
corresponding to the replications of the permutation test on the GQI.
{phang}
{cmdab:name(}{it:varname}{cmd:)},
an option used with {cmd:estat unobshet}, allows to set the name of the variable
that will contain the final classification obtained.
{phang}
{cmdab:dep(}{it:varname}{cmd:)},
an option used with {cmd:estat mediate}, specifies the name of the dependent
variable to use in the mediation analysis.
{phang}
{cmdab:med(}{it:varname}{cmd:)},
an option used with {cmd:estat mediate}, specifies the name of the mediator
variable to use in the mediation analysis.
{phang}
{cmdab:indep(}{it:varname}{cmd:)},
an option used with {cmd:estat mediate}, specifies the name of the independent
variable to use in the mediation analysis.
{phang}
{opt breps(#)},
an option used with {cmd:estat mediate}, specifies the number of bootstrap
replications to be performed. The default is {cmd:50}.
{phang}
{opt zlc},
an option used with {cmd:estat mediate} providing the approach by
{help plssem_postestimation##Zhaoetal2010:Zhao et al. 2010} together with
the {help plssem_postestimation##BaronKenny1986:Baron and Kenny (1986)} approach
adjusted by {help plssem_postestimation##Iacobuccietal2007:Iacobucci et al. 2007}
(default).
{phang}
{opt rit},
an option used with {cmd:estat mediate} providing the ratio of the indirect
effect to the total effect.
{phang}
{opt rid},
an option used with {cmd:estat mediate} providing the ratio of the indirect
effect to the direct effect.
{phang}
{opt bca},
an option used with {cmd:estat mediate} providing the bias-corrected accelerated
(BCa) bootstrap confidence intervals instead of the percentile confidence
intervals (default).
{phang}
{opt cutoff(#)},
an option used with {cmd:estat htmt}, specifies the cutoff value to use for
showing the heterotrait-monotrait ratios.
{phang}
{opt type(citype)},
an option used with {cmd:estat ci}, allows to choose the type of confidence
intervals to compute; available methods are {cmd:standard_z} (assumes
a standard normal distribution), {cmd:standard_t} (assumes
a t distribution with {it:n} - 1 degrees of freedom), {cmd:percentile} (utilizes
the quantiles of the distribution of the bootstrap resample estimates), and
{cmd:bc} (bias-corrected confidence interval).
{phang}
{opt distance(#)},
an option used with {cmd:estat blindfolding}, allows to set the omission distance
to use in the blindfolding procedure; it must be an integer larger than 1
and it has to be chosen so that the number of observations used in model
estimation divided by the omission distance is not an integer.
{marker syntax_predict}{...}
{marker predict}{...}
{title:Syntax for predict}
{p 8 16 2}
{cmd:predict} [{cmd:,} {it:statistic} {opt noout:er} {opt noin:ner}]
{synoptset 20 tabbed}{...}
{synopthdr :statistic}
{synoptline}
{syntab :Main}
{synopt :{cmd:xb}}linear predictions{p_end}
{synopt :{opt res:iduals}}residuals{p_end}
{synoptline}
{marker des_predict}{...}
{title:Description for predict}
{pstd}
{cmd:predict} creates new variables containing linear predictions and residuals. These
quantities are provided only for reflective blocks of manifest variables in the
measurement/outer model and for endogenous latent variables in the structural/inner model.
{pstd}
The newly computed predictions will replace those already present in the data set.
{marker options_predict}{...}
{title:Options for predict}
{dlgtab:Main}
{phang}
{opt xb} calculates the linear predictions (fitted values).
{phang}
{opt residuals} calculates the residuals.
{dlgtab:Options}
{phang}
{opt nooouter} fitted values and residuals for the measurement/outer model
are not saved in the data set.
{phang}
{opt nooinner} fitted values and residuals for the structural/inner model
are not saved in the data set.
{marker results_indirect}{...}
{title:Stored results for estat indirect}
{pstd}
{cmd:estat indirect} stores the following in {cmd:r()}:
{synoptset 20 tabbed}{...}
{p2col 5 20 24 2: Matrices}{p_end}
{synopt:{cmd:r(indirect)}}matrix of indirect effect testing results{p_end}
{p2colreset}{...}
{marker results_mediate}{...}
{title:Stored results for estat mediate}
{pstd}
{cmd:estat mediate} stores the following in {cmd:r()}:
{synoptset 20 tabbed}{...}
{p2col 5 20 24 2: Matrices}{p_end}
{synopt:{cmd:r(mediate)}}matrix of indirect effect testing results{p_end}
{p2colreset}{...}
{marker results_ci}{...}
{title:Stored results for estat ci}
{pstd}
{cmd:estat ci} stores the following in {cmd:r()}:
{synoptset 20 tabbed}{...}
{p2col 5 20 24 2: Scalars}{p_end}
{synopt:{cmd:e(level)}}confidence level{p_end}
{synoptset 20 tabbed}{...}
{p2col 5 20 24 2: Macros}{p_end}
{synopt:{cmd:e(ci_type)}}type of confidence intervals{p_end}
{synoptset 20 tabbed}{...}
{p2col 5 20 24 2: Matrices}{p_end}
{synopt:{cmd:r(path_ci)}}matrix of path coefficients confidence intervals{p_end}
{synopt:{cmd:r(load_ci)}}matrix of loadings confidence intervals{p_end}
{p2colreset}{...}
{marker results_htmt}{...}
{title:Stored results for estat htmt}
{pstd}
{cmd:estat htmt} stores the following in {cmd:r()}:
{synoptset 20 tabbed}{...}
{p2col 5 20 24 2: Matrices}{p_end}
{synopt:{cmd:r(htmt)}}matrix of heterotrait-monotrait ratios (HTMT){p_end}
{synopt:{cmd:r(htmt2)}}matrix of advanced heterotrait-monotrait ratios (HTMT2){p_end}
{p2colreset}{...}
{marker results_f2}{...}
{title:Stored results for estat f2}
{pstd}
{cmd:estat f2} stores the following in {cmd:r()}:
{synoptset 20 tabbed}{...}
{p2col 5 20 24 2: Matrices}{p_end}
{synopt:{cmd:r(f2)}}matrix of the Cohen's f^2 effect sizes{p_end}
{p2colreset}{...}
{marker results_ic}{...}
{title:Stored results for estat ic}
{pstd}
{cmd:estat ic} stores the following in {cmd:r()}:
{synoptset 20 tabbed}{...}
{p2col 5 20 24 2: Matrices}{p_end}
{synopt:{cmd:r(ic)}}matrix of the model's information and selection criteria{p_end}
{p2colreset}{...}
{marker results_fit}{...}
{title:Stored results for estat fit}
{pstd}
{cmd:estat fit} stores the following in {cmd:r()}:
{synoptset 20 tabbed}{...}
{p2col 5 20 24 2: Matrices}{p_end}
{synopt:{cmd:r(dist)}}matrix of the model's distance measures{p_end}
{synopt:{cmd:r(fit)}}matrix of the model's fit measures{p_end}
{p2colreset}{...}
{marker results_blind}{...}
{title:Stored results for estat blindfolding}
{pstd}
{cmd:estat blindfolding} stores the following in {cmd:r()}:
{synoptset 20 tabbed}{...}
{p2col 5 20 24 2: Matrices}{p_end}
{synopt:{cmd:r(Q2)}}matrix with the Q2 measures{p_end}
{synopt:{cmd:r(q2)}}matrix with the q2 measures{p_end}
{p2colreset}{...}
{marker results_predict}{...}
{title:Stored results for predict}
{pstd}
{cmd:predict} stores the following in {cmd:r()}:
{synoptset 20 tabbed}{...}
{p2col 5 20 24 2: Matrices}{p_end}
{synopt:{cmd:r(fitted)}}matrix of fitted values for the outer and inner models{p_end}
{synopt:{cmd:r(residuals)}}matrix of residuals for the outer and inner models{p_end}
{p2colreset}{...}
{marker examples}{...}
{title:Examples}
{hline}
{pstd}Setup{p_end}
{phang2}{cmd:. sysuse workout2, clear}{p_end}
{pstd}Model estimation{p_end}
{phang2}{cmd:. plssem (Attractive > face sexy) (Appearance > body appear attract) (Muscle > muscle strength endur) (Weight > lweight calories cweight), structural(Appearance Attractive, Muscle Appearance, Weight Appearance)}{p_end}
{pstd}Discriminant validity assessment (HTMT){p_end}
{phang2}{cmd:. estat htmt}{p_end}
{pstd}Structural model assessment{p_end}
{phang2}{cmd:. estat vif}{p_end}
{phang2}{cmd:. estat f2}{p_end}
{phang2}{cmd:. estat ic}{p_end}
{pstd}Indirect effects{p_end}
{phang2}{cmd:. estat indirect, effects(Muscle Appearance Attractive, Weight Appearance Attractive)}{p_end}
{pstd}Confidence intervals{p_end}
{phang2}{cmd:. estat ci, type(bc) digits(5)}{p_end}
{pstd}Predictions{p_end}
{phang2}{cmd:. predict, xb residuals}{p_end}
{phang2}{cmd:. describe *_hat *_res}{p_end}
{pstd}Assessment of unobserved heterogeneity using REBUS-PLS{p_end}
{phang2}{cmd:. estat unobshet, test reps(200) plot}{p_end}
{pstd}Assessment of unobserved heterogeneity using FIMIX-PLS{p_end}
{phang2}{cmd:. estat unobshet, method(fimix) groups(1/5) stop(1e-5) restart(3)}{p_end}
{hline}
{marker authors}{...}
{title:Authors}
{pstd} Sergio Venturini{break}
Department of Economics and Social Sciences{break}
Università Cattolica del Sacro Cuore, Italy{break}
{browse "mailto:sergio.venturini@unicatt.it":sergio.venturini@unicatt.it}{break}
{pstd} Mehmet Mehmetoglu{break}
Department of Psychology{break}
Norwegian University of Science and Technology{break}
{browse "mailto:mehmetm@svt.ntnu.no":mehmetm@svt.ntnu.no}{break}
{p_end}
{marker references}{...}
{title:References}
{marker BaronKenny1986}{...}
{phang}
Baron, R. M., and Kenny, D. A. 1986. The Moderator-Mediator Variable Distinction in Social Psychological
Research: Conceptual, Strategic, and Statistical Considerations. Journal of
Personality and Social Psychology, 51, 1173-1182.
{marker Cohen1988}{...}
{phang}
Cohen, J. 1988. {it:Statistical Power Analysis for the Behavioral Sciences}. Mahwah, NJ: Erlbaum.
{marker Geisser1974}{...}
{phang}
Geisser, S. 1974. A predictive approach to the random effects model. Biometrika, 61, 101–107.
{marker Hahnetal2002}{...}
{phang}
Hahn, C., Johnson, M. D., Herrmann, A., and Huber, F. 2002. Capturing Customer Heterogeneity Using a
Finite Mixture PLS Approach. Schmalenbach Business Review, 54, 243-269.
{marker Hairetal2022}{...}
{phang}
Hair, J. F., Hult, G. T. M., Ringle, C. M., and Sarstedt, M. 2022. {it:A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM)}. Third edition. Sage.
{marker Hairetal2018}{...}
{phang}
Hair, J. F., Sarstedt, M., Ringle, C. M., and Gudergan, S. P. 2018. {it:Advanced Issues in Partial Least Squares Structural Equation Modeling}. Sage.
{marker Henseler2021}{...}
{phang}
Henseler, J. 2021. {it:Composite-Based Structural Equation Modeling}. The Guilford Press.
{marker Iacobuccietal2007}{...}
{phang}
Iacobucci, D., Saldanha, N., & Deng, X. 2007. A meditation on mediation: evidence that structural equation models perform better than regressions. Journal of
Consumer Psychology, 17, 140-154.
{marker MehmetogluVenturini2021}{...}
{phang}
Mehmetoglu, M., and Venturini, S. 2021. {it:Structural Equation Modelling with Partial Least Squares Using Stata and R}. CRC Press.
{marker Ringleetal2014}{...}
{phang}
Ringle, C. M., Sarstedt, M., and Schlittgen, R. 2014. Genetic algorithm segmentation
in partial least squares structural equation modeling. OR Spectrum, 36, 251–276.
{marker Sharma2019}{...}
{phang}
Sharma, P., Sarstedt, M., Shmueli, G., Kim, K. H., Thiele, K. O. 2019. PLS-Based Model Selection: The Role of Alternative Explanations in Information Systems Research. Journal of the Association for Information Systems, 20(4), 346-397.
{marker Sobel1982}{...}
{phang}
Sobel, M. N. 1982. Asymptotic Confidence Intervals for Indirect Effects in Structural Equations
Models. In Leinhart, S. (ed.), {it:Sociological Methodology}, pp. 290-312. Jossey-Bass.
{marker Stone1974}{...}
{phang}
Stone, S. 1974. Cross-validatory choice and assessment of statistical pre- dictions.
Journal of the Royal Statistical Society, 36, 111–147.
{marker Trinchera2007}{...}
{phang}
Trinchera, L. 2007. {it:Unobserved Heterogeneity in Structural Equation Models: a new approach to latent class detection in PLS Path Modeling}. Ph.D. Thesis.
{marker VanderWeele2015}{...}
{phang}
VanderWeele, T. J. 2015. {it:Explanation in Causal Inference}. Oxford University Press.
{marker Zhaoetal2010}{...}
{phang}
Zhao, X., Lynch, J. G. Jr., & Chen, Q. 2010. Reconsidering Baron and Kenny: myths and
truths about mediation analysis. Journal of Consumer Research, 37, 197-206.
{p_end}