diff --git a/deepface/modules/detection.py b/deepface/modules/detection.py index bdfca520..46165a93 100644 --- a/deepface/modules/detection.py +++ b/deepface/modules/detection.py @@ -158,7 +158,7 @@ def extract_faces( "left_eye": current_region.left_eye, "right_eye": current_region.right_eye, }, - "confidence": round(current_region.confidence, 2), + "confidence": round(float(current_region.confidence or 0), 2), } if anti_spoofing is True: @@ -179,9 +179,11 @@ def extract_faces( def detect_faces( - detector_backend: str, img: np.ndarray, - align: bool = True, expand_percentage: int = 0, - max_faces: Optional[int] = None + detector_backend: str, + img: np.ndarray, + align: bool = True, + expand_percentage: int = 0, + max_faces: Optional[int] = None, ) -> List[DetectedFace]: """ Detect face(s) from a given image @@ -239,9 +241,7 @@ def detect_faces( if max_faces is not None and max_faces < len(facial_areas): facial_areas = nlargest( - max_faces, - facial_areas, - key=lambda facial_area: facial_area.w * facial_area.h + max_faces, facial_areas, key=lambda facial_area: facial_area.w * facial_area.h ) return [ @@ -251,15 +251,20 @@ def detect_faces( align=align, expand_percentage=expand_percentage, width_border=width_border, - height_border=height_border + height_border=height_border, ) for facial_area in facial_areas ] + def expand_and_align_face( - facial_area: FacialAreaRegion, img: np.ndarray, - align: bool, expand_percentage: int, width_border: int, - height_border: int) -> DetectedFace: + facial_area: FacialAreaRegion, + img: np.ndarray, + align: bool, + expand_percentage: int, + width_border: int, + height_border: int, +) -> DetectedFace: x = facial_area.x y = facial_area.y w = facial_area.w @@ -309,6 +314,7 @@ def expand_and_align_face( confidence=confidence, ) + def align_img_wrt_eyes( img: np.ndarray, left_eye: Union[list, tuple], @@ -337,9 +343,7 @@ def align_img_wrt_eyes( center = (w // 2, h // 2) M = cv2.getRotationMatrix2D(center, angle, 1.0) img = cv2.warpAffine( - img, M, (w, h), - flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_CONSTANT, - borderValue=(0,0,0) + img, M, (w, h), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_CONSTANT, borderValue=(0, 0, 0) ) return img, angle