-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquant_train.py
164 lines (128 loc) · 6.81 KB
/
quant_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import os
import argparse
import torch
import torchvision
from torch.utils.data import DataLoader
from torchvision import transforms
from utils.util_file import AverageMeter
from utils.datasets import load_dataset_ann
from monitoring import Monitor
import logging
from helper import quantinize, test, sample, calc_inception_score, calc_clean_fid
from model import vae_IF, vae_LIF
max_accuracy = 0
min_loss = 1000
def train(network, trainloader, opti, epoch, monitor):
loss_meter = AverageMeter()
recons_meter = AverageMeter()
kld_meter = AverageMeter()
network = network.train()
for batch_idx, (real_img, label) in enumerate(trainloader):
opti.zero_grad()
real_img = real_img.to(device)
recons, mu, log_var = network(real_img)
losses = network.loss_function(recons, real_img, mu, log_var, 1/len(trainloader))
losses['loss'].backward()
opti.step()
loss_meter.update(losses['loss'].detach().cpu().item())
recons_meter.update(losses['Reconstruction_Loss'].detach().cpu().item())
kld_meter.update(losses['KLD'].detach().cpu().item())
print(f'Train[{epoch}/{max_epoch}] [{batch_idx}/{len(trainloader)}] Loss: {loss_meter.avg: .4f} , RECONS: {recons_meter.avg: .4f}, KLD: {kld_meter.avg: .4f}')
if batch_idx == len(trainloader)-1:
os.makedirs(f'{monitor.checkpoint_dir}/imgs/train/', exist_ok=True)
# Convert tensors to CPU and scale to [0, 1] range
real_img_cpu = (real_img.cpu() + 1) / 2
recons_cpu = (recons.cpu() + 1) / 2
# Save images
torchvision.utils.save_image(real_img_cpu, f'{monitor.checkpoint_dir}/imgs/train/epoch{epoch}_input.png')
torchvision.utils.save_image(recons_cpu, f'{monitor.checkpoint_dir}/imgs/train/epoch{epoch}_recons.png')
monitor.writer.add_images('Train/input_img', real_img_cpu, epoch)
monitor.writer.add_images('Train/recons_img', recons_cpu, epoch)
logging.info(f"Train [{epoch}] Loss: {loss_meter.avg} ReconsLoss: {recons_meter.avg} KLD: {kld_meter.avg}")
monitor.writer.add_scalar('Train/loss', loss_meter.avg, epoch)
monitor.writer.add_scalar('Train/recons_loss', recons_meter.avg, epoch)
monitor.writer.add_scalar('Train/kld', kld_meter.avg, epoch)
return loss_meter.avg
def test(network, testloader, epoch, monitor):
loss_meter = AverageMeter()
recons_meter = AverageMeter()
kld_meter = AverageMeter()
network = network.eval()
with torch.no_grad():
for batch_idx, (real_img, label) in enumerate(testloader):
real_img = real_img.to(device)
recons, mu, log_var = network(real_img)
losses = network.loss_function(recons, real_img, mu, log_var, 1/len(testloader))
loss_meter.update(losses['loss'].detach().cpu().item())
recons_meter.update(losses['Reconstruction_Loss'].detach().cpu().item())
kld_meter.update(losses['KLD'].detach().cpu().item())
print(f'Test[{epoch}/{max_epoch}] [{batch_idx}/{len(testloader)}] Loss: {loss_meter.avg}, RECONS: {recons_meter.avg}, KLD: {kld_meter.avg}')
if batch_idx == len(testloader)-1:
print("Saving images", epoch, f"(data shape: {real_img.shape})")
print("range: ", real_img.min(), real_img.max())
os.makedirs(f'{monitor.checkpoint_dir}/imgs/test/', exist_ok=True)
# Convert tensors to CPU and scale to [0, 1] range
real_img_cpu = (real_img.cpu() + 1) / 2
recons_cpu = (recons.cpu() + 1) / 2
# Save images
torchvision.utils.save_image(real_img_cpu, f'{monitor.checkpoint_dir}/imgs/test/epoch{epoch}_input.png')
torchvision.utils.save_image(recons_cpu, f'{monitor.checkpoint_dir}/imgs/test/epoch{epoch}_recons.png')
monitor.writer.add_images('Test/input_img', real_img_cpu, epoch)
monitor.writer.add_images('Test/recons_img', recons_cpu, epoch)
logging.info(f"Test [{epoch}] Loss: {loss_meter.avg} ReconsLoss: {recons_meter.avg} KLD: {kld_meter.avg}")
monitor.writer.add_scalar('Test/loss', loss_meter.avg, epoch)
monitor.writer.add_scalar('Test/recons_loss', recons_meter.avg, epoch)
monitor.writer.add_scalar('Test/kld', kld_meter.avg, epoch)
return loss_meter.avg
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('name', type=str)
parser.add_argument('-model', type=str, default='vae_IF', help='The name of model')
parser.add_argument('-dataset', type=str, required=True)
parser.add_argument('-batch_size', type=int, default=250)
parser.add_argument('-latent_dim', type=int, default=128)
parser.add_argument('-checkpoint', action='store', dest='checkpoint', help='The path of checkpoint, if use checkpoint')
parser.add_argument('-device', type=int, default=torch.cuda.current_device() if torch.cuda.is_available() else None)
parser.add_argument('--epoch', type=int, default=150)
parser.add_argument('-bit', type=int, default=8)
parser.add_argument('-lr', type=float, default=0.001)
parser.add_argument('--quant', action='store_true', help='quantize model')
try:
args = parser.parse_args()
except:
parser.print_help()
exit(0)
if args.device is None:
device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
else:
device = torch.device(f"cuda:{args.device}")
data_path = "./data"
modeltype = args.model
if args.dataset.lower() == 'mnist':
train_loader, test_loader = load_dataset_ann.load_mnist(data_path, args.batch_size)
in_channels = 1
s = f"{modeltype}.Quant_VAE({in_channels}, {args.latent_dim})"
elif args.dataset.lower() == 'miad':
train_loader, test_loader = load_dataset_ann.load_MIAD_metal_welding(data_path, args.batch_size)
in_channels = 3
s = f"{modeltype}.Quant_VAE({in_channels}, {args.latent_dim})"
else:
raise ValueError("invalid dataset")
net = eval(s)
if args.quant:
net = quantinize(net, args)
net = net.to(device)
os.makedirs(f'checkpoint/{args.name}', exist_ok=True)
print(f"Model: {s}, Dataset: {args.dataset}, Batch Size: {args.batch_size}, Latent Dim: {args.latent_dim}")
print("Training is started")
# 모니터 인스턴스 생성
monitor = Monitor(args.name)
if args.checkpoint is not None:
checkpoint_path = args.checkpoint
checkpoint = torch.load(checkpoint_path)
net.load_state_dict(checkpoint)
optimizer = torch.optim.AdamW(net.parameters(), lr=args.lr)
max_epoch = args.epoch
monitor.start_profiling(max_epoch, net, train, test, train_loader, test_loader, optimizer)
monitor.stop_monitoring()
print("Training is finished")