-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathpiqa_evaluate.py
178 lines (144 loc) · 6.33 KB
/
piqa_evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
""" Official alpha evaluation script for PIQA (inherited from SQuAD v1.1 evaluation script)."""
from __future__ import print_function
import os
from collections import Counter
import string
import re
import argparse
import json
import sys
import shutil
import scipy.sparse
import numpy as np
def normalize_answer(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
return re.sub(r'\b(a|an|the)\b', ' ', text)
def white_space_fix(text):
return ' '.join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return ''.join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def f1_score(prediction, ground_truth):
prediction_tokens = normalize_answer(prediction).split()
ground_truth_tokens = normalize_answer(ground_truth).split()
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
num_same = sum(common.values())
if num_same == 0:
return 0
precision = 1.0 * num_same / len(prediction_tokens)
recall = 1.0 * num_same / len(ground_truth_tokens)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def exact_match_score(prediction, ground_truth):
return (normalize_answer(prediction) == normalize_answer(ground_truth))
def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
scores_for_ground_truths = []
for ground_truth in ground_truths:
score = metric_fn(prediction, ground_truth)
scores_for_ground_truths.append(score)
return max(scores_for_ground_truths)
def evaluate(dataset, predictions):
f1 = exact_match = total = 0
for article in dataset:
for paragraph in article['paragraphs']:
for qa in paragraph['qas']:
total += 1
if qa['id'] not in predictions:
message = 'Unanswered question ' + qa['id'] + \
' will receive score 0.'
print(message, file=sys.stderr)
continue
ground_truths = list(map(lambda x: x['text'], qa['answers']))
prediction = predictions[qa['id']]
exact_match += metric_max_over_ground_truths(
exact_match_score, prediction, ground_truths)
f1 += metric_max_over_ground_truths(
f1_score, prediction, ground_truths)
exact_match = 100.0 * exact_match / total
f1 = 100.0 * f1 / total
return {'exact_match': exact_match, 'f1': f1}
def get_q2c(dataset):
q2c = {}
for article in dataset:
for para_idx, paragraph in enumerate(article['paragraphs']):
cid = '%s_%d' % (article['title'], para_idx)
for qa in paragraph['qas']:
q2c[qa['id']] = cid
return q2c
def get_predictions(context_emb_path, question_emb_path, q2c, sparse=False, progress=False):
context_emb_dir, context_emb_ext = os.path.splitext(context_emb_path)
question_emb_dir, question_emb_ext = os.path.splitext(question_emb_path)
if context_emb_ext == '.zip':
print('Extracting %s to %s' % (context_emb_path, context_emb_dir))
shutil.unpack_archive(context_emb_path, context_emb_dir)
if question_emb_ext == '.zip':
print('Extracting %s to %s' % (question_emb_path, question_emb_dir))
shutil.unpack_archive(question_emb_path, question_emb_dir)
if progress:
from tqdm import tqdm
else:
tqdm = lambda x: x
predictions = {}
for id_, cid in tqdm(q2c.items()):
q_emb_path = os.path.join(question_emb_dir, '%s.npz' % id_)
c_emb_path = os.path.join(context_emb_dir, '%s.npz' % cid)
c_json_path = os.path.join(context_emb_dir, '%s.json' % cid)
if not os.path.exists(q_emb_path):
print('Missing %s' % q_emb_path)
continue
if not os.path.exists(c_emb_path):
print('Missing %s' % c_emb_path)
continue
if not os.path.exists(c_json_path):
print('Missing %s' % c_json_path)
continue
load = scipy.sparse.load_npz if sparse else np.load
q_emb = load(q_emb_path) # shape = [M, d], d is the embedding size.
c_emb = load(c_emb_path) # shape = [N, d], d is the embedding size.
with open(c_json_path, 'r') as fp:
phrases = json.load(fp)
if sparse:
sim = c_emb * q_emb.T
m = sim.max(1)
m = np.squeeze(np.array(m.todense()), 1)
else:
q_emb = q_emb['arr_0']
c_emb = c_emb['arr_0']
sim = np.matmul(c_emb, q_emb.T)
m = sim.max(1)
argmax = m.argmax(0)
predictions[id_] = phrases[argmax]
# Dump piqa_pred
# with open('test/piqa_pred.json', 'w') as f:
# f.write(json.dumps(predictions))
if context_emb_ext == '.zip':
shutil.rmtree(context_emb_dir)
if question_emb_ext == '.zip':
shutil.rmtree(question_emb_dir)
return predictions
if __name__ == '__main__':
expected_version = '1.1'
parser = argparse.ArgumentParser(
description='Evaluation for SQuAD ' + expected_version)
parser.add_argument('dataset_file', help='Dataset file')
parser.add_argument('context_emb_dir', help='Context embedding directory')
parser.add_argument('question_emb_dir', help='Question embedding directory')
parser.add_argument('--sparse', default=False, action='store_true',
help='Whether the embeddings are scipy.sparse or pure numpy.')
parser.add_argument('--progress', default=False, action='store_true', help='Show progress bar. Requires `tqdm`.')
args = parser.parse_args()
with open(args.dataset_file) as dataset_file:
dataset_json = json.load(dataset_file)
if (dataset_json['version'] != expected_version):
print('Evaluation expects v-' + expected_version +
', but got dataset with v-' + dataset_json['version'],
file=sys.stderr)
dataset = dataset_json['data']
q2c = get_q2c(dataset)
predictions = get_predictions(args.context_emb_dir, args.question_emb_dir, q2c, sparse=args.sparse,
progress=args.progress)
print(json.dumps(evaluate(dataset, predictions)))