-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmain.py
447 lines (362 loc) · 17.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
import sys
import time
from collections import OrderedDict
from pprint import pprint
import importlib
import scipy.sparse
import torch
import numpy as np
from torch.utils.data import DataLoader
import base
def preprocess(interface, args):
"""Helper function for caching preprocessed data
"""
print('Loading train and dev data')
train_examples = interface.load_train()
dev_examples = interface.load_test()
# load metadata, such as GloVe
print('Loading metadata')
metadata = interface.load_metadata()
print('Constructing processor')
processor = Processor(**args.__dict__)
processor.construct(train_examples, metadata)
# data loader
print('Preprocessing datasets and metadata')
train_dataset = tuple(processor.preprocess(example) for example in train_examples)
dev_dataset = tuple(processor.preprocess(example) for example in dev_examples)
processed_metadata = processor.process_metadata(metadata)
print('Creating data loaders')
train_sampler = Sampler(train_dataset, 'train', **args.__dict__)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size,
collate_fn=processor.collate, sampler=train_sampler)
dev_sampler = Sampler(dev_dataset, 'dev', **args.__dict__)
dev_loader = DataLoader(dev_dataset, batch_size=args.batch_size,
collate_fn=processor.collate, sampler=dev_sampler)
if args.preload:
train_loader = tuple(train_loader)
dev_loader = tuple(dev_loader)
out = {'processor': processor,
'train_dataset': train_dataset,
'dev_dataset': dev_dataset,
'processed_metadata': processed_metadata,
'train_loader': train_loader,
'dev_loader': dev_loader}
return out
def train(args):
start_time = time.time()
device = torch.device('cuda' if args.cuda else 'cpu')
pprint(args.__dict__)
interface = FileInterface(**args.__dict__)
out = interface.cache(preprocess, args) if args.cache else preprocess(interface, args)
processor = out['processor']
processed_metadata = out['processed_metadata']
train_dataset = out['train_dataset']
dev_dataset = out['dev_dataset']
train_loader = out['train_loader']
dev_loader = out['dev_loader']
model = Model(**args.__dict__).to(device)
model.init(processed_metadata)
loss_model = Loss().to(device)
optimizer = torch.optim.Adam(p for p in model.parameters() if p.requires_grad)
interface.bind(processor, model, optimizer=optimizer)
step = 0
train_report, dev_report = None, None
print('Training')
interface.save_args(args.__dict__)
model.train()
for epoch_idx in range(args.epochs):
for i, train_batch in enumerate(train_loader):
train_batch = {key: val.to(device) for key, val in train_batch.items()}
model_output = model(step=step, **train_batch)
train_results = processor.postprocess_batch(train_dataset, train_batch, model_output)
train_loss = loss_model(step=step, **model_output, **train_batch)
train_f1 = float(np.mean([result['f1'] for result in train_results]))
train_em = float(np.mean([result['em'] for result in train_results]))
# optimize
optimizer.zero_grad()
train_loss.backward()
optimizer.step()
step += 1
# report & eval & save
if step % args.report_period == 1:
train_report = OrderedDict(step=step, train_loss=train_loss.item(), train_f1=train_f1,
train_em=train_em, time=time.time() - start_time)
print(interface.report(**train_report))
if step % args.eval_save_period == 1:
with torch.no_grad():
model.eval()
loss_model.eval()
pred = {}
dev_losses, dev_results = [], []
for dev_batch, _ in zip(dev_loader, range(args.eval_steps)):
dev_batch = {key: val.to(device) for key, val in dev_batch.items()}
model_output = model(**dev_batch)
results = processor.postprocess_batch(dev_dataset, dev_batch, model_output)
dev_loss = loss_model(step=step, **dev_batch, **model_output)
for result in results:
pred[result['id']] = result['pred']
dev_results.extend(results)
dev_losses.append(dev_loss.item())
dev_loss = float(np.mean(dev_losses))
dev_f1 = float(np.mean([result['f1'] for result in dev_results]))
dev_em = float(np.mean([result['em'] for result in dev_results]))
dev_f1_best = dev_f1 if dev_report is None else max(dev_f1, dev_report['dev_f1_best'])
dev_f1_best_step = step if dev_report is None or dev_f1 > dev_report['dev_f1_best'] else dev_report[
'dev_f1_best_step']
dev_report = OrderedDict(step=step, dev_loss=dev_loss, dev_f1=dev_f1, dev_em=dev_em,
time=time.time() - start_time, dev_f1_best=dev_f1_best,
dev_f1_best_step=dev_f1_best_step)
summary = False
if dev_report['dev_f1_best_step'] == step:
summary = True
interface.save(iteration=step)
interface.pred(pred)
print(interface.report(summary=summary, **dev_report))
model.train()
loss_model.train()
if step == args.train_steps:
break
if step == args.train_steps:
break
def test(args):
device = torch.device('cuda' if args.cuda else 'cpu')
pprint(args.__dict__)
interface = FileInterface(**args.__dict__)
# use cache for metadata
if args.cache:
out = interface.cache(preprocess, args)
processor = out['processor']
processed_metadata = out['processed_metadata']
else:
processor = Processor(**args.__dict__)
metadata = interface.load_metadata()
processed_metadata = processor.process_metadata(metadata)
model = Model(**args.__dict__).to(device)
model.init(processed_metadata)
interface.bind(processor, model)
interface.load(args.iteration, session=args.load_dir)
test_examples = interface.load_test()
test_dataset = tuple(processor.preprocess(example) for example in test_examples)
test_sampler = Sampler(test_dataset, 'test', **args.__dict__)
test_loader = DataLoader(test_dataset, batch_size=args.batch_size, sampler=test_sampler,
collate_fn=processor.collate)
print('Inferencing')
with torch.no_grad():
model.eval()
pred = {}
for batch_idx, (test_batch, _) in enumerate(zip(test_loader, range(args.eval_steps))):
test_batch = {key: val.to(device) for key, val in test_batch.items()}
model_output = model(**test_batch)
results = processor.postprocess_batch(test_dataset, test_batch, model_output)
if batch_idx % args.dump_period == 0:
dump = processor.get_dump(test_dataset, test_batch, model_output, results)
interface.dump(batch_idx, dump)
for result in results:
pred[result['id']] = result['pred']
print('[%d/%d]' % (batch_idx + 1, len(test_loader)))
interface.pred(pred)
def embed(args):
device = torch.device('cuda' if args.cuda else 'cpu')
pprint(args.__dict__)
interface = FileInterface(**args.__dict__)
# use cache for metadata
if args.cache:
out = interface.cache(preprocess, args)
processor = out['processor']
processed_metadata = out['processed_metadata']
else:
processor = Processor(**args.__dict__)
metadata = interface.load_metadata()
processed_metadata = processor.process_metadata(metadata)
model = Model(**args.__dict__).to(device)
model.init(processed_metadata)
interface.bind(processor, model)
interface.load(args.iteration, session=args.load_dir)
test_examples = interface.load_test()
test_dataset = tuple(processor.preprocess(example) for example in test_examples)
test_sampler = Sampler(test_dataset, 'test', **args.__dict__)
test_loader = DataLoader(test_dataset, batch_size=args.batch_size, sampler=test_sampler,
collate_fn=processor.collate)
print('Saving embeddings')
with torch.no_grad():
model.eval()
for batch_idx, (test_batch, _) in enumerate(zip(test_loader, range(args.eval_steps))):
test_batch = {key: val.to(device) for key, val in test_batch.items()}
if args.mode == 'embed' or args.mode == 'embed_context':
context_output = model.get_context(**test_batch)
context_results = processor.postprocess_context_batch(test_dataset, test_batch, context_output)
for id_, phrases, matrix, metadata in context_results:
if not args.metadata:
metadata = None
interface.context_emb(id_, phrases, matrix, metadata=metadata, emb_type=args.emb_type)
if args.mode == 'embed' or args.mode == 'embed_question':
question_output = model.get_question(**test_batch)
question_results = processor.postprocess_question_batch(test_dataset, test_batch, question_output)
for id_, emb in question_results:
interface.question_emb(id_, emb, emb_type=args.emb_type)
print('[%d/%d]' % (batch_idx + 1, len(test_loader)))
if args.archive:
print('Archiving')
interface.archive()
def serve(args):
# serve_demo: Load saved embeddings, serve question model. question in, results out.
# serve_question: only serve question model. question in, vector out.
# serve_context: only serve context model. context in, phrase-vector pairs out.
# serve: serve all three.
device = torch.device('cuda' if args.cuda else 'cpu')
pprint(args.__dict__)
interface = FileInterface(**args.__dict__)
# use cache for metadata
if args.cache:
out = interface.cache(preprocess, args)
processor = out['processor']
processed_metadata = out['processed_metadata']
else:
processor = Processor(**args.__dict__)
metadata = interface.load_metadata()
processed_metadata = processor.process_metadata(metadata)
model = Model(**args.__dict__).to(device)
model.init(processed_metadata)
interface.bind(processor, model)
interface.load(args.iteration, session=args.load_dir)
with torch.no_grad():
model.eval()
if args.mode == 'serve_demo':
phrases = []
paras = []
results = []
embs = []
idxs = []
iterator = interface.context_load(metadata=True, emb_type=args.emb_type)
for _, (cur_phrases, each_emb, metadata) in zip(range(args.num_train_mats), iterator):
embs.append(each_emb)
phrases.extend(cur_phrases)
for span in metadata['answer_spans']:
results.append([len(paras), span[0], span[1]])
idxs.append(len(idxs))
paras.append(metadata['context'])
if args.emb_type == 'dense':
import faiss
emb = np.concatenate(embs, 0)
d = 4 * args.hidden_size * args.num_heads
if args.metric == 'ip':
quantizer = faiss.IndexFlatIP(d) # Exact Search
elif args.metric == 'l2':
quantizer = faiss.IndexFlatL2(d)
else:
raise ValueError()
if args.nlist != args.nprobe:
# Approximate Search. nlist > nprobe makes it faster and less accurate
if args.bpv is None:
if args.metric == 'ip':
search_index = faiss.IndexIVFFlat(quantizer, d, args.nlist, faiss.METRIC_INNER_PRODUCT)
elif args.metric == 'l2':
search_index = faiss.IndexIVFFlat(quantizer, d, args.nlist)
else:
raise ValueError()
else:
assert args.metric == 'l2' # only l2 is supported for product quantization
search_index = faiss.IndexIVFPQ(quantizer, d, args.nlist, args.bpv, 8)
search_index.train(emb)
else:
search_index = quantizer
search_index.add(emb)
for cur_phrases, each_emb, metadata in iterator:
phrases.extend(cur_phrases)
for span in metadata['answer_spans']:
results.append([len(paras), span[0], span[1]])
paras.append(metadata['context'])
search_index.add(each_emb)
if args.nlist != args.nprobe:
search_index.nprobe = args.nprobe
def search(emb, k):
D, I = search_index.search(emb, k)
return D[0], I[0]
elif args.emb_type == 'sparse':
assert args.metric == 'l2' # currently only l2 is supported (couldn't find a good ip library)
import pysparnn.cluster_index as ci
cp = ci.MultiClusterIndex(embs, idxs)
for cur_phrases, each_emb, metadata in iterator:
phrases.extend(cur_phrases)
for span in metadata['answer_spans']:
results.append([len(paras), span[0], span[1]])
paras.append(metadata['context'])
for each_vec in each_emb:
cp.insert(each_vec, len(idxs))
idxs.append(len(idxs))
def search(emb, k):
return zip(*[each[0] for each in cp.search(emb, k=k)])
else:
raise ValueError()
def retrieve(question, k):
example = {'question': question, 'id': 'real', 'idx': 0}
dataset = (processor.preprocess(example), )
loader = DataLoader(dataset, batch_size=1, collate_fn=processor.collate)
batch = next(iter(loader))
question_output = model.get_question(**batch)
question_results = processor.postprocess_question_batch(dataset, batch, question_output)
id_, emb = question_results[0]
D, I = search(emb, k)
out = [(paras[results[i][0]], results[i][1], results[i][2], '%.4r' % d.item(),)
for d, i in zip(D, I)]
return out
if args.mem_info:
import psutil
import os
pid = os.getpid()
py = psutil.Process(pid)
info = py.memory_info()[0] / 2. ** 30
print('Memory Use: %.2f GB' % info)
# Demo server. Requires flask and tornado
from flask import Flask, request, jsonify
from flask_cors import CORS
from tornado.wsgi import WSGIContainer
from tornado.httpserver import HTTPServer
from tornado.ioloop import IOLoop
app = Flask(__name__, static_url_path='/static')
app.config['JSONIFY_PRETTYPRINT_REGULAR'] = False
CORS(app)
@app.route('/')
def index():
return app.send_static_file('index.html')
@app.route('/files/<path:path>')
def static_files(path):
return app.send_static_file('files/' + path)
@app.route('/api', methods=['GET'])
def api():
query = request.args['query']
out = retrieve(query, 5)
return jsonify(out)
print('Starting server at %d' % args.port)
http_server = HTTPServer(WSGIContainer(app))
http_server.listen(args.port)
IOLoop.instance().start()
def main():
argument_parser = ArgumentParser()
argument_parser.add_arguments()
args = argument_parser.parse_args()
if args.mode == 'train':
train(args)
elif args.mode == 'test':
test(args)
elif args.mode == 'embed' or args.mode == 'embed_context' or args.mode == 'embed_question':
embed(args)
elif args.mode.startswith('serve'):
serve(args)
else:
raise Exception()
if __name__ == "__main__":
from_ = importlib.import_module(sys.argv[1])
ArgumentParser = from_.ArgumentParser
FileInterface = from_.FileInterface
Processor = from_.Processor
Sampler = from_.Sampler
Model = from_.Model
Loss = from_.Loss
assert issubclass(ArgumentParser, base.ArgumentParser)
assert issubclass(FileInterface, base.FileInterface)
assert issubclass(Processor, base.Processor)
assert issubclass(Sampler, base.Sampler)
assert issubclass(Model, base.Model)
assert issubclass(Loss, base.Loss)
main()