-
Notifications
You must be signed in to change notification settings - Fork 1
/
spectrum_labeler.py
317 lines (255 loc) · 12.8 KB
/
spectrum_labeler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
"""
Copyright (C) 2019 SensorLab, Jozef Stefan Institute http://sensorlab.ijs.si
This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program. If not, see http://www.gnu.org/licenses
"""
from __future__ import print_function
from tempfile import mkdtemp
import os
import sys
import signal
from collections import defaultdict
from datetime import datetime
import random
import json
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from matplotlib.widgets import Cursor
from matplotlib import cm
from matplotlib import ticker
from PIL import Image
# Parameters.
base_data_path = "./"
spectrum_f_names = ["ws_traffic_20170606"]
spectrum_data_files = [os.path.join(base_data_path, x) for x in spectrum_f_names]
output_directory = "./"
window_duration = 30 # seconds
rand_skip_forward_range = (10*60, 15*60) # seconds
noise_cutoff = None # Set spectrogram to minimum value where value <= minimum value + noise_cutoff [dBm].
random.seed(42)
def signal_handler(signal, frame):
print("Exiting...")
sys.exit(0)
def generate_cir_image(data_array, image_name=None):
"""
Generates image with all CIRs according to the range
:param data_array: complete fitered data arrays
:param image_name: name of output image
:return:
"""
cir = data_array
img_array = np.zeros([cir.shape[0], cir.shape[1], 3])
# transform to image array
for i in range(cir.shape[0]):
for j in range(cir.shape[1]):
img_array[i][j] = np.array([cir[i][j], cir[i][j], cir[i][j]])
# normalize to 1
img_array = img_array / np.max(img_array)
lum_img = img_array[:, :, 0]
# apply range 0 to 255
img_array2 = lum_img * 255
# apply color map "nipy_spectral"
img_array2 = cm.nipy_spectral(lum_img) * 255
img_array2 = img_array2.astype('uint8')
img = Image.fromarray(img_array2)
return img
#img.save(image_name)
class SpectrumLabeler:
def __init__(self, spectrum_data_files, output_directory, window_duration,
rand_skip_forward_range, min_window_points=5):
self.spectrum_data_files = spectrum_data_files
self.output_directory = output_directory
self.window_duration = window_duration
self.rand_skip_forward_range = rand_skip_forward_range
self.events = None
self.windows = None
self.min_window_points = min_window_points
self.min_v = None
self.max_v = None
# Automatically maximizing the plots causes too much problems on various platforms.
# plt.switch_backend('QT4Agg')
# figManager = plt.get_current_fig_manager()
# figManager.window.showMaximized()
def run(self):
for spectrum_data_file in spectrum_data_files:
print("New dataset: %s" % spectrum_data_file)
self.events = []
self.windows = []
data_p, data_t = self.__load_data(spectrum_data_file)
data_t_start = data_t[0]
data_t_end = data_t[-1]
window_t_start = data_t_start + self.__get_rand_offset()# + self.__get_rand_offset()
while window_t_start < data_t_end - 2*self.window_duration:
window_i_start, window_i_end = self.__get_window_indices(data_t, window_t_start)
# print("True start: %s, found: %s" % (window_t_start, data_t[window_i_start]))
# print("True end: %s, found: %s" % (window_t_start + self.window_duration, data_t[window_i_end]))
# Skip if the window doesn't comply with our requirements.
# if window_i_end - window_i_start < self.min_window_points:
# continue
if abs(window_t_start - data_t[window_i_start]) > self.window_duration / 4 or \
abs(window_t_start + self.window_duration - data_t[window_i_end]) > self.window_duration / 4 or \
abs(data_t[window_i_start] - data_t[window_i_end]) < self.window_duration / 2:
window_t_start += self.__get_rand_offset()
continue
self.windows.append((data_t[window_i_start], data_t[window_i_end]))
self.__display_spectrogram_record_events(data_p, data_t, window_i_start, window_i_end)
print("Left to label: %d s of data." % (data_t_end - window_t_start))
window_t_start += self.window_duration + self.__get_rand_offset()
self.__output_to_file(spectrum_data_file)
def __get_rand_offset(self):
return random.randint(*self.rand_skip_forward_range)
def __load_data(self, f_name):
print("Memory mapping the file (this might take some time) ...")
t = []
with open("%s" % f_name, 'r') as f:
num_lines = 1
first_line = f.readline()
j_line = json.loads(first_line)
num_measurements = len(j_line["Measurements"])
for _ in f:
num_lines += 1
f.seek(0)
mmap_data = np.memmap(os.path.join(mkdtemp(), 'tmpspec.bin'),
mode='w+', shape=(num_lines, num_measurements), dtype=np.float64)
for i, line in enumerate(f):
j_line = json.loads(line)
ts = datetime.strptime(j_line["Time"], '%Y-%m-%dT%H:%M:%S.%f').timestamp()
t.append(ts)
mmap_data[i,:] = j_line["Measurements"]
#mmap_data.flush()
print("Done!")
self.max_v = np.max(mmap_data)
self.min_v = np.min(mmap_data)
return mmap_data, t
def __get_window_indices(self, t_data, window_t_start):
start = np.searchsorted(t_data, window_t_start, side='right')
end = np.searchsorted(t_data, window_t_start + self.window_duration) - 1
return start, end
def __display_spectrogram_record_events(self, data_p, data_t, window_i_start, window_i_end):
# Show the spectrogram and record input.
fig, ax = plt.subplots(figsize=(14, 7))
part_p = data_p[window_i_start : window_i_end].copy()
if noise_cutoff:
part_p[part_p <= self.min_v + noise_cutoff] = self.min_v
scaled_p = (part_p - self.min_v) / (self.max_v - self.min_v)
img = ax.imshow(scaled_p, interpolation='none',
origin='lower', aspect='auto', cmap='inferno')
plt.xlabel("FFT bin")
plt.ylabel("Time (each point is approx. %.3f s)" % ((data_t[window_i_end] - data_t[window_i_start]) \
/ (window_i_end - window_i_start)) )
cbar = plt.colorbar(img)
img.set_clim(vmin=0, vmax=1)
cbar.set_ticks([1, 0.5, 0])
#tick_locator = ticker.MaxNLocator(nbins=3)
#cbar.locator = tick_locator
#cbar.ax.yaxis.set_major_locator(ticker.AutoLocator())
#cbar.update_ticks()
cbar.ax.set_yticklabels([self.max_v, (self.max_v + self.min_v) / 2, self.min_v])
with EvaluationInputRecorder(fig, ax, window_i_start) as evaluation_recorder:
cursor = Cursor(ax, useblit=True, color='white', linewidth=1)
plt.show(block=False)
try:
mouse = plt.waitforbuttonpress()
while not mouse:
mouse = plt.waitforbuttonpress()
except KeyboardInterrupt:
sys.exit(0)
#raw_input("< press ENTER when done >\n")
plt.close()
self.events.append(map(lambda x: dict(x, **{"StartTime": data_t[x["StartTime"]], "EndTime": data_t[x["EndTime"]]}),
evaluation_recorder.tx_events))
def __output_to_file(self, f_name):
with open(self.output_directory + "out_" + f_name.split("/")[-1], 'w') as f:
for window, events in zip(self.windows, self.events):
f.write("%f %f\n" % (window[0], window[1]))
for event in events:
f.write("%s\n" % event)
f.write("\n")
class EvaluationInputRecorder:
def __init__(self, fig, ax, offset=0):
self.fig = fig
self.offset = offset
self.cid_p = fig.canvas.mpl_connect('button_press_event', self)
self.cid_r = fig.canvas.mpl_connect('button_release_event', self)
self.tx_events = []
self.display_marks = []
self.display_rects = []
self.ax = ax
self.last_e = None
def __call__(self, event):
tb = plt.get_current_fig_manager().toolbar
if event.inaxes and tb.mode == '':
event.ydata = int(round(event.ydata))
event.xdata = int(round(event.xdata))
if event.name == "button_press_event":
if event.button == 1:
print("Time: %s, FFT bin: %s" % (event.ydata, event.xdata))
mark, = self.ax.plot(event.xdata, event.ydata, marker='o', color='white')
self.display_marks.append(mark)
self.fig.canvas.draw()
# self.tx_events.append((event.ydata + self.offset, event.xdata, "start"))
# print(" Transmisson start (left edge).")
self.last_e = {"xdata": event.xdata, "ydata": event.ydata}
elif event.button == 3:
if len(self.tx_events) > 0:
self.display_marks.pop().remove()
self.display_marks.pop().remove()
self.display_rects.pop().remove()
ev = self.tx_events.pop()
print("Removing the last event: %s" % ev)
else:
print("Can't remove: no events.")
elif event.name == "button_release_event" and event.button == 1 and self.last_e:
# print("Time: %s, FFT bin: %s" % (event.ydata, event.xdata), end="")
# mark, = self.ax.plot(event.xdata, event.ydata, marker='o', color='white')
# self.display_marks.append(mark)
# self.fig.canvas.draw()
# self.tx_events.append((event.ydata + self.offset, event.xdata, "stop"))
# print(" Transmisson stop (right edge).")
print("Time: %s, FFT bin: %s" % (event.ydata, event.xdata))
mark, = self.ax.plot(event.xdata, event.ydata, marker='o', color='white')
self.display_marks.append(mark)
rect = patches.Rectangle((self.last_e["xdata"], self.last_e["ydata"]),
event.xdata - self.last_e["xdata"],
event.ydata - self.last_e["ydata"],
linewidth=1, edgecolor='w', fill=False)
self.display_rects.append(rect)
self.ax.add_patch(rect)
self.fig.canvas.draw()
# Add offset.
self.tx_events.append({"StartChannel": min(event.xdata, self.last_e["xdata"]),
"EndChannel": max(event.xdata, self.last_e["xdata"]),
"StartTime": min(event.ydata, self.last_e["ydata"]) + self.offset,
"EndTime": max(event.ydata, self.last_e["ydata"]) + self.offset})
self.last_e = None
# else:
# print("Unknown event.")
# self.last_e = None
else:
print("Please click inside the spectrogram.")
if self.last_e:
self.display_marks.pop().remove()
self.fig.canvas.draw()
self.last_e = None
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
self.fig.canvas.mpl_disconnect(self.cid_p)
self.fig.canvas.mpl_disconnect(self.cid_r)
if __name__ == "__main__":
# Gracefully exit the script.
signal.signal(signal.SIGINT, signal_handler)
print("Label the transmissions: left click, hold and release to draw a rectangle around a single transmission."
" The order or orientation of labels does not matter. To undo, press the right mouse button."
" Press <space> (or almost any other key really) to display the next spectrogram.")
labeler = SpectrumLabeler(spectrum_data_files, output_directory, window_duration,
rand_skip_forward_range)
labeler.run()