From 3d7bd8ca6b8b88a78263d21a68ad9d08065dce14 Mon Sep 17 00:00:00 2001 From: Tianrun Yang Date: Wed, 14 Aug 2024 15:41:48 +0100 Subject: [PATCH] small changes --- gap/attributes/attr.gi | 23 ++++++++++++----------- 1 file changed, 12 insertions(+), 11 deletions(-) diff --git a/gap/attributes/attr.gi b/gap/attributes/attr.gi index 7fb255a11..a91b0671c 100644 --- a/gap/attributes/attr.gi +++ b/gap/attributes/attr.gi @@ -1056,8 +1056,8 @@ SEMIGROUPS.ExistsTransversal := function(a, b, n) local exists, class, i; if DegreeOfTransformation(a) > n or DegreeOfTransformation(b) > n then - ErrorNoReturn("Transformation does not \ - belong to a transformation semigroup of degree n"); + ErrorNoReturn("Transformation does not", + "belong to a transformation semigroup of degree n"); fi; for class in KernelOfTransformation(a, n) do exists := false; @@ -1083,7 +1083,7 @@ function(S) return function(x, y) # Only returns the correct answer if y is a regular element - return KernelContainment(x, y, deg) + return IsRefinementKernelOfTransformation(x, y, deg) and SEMIGROUPS.ExistsTransversal(x, y, deg); end; end); @@ -1120,15 +1120,16 @@ function(S) func2 := MitschLeqSemigroup(S); out := List([1 .. Size(S)], x -> []); regular := ListWithIdenticalEntries(Size(S), false); -if IsRegularSemigroup(S) do - FlipBlist(regular); - else - for D in RegularDClasses(S) do - for a in D do - i := PositionCanonical(S, a) ^ (p ^ -1); - regular[i] := true; + if IsRegularSemigroup(S) then + FlipBlist(regular); + else + for D in RegularDClasses(S) do + for a in D do + i := PositionCanonical(S, a) ^ (p ^ -1); + regular[i] := true; + od; od; - od; + fi; for j in [Size(S), Size(S) - 1 .. 1] do if regular[j] then for i in [j - 1, j - 2 .. 1] do