-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpruning_engine.py
executable file
·1592 lines (1317 loc) · 72.2 KB
/
pruning_engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import print_function
import os
import time
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import numpy as np
import pdb
import math
from copy import deepcopy
import itertools
import pickle
import json
from collections import OrderedDict, defaultdict
from tqdm import tqdm
METHOD_ENCODING = {0: "Taylor_weight", 1: "Random", 2: "Weight norm", 3: "Weight_abs",
6: "Taylor_output", 10: "OBD", 11: "Taylor_gate_SO",
22: "Taylor_gate", 23: "Taylor_gate_FG", 30: "BN_weight", 31: "BN_Taylor",
60: "Layerwise Relevance Propagation",
61: "Method 22 with normalized grad by adam"}
# Code is based on
# https://github.com/NVlabs/Taylor_pruning
# Method is encoded as an integer that mapping is shown above.
# Methods map to the paper as follows:
# 0 - Taylor_weight - Conv weight/conv/linear weight with Taylor FO In Table 2 and Table 1
# 1 - Random - Random
# 2 - Weight norm - Weight magnitude/ weight
# 3 - Weight_abs - Not used
# 6 - Taylor_output - Taylor-output as is [27]
# 10- OBD - OBD
# 11- Taylor_gate_SO- Taylor SO
# 22- Taylor_gate - Gate after BN in Table 2, Taylor FO in Table 1
# 23- Taylor_gate_FG- uses gradient per example to compute Taylor FO, Taylor FO- FG in Table 1, Gate after BN - FG in Table 2
# 30- BN_weight - BN scale in Table 2
# 31- BN_Taylor - BN scale Taylor FO in Table 2
# 60- Layerwise Revelance Propagation - Heatmapping examples for filter importance
class PruningConfigReader(object):
def __init__(self):
self.pruning_settings = {}
self.config = None
def read_config(self, filename):
# reads .json file and sets values as pruning_settings for pruning
with open(filename, "r") as f:
config = json.load(f)
self.config = config
self.read_field_value("method", 0)
self.read_field_value("frequency", 500)
self.read_field_value("prune_per_iteration", 2)
self.read_field_value("maximum_pruning_iterations", 10000)
self.read_field_value("starting_neuron", 0)
self.read_field_value("fixed_layer", -1)
# self.read_field_value("use_momentum", False)
self.read_field_value("pruning_threshold", 100)
self.read_field_value("start_pruning_after_n_iterations", 0)
# self.read_field_value("use_momentum", False)
self.read_field_value("do_iterative_pruning", True)
self.read_field_value("fixed_criteria", False)
self.read_field_value("seed", 0)
self.read_field_value("pruning_momentum", 0.9)
self.read_field_value("flops_regularization", 0.0)
self.read_field_value("prune_neurons_max", 1)
self.read_field_value("group_size", 1)
self.read_field_value("prune_latency_ratio", -1)
self.read_field_value("layer_minimum_neurons", 1)
self.read_field_value("prune_loss_batch_patience", -1)
self.read_field_value("prune_loss_batch_patience_window_size", 1)
def read_field_value(self, key, default):
param = default
if key in self.config:
param = self.config[key]
self.pruning_settings[key] = param
def get_parameters(self):
return self.pruning_settings
class pytorch_pruning(object):
def __init__(self, parameters, pruning_settings=dict(), log_folder=None):
def initialize_parameter(object_name, settings, key, def_value):
'''
Function check if key is in the settings and sets it, otherwise puts default momentum
:param object_name: reference to the object instance
:param settings: dict of settings
:param def_value: def value for the parameter to be putted into the field if it doesn't work
:return:
void
'''
value = def_value
if key in settings.keys():
value = settings[key]
setattr(object_name, key, value)
# store some statistics
self.min_criteria_value = 1e6
self.max_criteria_value = 0.0
self.median_criteria_value = 0.0
self.neuron_units = 0
self.all_neuron_units = 0
self.pruned_neurons = 0
self.gradient_norm_final = 0.0
self.flops_regularization = 0.0 #not used in the paper
self.pruning_iterations_done = 0
self.full_model_latency = 0
self.estimated_model_latency = 0
# initialize_parameter(self, pruning_settings, 'use_momentum', False)
initialize_parameter(self, pruning_settings, 'pruning_momentum', 0.9)
initialize_parameter(self, pruning_settings, 'flops_regularization', 0.0)
self.momentum_coeff = self.pruning_momentum
self.use_momentum = self.pruning_momentum > 0.0
initialize_parameter(self, pruning_settings, 'prune_per_iteration', 1)
initialize_parameter(self, pruning_settings, 'start_pruning_after_n_iterations', 0)
initialize_parameter(self, pruning_settings, 'prune_neurons_max', 0)
initialize_parameter(self, pruning_settings, 'maximum_pruning_iterations', 0)
initialize_parameter(self, pruning_settings, 'pruning_silent', False)
initialize_parameter(self, pruning_settings, 'l2_normalization_per_layer', False)
initialize_parameter(self, pruning_settings, 'fixed_criteria', False)
initialize_parameter(self, pruning_settings, 'starting_neuron', 0)
initialize_parameter(self, pruning_settings, 'frequency', 30)
initialize_parameter(self, pruning_settings, 'pruning_threshold', 100)
initialize_parameter(self, pruning_settings, 'fixed_layer', -1)
initialize_parameter(self, pruning_settings, 'combination_ID', 0)
initialize_parameter(self, pruning_settings, 'seed', 0)
initialize_parameter(self, pruning_settings, 'group_size', 1)
initialize_parameter(self, pruning_settings, 'method', 0)
initialize_parameter(self, pruning_settings, 'prune_latency_ratio', -1)
initialize_parameter(self, pruning_settings, "layer_minimum_neurons", 1)
initialize_parameter(self, pruning_settings, "prune_loss_batch_patience", -1)
initialize_parameter(self, pruning_settings, "prune_loss_batch_patience_window_size", 1)
# Hessian related parameters
self.temp_hessian = [] # list to store Hessian
self.hessian_first_time = True
self.parameters = list()
##get pruning parameters
for parameter in parameters:
parameter_value = parameter["parameter"]
self.parameters.append(parameter_value)
if self.fixed_layer == -1:
##prune all layers
self.prune_layers = [True for parameter in self.parameters]
else:
##prune only one layer
self.prune_layers = [False, ]*len(self.parameters)
self.prune_layers[self.fixed_layer] = True
self.iterations_done = 0
self.prune_network_criteria = list()
self.prune_network_accomulate = {"by_layer": list(), "averaged": list(), "averaged_cpu": list()}
self.pruning_gates = list()
for layer in range(len(self.parameters)):
self.prune_network_criteria.append(list())
for key in self.prune_network_accomulate.keys():
self.prune_network_accomulate[key].append(list())
self.pruning_gates.append(np.ones(len(self.parameters[layer]),))
layer_now_criteria = self.prune_network_criteria[-1]
for unit in range(len(self.parameters[layer])):
layer_now_criteria.append(0.0)
# logging setup
self.log_folder = log_folder
self.folder_to_write_debug = self.log_folder + '/debug/'
if not os.path.exists(self.folder_to_write_debug):
os.makedirs(self.folder_to_write_debug)
self.method_25_first_done = True
if self.method == 40 or self.method == 50 or self.method == 25:
self.oracle_dict = {"layer_pruning": -1, "initial_loss": 0.0, "loss_list": list(), "neuron": list(), "iterations": 0}
self.method_25_first_done = False
if self.method == 25:
with open("./utils/study/oracle.pickle","rb") as f:
oracle_list = pickle.load(f)
self.oracle_dict["loss_list"] = oracle_list
self.needs_hessian = False
if self.method in [10, 11]:
self.needs_hessian = True
# useful for storing data of the experiment
self.data_logger = dict()
self.data_logger["pruning_neurons"] = list()
self.data_logger["pruning_accuracy"] = list()
self.data_logger["pruning_loss"] = list()
self.data_logger["method"] = self.method
self.data_logger["prune_per_iteration"] = self.prune_per_iteration
self.data_logger["combination_ID"] = list()
self.data_logger["fixed_layer"] = self.fixed_layer
self.data_logger["frequency"] = self.frequency
self.data_logger["starting_neuron"] = self.starting_neuron
self.data_logger["use_momentum"] = self.use_momentum
self.data_logger["time_stamp"] = time.strftime("%Y_%m_%d_%H_%M_%S", time.localtime())
if hasattr(self, 'seed'):
self.data_logger["seed"] = self.seed
self.data_logger["filename"] = "%s/data_logger_seed_%d_%s.p"%(log_folder, self.data_logger["seed"], self.data_logger["time_stamp"])
if self.method == 50:
self.data_logger["filename"] = "%s/data_logger_seed_%d_neuron_%d_%s.p"%(log_folder, self.starting_neuron, self.data_logger["seed"], self.data_logger["time_stamp"])
self.log_folder = log_folder
# the rest of initializations
self.pruned_neurons = self.starting_neuron
self.util_loss_tracker = 0.0
self.util_acc_tracker = 0.0
self.util_loss_tracker_num = 0.0
self.loss_tracker_exp = ExpMeter()
# stores results of the pruning, 0 - unsuccessful, 1 - successful
self.res_pruning = 0
self.iter_step = -1
self.train_writer = None
self.set_moment_zero = True
self.pruning_mask_from = ""
self.prune_loss_batch_patience_counter = 0
self.prune_loss_batch_patience_value = None
self.prune_loss_batch_patience_window = []
self.prune_loss_batch_patience_window_avg = None
if self.method == 60:
# trying for multiple gpu/device support
self.method_60_activations = defaultdict(list)
self.method_60_targets = None
def add_criteria(self, optimizer):
'''
This method adds criteria to global list given batch stats.
'''
if self.fixed_criteria:
if self.pruning_iterations_done > self.start_pruning_after_n_iterations :
return 0
method_60_required = False
for layer, if_prune in enumerate(self.prune_layers):
if not if_prune:
continue
nunits = self.parameters[layer].size(0)
eps = 1e-8
if len(self.pruning_mask_from) > 0:
# preload pruning mask
self.method = -1
criteria_for_layer = torch.from_numpy(self.loaded_mask_criteria[layer]).type(torch.FloatTensor).cuda(nonblocking=True)
if self.method == 0:
# First order Taylor expansion on the weight
criteria_for_layer = (self.parameters[layer]*self.parameters[layer].grad ).data.pow(2).view(nunits,-1).sum(dim=1)
elif self.method == 1:
# random pruning
criteria_for_layer = np.random.uniform(low=0, high=5, size=(nunits,))
elif self.method == 2:
# min weight
criteria_for_layer = self.parameters[layer].pow(2).view(nunits,-1).sum(dim=1).data
elif self.method == 3:
# weight_abs
criteria_for_layer = self.parameters[layer].abs().view(nunits,-1).sum(dim=1).data
elif self.method == 63:
# min weight based on next layer, tested only on alexnet
if layer == len(self.prune_layers)-1:
last_layer = list(self.model_instance.modules())[-1]
criteria_for_layer = last_layer.weight.pow(2).transpose(0,1).contiguous().view(nunits,-1)
else:
criteria_for_layer = self.parameters[layer+1].pow(2).transpose(0,1).contiguous().view(nunits,-1)
criteria_for_layer = criteria_for_layer.sum(dim=1).data
elif self.method == 6:
# ICLR2017 Taylor on output of the layer
if 1:
criteria_for_layer = self.parameters[layer].full_grad_iclr2017
#criteria_for_layer = criteria_for_layer / (np.linalg.norm(criteria_for_layer) + eps)
criteria_for_layer = criteria_for_layer / (np.linalg.norm(criteria_for_layer.cpu().numpy()) + eps)
elif self.method == 10:
# diagonal of Hessian
criteria_for_layer = (self.parameters[layer] * torch.diag(self.temp_hessian[layer])).data.view(nunits,
-1).sum(
dim=1)
elif self.method == 11:
# second order Taylor expansion for loss change in the network
criteria_for_layer = (-(self.parameters[layer] * self.parameters[layer].grad).data + 0.5 * (
self.parameters[layer] * self.parameters[layer] * torch.diag(
self.temp_hessian[layer])).data).pow(2)
elif self.method == 22:
# Taylor pruning on gate
criteria_for_layer = (self.parameters[layer]*self.parameters[layer].grad).data.pow(2).view(nunits, -1).sum(dim=1)
if hasattr(self, "dataset"):
# fix for skip connection pruning, gradient will be accumulated instead of being averaged
if self.dataset == "Imagenet":
if hasattr(self, "model"):
if not ("noskip" in self.model):
if "resnet" in self.model:
mult = 3.0
if layer == 1:
mult = 4.0
elif layer == 2:
mult = 23.0 if "resnet101" in self.model else mult
mult = 6.0 if "resnet34" in self.model else mult
mult = 6.0 if "resnet50" in self.model else mult
criteria_for_layer /= mult
elif self.method == 61:
# Taylor pruning with grad normalized by adam
grad = self.parameters[layer].grad
state=optimizer.state[self.parameters[layer]]
if 'exp_avg' not in state:
raise ValueError("Normalized grad method (61) is only supported with adam")
beta1, beta2 = (0.9, 0.999)
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
exp_avg.mul_(beta1).add_(1 - beta1, grad)
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(1e-8)
step_size = 1. / bias_correction1
grad = step_size * (exp_avg/denom)
criteria_for_layer = (self.parameters[layer]*grad).data.pow(2).view(nunits, -1).sum(dim=1)
if hasattr(self, "dataset"):
# fix for skip connection pruning, gradient will be accumulated instead of being averaged
if self.dataset == "Imagenet":
if hasattr(self, "model"):
if not ("noskip" in self.model):
if "resnet" in self.model:
mult = 3.0
if layer == 1:
mult = 4.0
elif layer == 2:
mult = 23.0 if "resnet101" in self.model else mult
mult = 6.0 if "resnet34" in self.model else mult
mult = 6.0 if "resnet50" in self.model else mult
criteria_for_layer /= mult
elif self.method == 23:
# Taylor pruning on gate with computing full gradient
criteria_for_layer = (self.parameters[layer].full_grad.t()).data.pow(2).view(nunits,-1).sum(dim=1)
elif self.method == 30:
# batch normalization based pruning
# by scale (weight) of the batchnorm
criteria_for_layer = (self.parameters[layer]).data.abs().view(nunits, -1).sum(dim=1)
elif self.method == 31:
# Taylor FO on BN
if hasattr(self.parameters[layer], "bias"):
criteria_for_layer = (self.parameters[layer]*self.parameters[layer].grad +
self.parameters[layer].bias*self.parameters[layer].bias.grad ).data.pow(2).view(nunits,-1).sum(dim=1)
else:
criteria_for_layer = (
self.parameters[layer] * self.parameters[layer].grad).data.pow(2).view(nunits, -1).sum(dim=1)
elif self.method == 40:
# ORACLE on the fly that reevaluates itslef every pruning step
criteria_for_layer = np.asarray(self.oracle_dict["loss_list"][layer]).copy()
self.oracle_dict["loss_list"][layer] = list()
elif self.method == 50:
# combinatorial pruning - evaluates all possibilities of removing N neurons
criteria_for_layer = np.asarray(self.oracle_dict["loss_list"][layer]).copy()
self.oracle_dict["loss_list"][layer] = list()
elif self.method == 60:
method_60_required = True
break
else:
pass
if self.iterations_done == 0:
self.prune_network_accomulate["by_layer"][layer] = criteria_for_layer
else:
self.prune_network_accomulate["by_layer"][layer] += criteria_for_layer
if self.method == 60:
if self.res_pruning == -1:
# this is expensive, don't calculate it if res_pruning is finished
pass
else:
assert method_60_required
assert self.dataset == "Imagenet", "only works for imagenet"
# These contain activations from multiple GPUs with split batch size
# while T and R are for one GPU only. Either all of these calculations need to be done per GPU
# batch or we need to combine all of the activations into one GPU device and hope
# everything fits into vram...
all_T = torch.nn.functional.one_hot(self.method_60_targets, 1000)
all_scores = None
keep_idxs = []
target_offset = 0
with tqdm(total = sum([len(v) - 1 for v in self.method_60_activations.values()]), desc="LRP (Method 60)") as pbar:
for device in self.method_60_activations.keys():
pbar.set_postfix({"device": device})
A = self.method_60_activations[device]
batch_size = A[len(A) - 1][1].size(0) # get batch size
T = all_T[target_offset: target_offset + batch_size].to(device)
R = None
scores = None
output = None
for l in range(1, len(A))[::-1]:
layer, inp, layer_output = A[l]
pbar.set_postfix({"device": device, "layer_id": l})
if output is None:
output = layer_output
R = [None] * len(A) + [(output * T).data]
scores = [None] * len(A)
inp = inp.data.requires_grad_(True)
# print(device, l, type(layer), inp.shape)
if isinstance(layer, torch.nn.MaxPool2d):
layer = torch.nn.AvgPool2d(
layer.kernel_size, stride=layer.stride, padding=layer.padding)
if isinstance(layer, torch.nn.Conv2d) or \
isinstance(layer, torch.nn.AvgPool2d) or \
isinstance(layer, torch.nn.AdaptiveAvgPool2d):
# All these are hyperparameters and require manual, painful tuning; assumes VGG11BN!
if l <= 3:
rho = lambda p: p + 0.25 * p.clamp(min=0)
incr = lambda z: z + 1e-9
if 4 <= l <= 6:
rho = lambda p: p
incr = lambda z: z + 1e-9 * ((z**2).mean()**.5).data
if l >= 7:
rho = lambda p:p
incr = lambda z: z + 1e-9
n_layer = newlayer(layer, rho)
# Cuda out of memory error, perform these calculations without batching
for batch_idx in range(0, inp.size(0)):
batch_inp = inp[batch_idx].unsqueeze(0)
# Step 1
z = incr(n_layer.forward(batch_inp))
if type(layer) == torch.nn.AdaptiveAvgPool2d:
z = z.view(z.shape[0], -1, 1, 1)
# enforce all zeros are some small epsilon value
z[z==0] = 1e-9
# Step 2
s = (R[l+1][batch_idx]/z).data
# Step 3
(z*s).sum().backward()
c = inp.grad[batch_idx].unsqueeze(0)
# Step 4
if R[l] is None:
R[l] = [None] * batch_size
R[l][batch_idx] = (batch_inp * c).data
try:
assert torch.isnan(c).sum() == 0
except Exception as e:
import pdb; pdb.set_trace()
print(e)
# use C for filter importance score
if scores[l] is None:
scores[l] = c
else:
scores[l] += c
else:
if R[l] is None:
R[l] = R[l+1]
else:
R[l] += R[l+1]
# only keep the indicies of modules that we care about
if isinstance(layer, torch.nn.Conv2d) or isinstance(layer, torch.nn.Linear):
if l not in keep_idxs:
keep_idxs.append(l)
pbar.update()
self.method_60_activations[device] = self.method_60_activations[device][len(A):]
target_offset += batch_size
# average scores over batch size
try:
# check non NaNs
for score_idx, s in enumerate(scores):
if s is not None:
assert torch.isnan(s).sum() == 0
scores[score_idx] = (s/batch_size).cpu()
except Exception as e:
import pdb; pdb.set_trace()
print(e)
if all_scores is None:
all_scores = scores
else:
for score_idx, s in enumerate(all_scores):
if s is not None:
all_scores[score_idx] = s + scores[score_idx]
assert all_scores is not None
assert len(keep_idxs) == len(self.prune_network_accomulate["by_layer"])
keep_idxs.sort()
# Clamp all scores such that they are between -1 and 1, then scale by number of neurons
layerwise_neurons = self._count_layerwise_number_of_neurons()
assert len(layerwise_neurons) == len(keep_idxs)
total_number_of_unpruned_filters = sum([total_unpruned_filters for (total_filters, total_unpruned_filters) in layerwise_neurons.values()])
for layer, keep_idx in enumerate(keep_idxs):
# resize the all_scores to match parameter layer shape
score_shape = self.parameters[layer].shape[0]
criteria_for_layer = all_scores[keep_idx].view(score_shape, -1).sum(dim=1)
try:
# check shape matches
assert criteria_for_layer.shape == self.parameters[layer].shape
assert criteria_for_layer.shape[0] == layerwise_neurons[layer][0]
# check non NaNs
assert torch.isnan(criteria_for_layer).sum() == 0
except Exception as e:
print(e)
import pdb; pdb.set_trace()
# current layer normalization multiplier
mult = layerwise_neurons[layer][1] / total_number_of_unpruned_filters
# clamp to -1 and 1!
old_min = criteria_for_layer.min()
old_max = criteria_for_layer.max()
old_range = old_max - old_min
new_min = -1
new_max = 1
new_range = new_max - new_min
for idx, criteria_value in enumerate(criteria_for_layer):
updated_criteria_value = (((criteria_value - old_min) * new_range) / old_range) + new_min
# normalize by multiplying with number of unpruned filters of total number of unpruned filters
# criteria_for_layer[idx] = updated_criteria_value * mult
criteria_for_layer[idx] = updated_criteria_value # no mult
if self.iterations_done == 0:
self.prune_network_accomulate["by_layer"][layer] = criteria_for_layer
else:
self.prune_network_accomulate["by_layer"][layer] += criteria_for_layer
self.iterations_done += 1
@staticmethod
def group_criteria(list_criteria_per_layer, group_size=1):
'''
Function combine criteria per neuron into groups of size group_size.
Output is a list of groups organized by layers. Length of output is a number of layers.
The criterion for the group is computed as an average of member's criteria.
Input:
list_criteria_per_layer - list of criteria per neuron organized per layer
group_size - number of neurons per group
Output:
groups - groups organized per layer. Each group element is a tuple of 2: (index of neurons, criterion)
'''
groups = list()
for layer in list_criteria_per_layer:
layer_groups = list()
indeces = np.argsort(layer)
for group_id in range(int(np.ceil(len(layer)/group_size))):
current_group = slice(group_id*group_size, min((group_id+1)*group_size, len(layer)))
values = [layer[ind] for ind in indeces[current_group]]
group = [indeces[current_group], sum(values)]
layer_groups.append(group)
groups.append(layer_groups)
return groups
def compute_saliency(self):
'''
Method performs pruning based on precomputed criteria values. Needs to run after add_criteria()
'''
def write_to_debug(what_write_name, what_write_value):
# Aux function to store information in the text file
with open(self.log_debug, 'a') as f:
f.write("{} {}\n".format(what_write_name,what_write_value))
def nothing(what_write_name, what_write_value):
pass
if self.method == 50:
write_to_debug = nothing
# compute loss since the last pruning and decide if to prune:
if self.util_loss_tracker_num > 0:
validation_error = self.util_loss_tracker / self.util_loss_tracker_num
validation_error_long = validation_error
acc = self.util_acc_tracker / self.util_loss_tracker_num
else:
print(
"compute loss and run self.util_add_loss(loss.item()) before running this")
validation_error = 0.0
acc = 0.0
self.util_training_loss = validation_error
self.util_training_acc = acc
# reset training loss tracker
self.util_loss_tracker = 0.0
self.util_acc_tracker = 0.0
self.util_loss_tracker_num = 0
if validation_error > self.pruning_threshold:
## if error is big then skip pruning
print("skipping pruning", validation_error, "(%f)"%validation_error_long, self.pruning_threshold)
if self.method != 4:
self.res_pruning = -1
return -1
if self.maximum_pruning_iterations <= self.pruning_iterations_done:
# if reached max number of pruning iterations -> exit
if self.res_pruning != -1:
print("maximum number of prune iterations reached, skipping pruning")
self.res_pruning = -1
return -1
if self.prune_neurons_max != -1 and self.prune_neurons_max <= (self.all_neuron_units - self.neuron_units):
# if reached max number of neurons to prune -> exit
if self.res_pruning != -1:
print("target number of pruned neurons reached, skipping pruning")
self.res_pruning = -1
if self.method == 60:
# trying for multiple gpu/device support
activation_keys = list(self.method_60_activations.keys())
for key in activation_keys:
del self.method_60_activations[key]
self.method_60_targets = None
torch.cuda.empty_cache()
return -1
if self.prune_latency_ratio != -1 and self.full_model_latency != 0 and self.estimated_model_latency != 0:
# check latency ratio reached
target_latency = self.full_model_latency * self.prune_latency_ratio
if self.estimated_model_latency <= target_latency:
if self.res_pruning != -1:
print("target latency reached, skipping pruning")
self.res_pruning = -1
return -1
self.full_list_of_criteria = list()
for layer, if_prune in enumerate(self.prune_layers):
if not if_prune:
continue
if self.iterations_done > 0:
# momentum turned to be useless and even reduces performance
contribution = self.prune_network_accomulate["by_layer"][layer] / self.iterations_done
if self.pruning_iterations_done == 0 or not self.use_momentum or (self.method in [4, 40, 50]):
self.prune_network_accomulate["averaged"][layer] = contribution
else:
# use momentum to accumulate criteria over several pruning iterations:
self.prune_network_accomulate["averaged"][layer] = self.momentum_coeff*self.prune_network_accomulate["averaged"][layer]+(1.0- self.momentum_coeff)*contribution
current_layer = self.prune_network_accomulate["averaged"][layer]
if not (self.method in [1, 4, 40, 15, 50]):
current_layer = current_layer.cpu().numpy()
if self.l2_normalization_per_layer:
eps = 1e-8
current_layer = current_layer / (np.linalg.norm(current_layer) + eps)
self.prune_network_accomulate["averaged_cpu"][layer] = current_layer
else:
print("First do some add_criteria iterations")
exit()
for unit in range(len(current_layer)):
criterion_now = current_layer[unit]
# make sure that pruned neurons have 0 criteria
self.prune_network_criteria[layer][unit] = criterion_now * self.pruning_gates[layer][unit]
if self.method == 50:
self.prune_network_criteria[layer][unit] = criterion_now
# count number of neurons
all_neuron_units, neuron_units = self._count_number_of_neurons()
self.neuron_units = neuron_units
self.all_neuron_units = all_neuron_units
# store criteria_result into file
if not self.pruning_silent:
import pickle
store_criteria = self.prune_network_accomulate["averaged_cpu"]
pickle.dump(store_criteria, open(self.folder_to_write_debug + "criteria_%04d.pickle"%self.pruning_iterations_done, "wb"))
if self.pruning_iterations_done == 0:
pickle.dump(store_criteria, open(self.log_folder + "criteria_%d.pickle"%self.method, "wb"))
pickle.dump(store_criteria, open(self.log_folder + "criteria_%d_final.pickle"%self.method, "wb"))
if not self.fixed_criteria:
self.iterations_done = 0
# create groups per layer
groups = self.group_criteria(self.prune_network_criteria, group_size=self.group_size)
# apply flops regularization
# if self.flops_regularization > 0.0:
# self.apply_flops_regularization(groups, mu=self.flops_regularization)
# enforce minimum neurons per layer
for layer_idx, layer in enumerate(groups):
# ensure the most important min number of neurons per layer are never pruned
layer_criterias = [(group_criteria, group_idx) for (group_idx, (_, group_criteria)) in enumerate(layer)]
layer_criterias.sort(key=lambda tup: tup[0], reverse=True)
for _, group_idx in layer_criterias[:self.layer_minimum_neurons]:
groups[layer_idx][group_idx][1] = float('inf')
layerwise_num_neurons = self._count_layerwise_number_of_neurons()
self.layerwise_neurons = layerwise_num_neurons
# if lookup table, apply layerwise contribution to overall latency
if hasattr(self, 'lut'):
network_def = get_network_def_from_model(self.model_instance, self.input_shape)
layerwise_latency, net_def_partial = compute_layerwise_latency_from_groups_and_lut(self.model, network_def, self.lut, self.full_rbf, groups, layerwise_num_neurons)
if not self.only_estimate_latency:
# update groups score using latency values
for layer_idx, layer in enumerate(groups):
for group_idx, (group_out_channel, group_criteria) in enumerate(layer):
lat_group_out_channel, group_latency = layerwise_latency[layer_idx][group_idx]
assert lat_group_out_channel == group_out_channel
if group_latency != 0:
groups[layer_idx][group_idx][1] = group_criteria / group_latency
else:
groups[layer_idx][group_idx][1] = group_criteria
# update network def for new latency computation
for k, v in net_def_partial.items():
(new_in_channels, new_out_channels) = v
network_def[k][KEY_NUM_IN_CHANNELS] = new_in_channels
network_def[k][KEY_NUM_OUT_CHANNELS] = new_out_channels
if self.model == "mobilenet":
network_def["fc"][KEY_NUM_IN_CHANNELS] = new_out_channels
self.estimated_model_latency = compute_latency_from_lookup_table(network_def, self.lut, self.full_rbf)
if self.full_model_latency == 0:
self.full_model_latency = self.estimated_model_latency
self.target_latency = self.full_model_latency * self.prune_latency_ratio
print("estimated_latency: %.3e, target latency: %.3e" %(self.estimated_model_latency, self.target_latency))
if hasattr(self, 'bilinear'):
if not self.only_estimate_latency:
raise ValueError("Layer wise latency ranking not supported with bilinear model.")
self.estimated_model_latency = self._compute_latency_from_bilinear_model(layerwise_num_neurons)
if self.full_model_latency == 0:
self.full_model_latency = self.estimated_model_latency
self.target_latency = self.full_model_latency * self.prune_latency_ratio
print("estimated_latency: %.3e, target latency: %.3e" %(self.estimated_model_latency, self.target_latency))
# get an array of all criteria from groups
all_criteria = np.asarray([group[1] for layer in groups for group in layer]).reshape(-1)
prune_neurons_now = (self.pruned_neurons + self.prune_per_iteration)//self.group_size - 1
if self.prune_neurons_max != -1:
prune_neurons_now = min(len(all_criteria)-1, min(prune_neurons_now, self.prune_neurons_max//self.group_size - 1))
# adaptively estimate threshold given a number of neurons to be removed
threshold_now = np.sort(all_criteria)[prune_neurons_now]
if self.method == 50:
# combinatorial approach
threshold_now = 0.5
self.pruning_iterations_done = self.combination_ID
self.data_logger["combination_ID"].append(self.combination_ID-1)
self.combination_ID += 1
self.reset_oracle_pruning()
print("full_combinatorial: combination ", self.combination_ID)
self.pruning_iterations_done += 1
self.log_debug = self.folder_to_write_debug + 'debugOutput_pruning_%08d' % (
self.pruning_iterations_done) + '.txt'
write_to_debug("method", self.method)
write_to_debug("pruned_neurons", self.pruned_neurons)
write_to_debug("pruning_iterations_done", self.pruning_iterations_done)
write_to_debug("neuron_units", neuron_units)
write_to_debug("all_neuron_units", all_neuron_units)
write_to_debug("threshold_now", threshold_now)
write_to_debug("groups_total", sum([len(layer) for layer in groups]))
if self.estimated_model_latency is not None:
write_to_debug("estimated_latency", self.estimated_model_latency)
if self.prune_latency_ratio != -1 and self.full_model_latency != 0 and self.estimated_model_latency != 0:
# check latency ratio reached
target_latency = self.full_model_latency * self.prune_latency_ratio
if self.estimated_model_latency <= target_latency:
if self.res_pruning != -1:
print("target latency reached, skipping pruning")
self.res_pruning = -1
return -1
if self.pruning_iterations_done < self.start_pruning_after_n_iterations:
self.res_pruning = -1
return -1
for layer, if_prune in enumerate(self.prune_layers):
if not if_prune:
continue
write_to_debug("\nLayer:", layer)
write_to_debug("units:", len(self.parameters[layer]))
if self.prune_per_iteration == 0:
continue
for group in groups[layer]:
if group[1] <= threshold_now:
for unit in group[0]:
# do actual pruning
self.pruning_gates[layer][unit] *= 0.0
self.parameters[layer].data[unit] *= 0.0
write_to_debug("pruned_perc:", [np.nonzero(1.0-self.pruning_gates[layer])[0].size, len(self.parameters[layer])])
# count number of neurons
all_neuron_units, neuron_units = self._count_number_of_neurons()
self.neuron_units = neuron_units
self.all_neuron_units = all_neuron_units
self.pruned_neurons = all_neuron_units-neuron_units
if self.method == 25:
self.method_25_first_done = True
self.threshold_now = threshold_now
try:
# criteria values should ignore infinite as that's a predefined constraint
non_inf_criteria = all_criteria[all_criteria < float('inf')]
good_bounds_criteria = non_inf_criteria[non_inf_criteria > 0.0]
self.min_criteria_value = good_bounds_criteria.min()
self.max_criteria_value = good_bounds_criteria.max()
self.median_criteria_value = np.median(good_bounds_criteria)
except:
self.min_criteria_value = 0.0
self.max_criteria_value = 0.0
self.median_criteria_value = 0.0
# set result to successful
self.res_pruning = 1
def _get_layer_utilization_bilinear(self, idx, prev, cur):
#Scales start with number of input channels
scales = self.bilinear['preprocessor.scales'][idx:idx+2]
prev /= scales[0]
cur /= scales[1]
weight = self.bilinear['regressor.0.weight'][idx]
res = weight * prev * cur
return res
def _compute_latency_from_bilinear_model(self, layerwise_num_neurons):
'''
Function computes total latency using self.bilinear for self.model based on layerwise_num_neurons
:return:
Estimated latency
'''
res = 0.0
prev = 3
for idx, (_,cur) in layerwise_num_neurons.items():
res += self._get_layer_utilization_bilinear(idx, prev, cur)
prev = cur
# add classes * last layer params
weight_class = self.bilinear['regressor.0.weight'][-1]
scale_class = self.bilinear['preprocessor.scales'][-2]
res += weight_class * cur/scale_class * 1 #normalized numclass/numclass
res += self.bilinear['regressor.0.bias'].item() #bias
return res
def _count_number_of_neurons(self):
'''
Function computes number of total neurons and number of active neurons
:return:
all_neuron_units - number of neurons considered for pruning
neuron_units - number of not pruned neurons in the model
'''
all_neuron_units = 0
neuron_units = 0
for layer, if_prune in enumerate(self.prune_layers):
if not if_prune:
continue
all_neuron_units += len( self.parameters[layer] )
for unit in range(len( self.parameters[layer] )):
if len(self.parameters[layer].data.size()) > 1:
statistics = self.parameters[layer].data[unit].abs().sum()
else:
statistics = self.parameters[layer].data[unit]
if statistics > 0.0:
neuron_units += 1
return all_neuron_units, neuron_units
def _count_layerwise_number_of_neurons(self):
'''
Function computes number of total neurons and number of active neurons
:return:
all_neuron_units - number of neurons considered for pruning
neuron_units - number of not pruned neurons in the model
'''
layerwise_neurons = OrderedDict()
for layer, if_prune in enumerate(self.prune_layers):
if not if_prune:
continue
all_neuron_units = len( self.parameters[layer] )
neuron_units = 0
for unit in range(len( self.parameters[layer] )):
if len(self.parameters[layer].data.size()) > 1:
statistics = self.parameters[layer].data[unit].abs().sum()
else:
statistics = self.parameters[layer].data[unit]
if statistics > 0.0:
neuron_units += 1
layerwise_neurons[layer] = (all_neuron_units, neuron_units)
return layerwise_neurons
def set_weights_oracle_pruning(self):
'''
sets gates/weights to zero to evaluate pruning
will reuse weights for pruning
only for oracle pruning
'''
for layer,if_prune in enumerate(self.prune_layers_oracle):
if not if_prune:
continue
if self.method == 40:
self.parameters[layer].data = deepcopy(torch.from_numpy(self.stored_weights).cuda())
for unit in range(len(self.parameters[layer])):
if self.method == 40:
self.pruning_gates[layer][unit] = 1.0
if unit == self.oracle_unit:
self.pruning_gates[layer][unit] *= 0.0
self.parameters[layer].data[unit] *= 0.0
# if 'momentum_buffer' in optimizer.state[self.parameters[layer]].keys():
# optimizer.state[self.parameters[layer]]['momentum_buffer'][unit] *= 0.0
return 1
def reset_oracle_pruning(self):
'''
Method restores weights to original after masking for Oracle pruning
:return:
'''
for layer, if_prune in enumerate(self.prune_layers_oracle):