-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
executable file
·897 lines (717 loc) · 38.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
from __future__ import print_function
import argparse
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
import torch.backends.cudnn as cudnn
import pdb
# ++++++for pruning
import os, sys
import time
from utils.utils import save_checkpoint, adjust_learning_rate, adjust_learning_rate_cifar, AverageMeter, accuracy, load_model_pytorch, dynamic_network_change_local, get_conv_sizes, connect_gates_with_parameters_for_flops
from tensorboardX import SummaryWriter
from cifar.vgg_bn import vgg19_bn
from cifar.resnet56 import *
from pruning_engine import pytorch_pruning, PruningConfigReader, prepare_pruning_list
from utils.group_lasso_optimizer import group_lasso_decay
from utils.logger import Logger
import torch.distributed as dist
import torch.utils.data
import torch.utils.data.distributed
import torch.nn.parallel
import warnings
warnings.filterwarnings("ignore", "(Possibly )?corrupt EXIF data", UserWarning)
import numpy as np
import pickle
from pprint import pformat
#++++++++end
# Code is based on Taylor pruning
# https://github.com/NVlabs/Taylor_pruning
def vgg11_surgery_block_1block(model):
for i in [5,6,7,8,9]:
model.features[i] = nn.Identity()
model.features[10] = nn.Conv2d(64, 256, kernel_size=3, padding=1)
model.features[4].kernel_size = 4
model.features[4].stride = 4
return model
def str2bool(v):
# from https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse/43357954#43357954
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def train(args, model, device, train_loader, optimizer, epoch, criterion, train_writer=None, pruning_engine=None):
"""Train for one epoch on the training set also performs pruning"""
global global_iteration
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
loss_tracker = 0.0
acc_tracker = 0.0
loss_tracker_num = 0
res_pruning = 0
model.train()
if args.fixed_network:
# if network is fixed then we put it to eval mode
model.eval()
if args.pruning and args.pruning_method == 60:
if pruning_engine.res_pruning == -1:
pass
else:
# LRP calculations and hooks
def forward_hook(module, inp, out):
pruning_engine.method_60_activations[out[0].device].append((module, inp[0], out[0]))
hook_handles = []
for module in model.modules():
if type(module) == torch.nn.Conv2d or \
type(module) == torch.nn.Linear or \
type(module) == torch.nn.MaxPool2d or \
type(module) == torch.nn.AvgPool2d or \
type(module) == torch.nn.AdaptiveAvgPool2d:
hook_handle = module.register_forward_hook(forward_hook)
hook_handles.append(hook_handle)
end = time.time()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
# make sure that all gradients are zero
for p in model.parameters():
if p.grad is not None:
p.grad.detach_()
p.grad.zero_()
output = model(data).squeeze()
loss = criterion(output, target)
if args.pruning:
# useful for method 40 and 50 that calculate oracle
pruning_engine.run_full_oracle(model, data, target, criterion, initial_loss=loss.item())
if args.pruning and args.pruning_method == 60:
if pruning_engine.res_pruning == -1:
pass
else:
pruning_engine.method_60_targets = target
# measure accuracy and record loss
losses.update(loss.item(), data.size(0))
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
top1.update(prec1.item(), data.size(0))
top5.update(prec5.item(), data.size(0))
acc_tracker += prec1.item()
loss_tracker += loss.item()
loss_tracker_num += 1
if args.pruning:
if pruning_engine.needs_hessian:
pruning_engine.compute_hessian(loss)
if not (args.pruning and args.pruning_method == 50):
group_wd_optimizer.step()
loss.backward()
# add gradient clipping
if not args.no_grad_clip:
# found it useless for our experiments
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
# step_after will calculate flops and number of parameters left
# needs to be launched before the main optimizer,
# otherwise weight decay will make numbers not correct
if not (args.pruning and args.pruning_method == 50):
if batch_idx % args.log_interval == 0:
group_wd_optimizer.step_after()
optimizer.step()
batch_time.update(time.time() - end)
end = time.time()
global_iteration = global_iteration + 1
if batch_idx % args.log_interval == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch, batch_idx, len(train_loader), batch_time=batch_time,
loss=losses, top1=top1, top5=top5))
if train_writer is not None:
train_writer.add_scalar('train_loss_ave', losses.avg, global_iteration)
if args.pruning:
# pruning_engine.update_flops(stats=group_wd_optimizer.per_layer_per_neuron_stats)
pruning_engine.do_step(loss=loss.item(), optimizer=optimizer, epoch=epoch, batch_idx=batch_idx, num_batches=len(train_loader), losses_tracker=losses)
if args.model == "resnet20" or args.model == "resnet101" or args.dataset == "Imagenet":
if (pruning_engine.maximum_pruning_iterations == pruning_engine.pruning_iterations_done) and pruning_engine.set_moment_zero:
for group in optimizer.param_groups:
for p in group['params']:
if p.grad is None:
continue
param_state = optimizer.state[p]
if 'momentum_buffer' in param_state:
del param_state['momentum_buffer']
pruning_engine.set_moment_zero = False
if args.pruning_method == 60 and pruning_engine.res_pruning == -1:
# remove LRP relevant hooks because pruning has stopped
for hook_handle in hook_handles:
hook_handle.remove()
hook_handles = []
pruning_engine.method_60_activations = {}
pruning_engine.method_60_targets = None
# if not (args.pruning and args.pruning_method == 50):
# if batch_idx % args.log_interval == 0:
# group_wd_optimizer.step_after()
if args.tensorboard and (batch_idx % args.log_interval == 0):
neurons_left = int(group_wd_optimizer.get_number_neurons(print_output=args.get_flops))
flops = int(group_wd_optimizer.get_number_flops(print_output=args.get_flops))
train_writer.add_scalar('neurons_optimizer_left', neurons_left, global_iteration)
train_writer.add_scalar('neurons_optimizer_flops_left', flops, global_iteration)
else:
if args.get_flops:
neurons_left = int(group_wd_optimizer.get_number_neurons(print_output=args.get_flops))
flops = int(group_wd_optimizer.get_number_flops(print_output=args.get_flops))
if args.limit_training_batches != -1:
if args.limit_training_batches < batch_idx:
# return from training step, unsafe and was not tested correctly
print("return from training step, unsafe and was not tested correctly")
return 0
if args.pruning and args.pruning_method == 60:
# Remove LRP relevant hooks
for hook_handle in hook_handles:
hook_handle.remove()
hook_handles = []
# print number of parameters left:
if args.tensorboard:
print('neurons_optimizer_left', neurons_left, global_iteration)
def validate(args, test_loader, model, device, criterion, epoch, train_writer=None):
"""Perform validation on the validation set"""
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
with torch.no_grad():
for data_test in test_loader:
data, target = data_test
data = data.to(device)
output = model(data)
if args.get_inference_time:
iterations_get_inference_time = 100
start_get_inference_time = time.time()
for it in range(iterations_get_inference_time):
output = model(data)
end_get_inference_time = time.time()
print("time taken for %d iterations, per-iteration is: "%(iterations_get_inference_time), (end_get_inference_time - start_get_inference_time)*1000.0/float(iterations_get_inference_time), "ms")
target = target.to(device)
loss = criterion(output, target)
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.item(), data.size(0))
top1.update(prec1.item(), data.size(0))
top5.update(prec5.item(), data.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
print(' * Prec@1 {top1.avg:.3f}, Prec@5 {top5.avg:.3f}, Time {batch_time.sum:.5f}, Loss: {losses.avg:.3f}'.format(top1=top1, top5=top5,batch_time=batch_time, losses = losses) )
# log to TensorBoard
if train_writer is not None:
train_writer.add_scalar('val_loss', losses.avg, epoch)
train_writer.add_scalar('val_acc', top1.avg, epoch)
return top1.avg, losses.avg
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--world_size', type=int, default=1,
help='number of GPUs to use')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--wd', type=float, default=1e-4,
help='weight decay (default: 1e-4)')
parser.add_argument('--lr-decay-every', type=int, default=100,
help='learning rate decay by 10 every X epochs')
parser.add_argument('--lr-decay-scalar', type=float, default=0.1,
help='--')
parser.add_argument('--optimizer', choices=('sgd', 'adam'), default='sgd',
help='which optimizer to use (default: sgd)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--run_test', default=False, type=str2bool, nargs='?',
help='run test only')
parser.add_argument('--limit_training_batches', type=int, default=-1,
help='how many batches to do per training, -1 means as many as possible')
parser.add_argument('--no_grad_clip', default=False, type=str2bool, nargs='?',
help='turn off gradient clipping')
parser.add_argument('--get_flops', default=False, type=str2bool, nargs='?',
help='add hooks to compute flops')
parser.add_argument('--get_inference_time', default=False, type=str2bool, nargs='?',
help='runs valid multiple times and reports the result')
parser.add_argument('--mgpu', default=False, type=str2bool, nargs='?',
help='use data paralization via multiple GPUs')
parser.add_argument('--dataset', default="MNIST", type=str,
help='dataset for experiment, choice: MNIST, CIFAR10', choices= ["MNIST", "CIFAR10", "CIFAR100", "Imagenet"])
parser.add_argument('--data', metavar='DIR', default='/imagenet', help='path to imagenet dataset')
parser.add_argument('--ratio', type=float, default=1.0, help='Dataset ratio used in training')
parser.add_argument('--presampled', type=str, default=None, help='Indices to be used for training')
parser.add_argument('--model', default="lenet3", type=str,
help='model selection, choices: lenet3, alexnet, vgg, mobilenetv2, resnet18',
choices=["lenet3", "alexnet", "vgg", "vgg19_bn", "mobilenet", "mobilenetv2", "resnet18", "resnet152", "resnet50", "resnet50_noskip",
"resnet20", "resnet34", "resnet101", "resnet101_noskip", "densenet201_imagenet",
'densenet121_imagenet'])
parser.add_argument('--tensorboard', type=str2bool, nargs='?',
help='Log progress to TensorBoard')
parser.add_argument('--save_models', default=True, type=str2bool, nargs='?',
help='if True, models will be saved to the local folder')
# ============================PRUNING added
parser.add_argument('--pruning_config', default=None, type=str,
help='path to pruning configuration file, will overwrite all pruning parameters in arguments')
parser.add_argument('--group_wd_coeff', type=float, default=0.0,
help='group weight decay')
parser.add_argument('--name', default='test', type=str,
help='experiment name(folder) to store logs')
parser.add_argument('--augment', default=False, type=str2bool, nargs='?',
help='enable or not augmentation of training dataset, only for CIFAR, def False')
parser.add_argument('--load_model', default='', type=str,
help='path to model weights')
parser.add_argument('--pruning', default=False, type=str2bool, nargs='?',
help='enable or not pruning, def False')
parser.add_argument('--pruning-threshold', '--pt', default=100.0, type=float,
help='Max error perc on validation set while pruning (default: 100.0 means always prune)')
parser.add_argument('--pruning-momentum', default=0.0, type=float,
help='Use momentum on criteria between pruning iterations, def 0.0 means no momentum')
parser.add_argument('--pruning-step', default=15, type=int,
help='How often to check loss and do pruning step')
parser.add_argument('--prune_per_iteration', default=10, type=int,
help='How many neurons to remove at each iteration')
parser.add_argument('--fixed_layer', default=-1, type=int,
help='Prune only a given layer with index, use -1 to prune all')
parser.add_argument('--start_pruning_after_n_iterations', default=0, type=int,
help='from which iteration to start pruning')
parser.add_argument('--maximum_pruning_iterations', default=1e8, type=int,
help='maximum pruning iterations')
parser.add_argument('--starting_neuron', default=0, type=int,
help='starting position for oracle pruning')
parser.add_argument('--prune_neurons_max', default=-1, type=int,
help='prune_neurons_max')
parser.add_argument('--pruning-method', default=0, type=int,
help='pruning method to be used, see readme.md')
parser.add_argument('--prune-latency-ratio', default=-1., type=float,
help='pruning latency ratio')
parser.add_argument('--pruning_fixed_criteria', default=False, type=str2bool, nargs='?',
help='enable or not criteria reevaluation, def False')
parser.add_argument('--fixed_network', default=False, type=str2bool, nargs='?',
help='fix network for oracle or criteria computation')
parser.add_argument('--zero_lr_for_epochs', default=-1, type=int,
help='Learning rate will be set to 0 for given number of updates')
parser.add_argument('--dynamic_network', default=False, type=str2bool, nargs='?',
help='Creates a new network graph from pruned model, works with ResNet-101 only')
parser.add_argument('--use_test_as_train', default=False, type=str2bool, nargs='?',
help='use testing dataset instead of training')
parser.add_argument('--pruning_mask_from', default='', type=str,
help='path to mask file precomputed')
parser.add_argument('--compute_flops', default=True, type=str2bool, nargs='?',
help='if True, will run dummy inference of batch 1 before training to get conv sizes')
# add lookup table configuration
raie_p = parser.add_argument_group("Resource Aware Importance Estimation")
raie_p.add_argument('--lookup-table-path', default='', type=str,
help='path to netadapt generated lookup table')
raie_p.add_argument('--full-rbf-path', default='', type=str,
help='path for full rbf interpolation result')
raie_p.add_argument('--only-estimate-latency', default=False, type=str2bool, nargs='?',
help='lut only used for estimating latency, no filter re-ordering')
lrp_p = parser.add_argument_group("Layer-wise Relevance Propagation")
# ============================END pruning added
best_prec1 = 0
global global_iteration
global group_wd_optimizer
global_iteration = 0
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
args.distributed = args.world_size > 1
if args.distributed:
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=0)
device = torch.device("cuda" if use_cuda else "cpu")
if args.model == "lenet3":
model = LeNet(dataset=args.dataset)
elif args.model == "alexnet":
model = alexnet(pretrained=True, dropout=False)
elif args.model == "vgg":
model = vgg11_bn(pretrained=args.load_model, lrp_forward=(
args.pruning and args.pruning_method == 60))
model = vgg11_surgery_block_1block(model)
args.load_model = ''
elif args.model == "vgg19_bn":
if 'CIFAR' not in args.dataset:
NotImplementedError("vgg19_bn is not implemented for ImageNet")
model = vgg19_bn(pretrained=args.load_model, num_classes=10 if args.dataset == 'CIFAR10' else 100)
args.load_model = ''
elif args.model == "mobilenet":
model = mobilenet()
elif args.model == "mobilenetv2":
model = mobilenet_v2(pretrained=True)
elif args.model == "resnet18":
model = PreActResNet18()
elif (args.model == "resnet50") or (args.model == "resnet50_noskip"):
if "CIFAR" in args.dataset:
model = resnet56(dataset=args.dataset, add_gates=True)
else:
from models.resnet import resnet50
skip_gate = True
if "noskip" in args.model:
skip_gate = False
if args.pruning_method not in [22, 40, 61]:
skip_gate = False
model = resnet50(skip_gate=skip_gate)
elif args.model == "resnet34":
if not (args.dataset == "CIFAR10"):
from models.resnet import resnet34
model = resnet34()
elif "resnet101" in args.model:
if not (args.dataset == "CIFAR10"):
from models.resnet import resnet101
if args.dataset == "Imagenet":
classes = 1000
if "noskip" in args.model:
model = resnet101(num_classes=classes, skip_gate=False)
else:
model = resnet101(num_classes=classes)
elif args.model == "resnet20":
if args.dataset == "CIFAR10":
NotImplementedError("resnet20 is not implemented in the current project")
# from models.resnet_cifar import resnet20
# model = resnet20()
elif args.model == "resnet152":
model = PreActResNet152()
elif args.model == "densenet201_imagenet":
from models.densenet_imagenet import DenseNet201
model = DenseNet201(gate_types=['output_bn'], pretrained=True)
elif args.model == "densenet121_imagenet":
from models.densenet_imagenet import DenseNet121
model = DenseNet121(gate_types=['output_bn'], pretrained=True)
else:
print(args.model, "model is not supported")
# dataset loading section
if args.dataset == "MNIST":
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
elif "CIFAR" in args.dataset:
# Data loading code
normalize = transforms.Normalize(mean=[x/255.0 for x in [125.3, 123.0, 113.9]],
std=[x/255.0 for x in [63.0, 62.1, 66.7]])
if args.augment:
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
else:
transform_train = transforms.Compose([
transforms.ToTensor(),
normalize,
])
transform_test = transforms.Compose([
transforms.ToTensor(),
normalize
])
kwargs = {'num_workers': 8, 'pin_memory': True}
if args.dataset == "CIFAR10":
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('../cifar10', train=True, download=True,
transform=transform_train),
batch_size=args.batch_size, shuffle=True, drop_last=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('../cifar10', train=False, transform=transform_test),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
else:
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR100('../cifar100', train=True, download=True,
transform=transform_train),
batch_size=args.batch_size, shuffle=True, drop_last=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR100('../cifar100', train=False, transform=transform_test),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
elif args.dataset == "Imagenet":
traindir = os.path.join(args.data, 'train')
valdir = os.path.join(args.data, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_dataset = datasets.ImageFolder(
traindir,
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
else:
train_sampler = None
kwargs = {'num_workers': 16}
if args.ratio < 1.0 or args.presampled is not None:
import pickle
if args.presampled is None:
total = len(train_dataset)
nsample = round(args.ratio*total)
rand_idx = torch.randperm(total).tolist()
subset_idx = rand_idx[:nsample]
save_path = "%s/ratio_%.1f.pkl"%(args.name,args.ratio)
pickle.dump(subset_idx, open(save_path, 'wb'))
else:
subset_idx = pickle.load(open(args.presampled, 'rb'))
train_sampler = torch.utils.data.sampler.SubsetRandomSampler(subset_idx)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
sampler=train_sampler, pin_memory=True, **kwargs)
if args.use_test_as_train:
train_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(valdir, transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])),
batch_size=args.batch_size, shuffle=(train_sampler is None), **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(valdir, transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])),
batch_size=args.batch_size, shuffle=False, pin_memory=True, **kwargs)
####end dataset preparation
if args.dynamic_network:
# attempts to load pruned model and modify it be removing pruned channels
# works for resnet101 only
if (len(args.load_model) > 0) and (args.dynamic_network):
if os.path.isfile(args.load_model):
load_model_pytorch(model, args.load_model, args.model)
else:
print("=> no checkpoint found at '{}'".format(args.load_model))
exit()
dynamic_network_change_local(model)
# save the model
log_save_folder = "%s"%args.name
if not os.path.exists(log_save_folder):
os.makedirs(log_save_folder)
if not os.path.exists("%s/models" % (log_save_folder)):
os.makedirs("%s/models" % (log_save_folder))
model_save_path = "%s/models/pruned.weights"%(log_save_folder)
model_state_dict = model.state_dict()
if args.save_models:
save_checkpoint({
'state_dict': model_state_dict
}, False, filename = model_save_path)
print("model is defined")
if args.pruning and args.pruning_method == 60:
if args.model == "vgg":
model.classifier = torch.nn.Sequential(*toconv(model.classifier, m_i0=512*7*7, k_i0=1))
# aux function to get size of feature maps
# First it adds hooks for each conv layer
# Then runs inference with 1 image
output_sizes = get_conv_sizes(args, model)
if use_cuda and not args.mgpu:
model = model.to(device)
elif args.distributed:
model.cuda()
print("\n\n WARNING: distributed pruning was not verified and might not work correctly")
model = torch.nn.parallel.DistributedDataParallel(model)
elif args.mgpu:
model = torch.nn.DataParallel(model).cuda()
else:
model = model.to(device)
print("model is set to device: use_cuda {}, args.mgpu {}, agrs.distributed {}".format(use_cuda, args.mgpu, args.distributed))
weight_decay = args.wd
if args.fixed_network:
weight_decay = 0.0
# remove updates from gate layers, because we want them to be 0 or 1 constantly
if 1:
parameters_for_update = []
parameters_for_update_named = []
for name, m in model.named_parameters():
if "gate" not in name:
parameters_for_update.append(m)
parameters_for_update_named.append((name, m))
else:
print("skipping parameter", name, "shape:", m.shape)
total_size_params = sum([np.prod(par.shape) for par in parameters_for_update])
print("Total number of parameters, w/o usage of bn consts: ", total_size_params)
if args.optimizer == 'sgd':
optimizer = optim.SGD(parameters_for_update, lr=args.lr, momentum=args.momentum, weight_decay=weight_decay)
elif args.optimizer == 'adam':
optimizer = optim.Adam(parameters_for_update, lr=args.lr, weight_decay=weight_decay)
if 1:
# helping optimizer to implement group lasso (with very small weight that doesn't affect training)
# will be used to calculate number of remaining flops and parameters in the network
group_wd_optimizer = group_lasso_decay(parameters_for_update, group_lasso_weight=args.group_wd_coeff, named_parameters=parameters_for_update_named, output_sizes=output_sizes)
cudnn.benchmark = False#True
# define objective
criterion = nn.CrossEntropyLoss()
###=======================added for pruning
# logging part
log_save_folder = "%s"%args.name
if not os.path.exists(log_save_folder):
os.makedirs(log_save_folder)
if not os.path.exists("%s/models" % (log_save_folder)):
os.makedirs("%s/models" % (log_save_folder))
train_writer = None
if args.tensorboard:
try:
# tensorboardX v1.6
train_writer = SummaryWriter(log_dir="%s"%(log_save_folder))
except:
# tensorboardX v1.7
train_writer = SummaryWriter(logdir="%s"%(log_save_folder))
time_point = time.strftime("%Y_%m_%d_%H_%M_%S", time.localtime())
textfile = "%s/log_%s.txt" % (log_save_folder, time_point)
stdout = Logger(textfile)
sys.stdout = stdout
print(" ".join(sys.argv))
# initializing parameters for pruning
# we can add weights of different layers or we can add gates (multiplies output with 1, useful only for gradient computation)
pruning_engine = None
if args.pruning:
pruning_settings = dict()
if not (args.pruning_config is None):
pruning_settings_reader = PruningConfigReader()
pruning_settings_reader.read_config(args.pruning_config)
pruning_settings = pruning_settings_reader.get_parameters()
if not pruning_settings['do_iterative_pruning']:
pruning_settings['frequency'] = len(train_loader) - 1
print('Computing criteria after ', pruning_settings['frequency'] , ' for one shot pruning')
# overwrite parameters from config file with those from command line
# needs manual entry here
# user_specified = [key for key in vars(default_args).keys() if not (vars(default_args)[key]==vars(args)[key])]
# argv_of_interest = ['pruning_threshold', 'pruning-momentum', 'pruning_step', 'prune_per_iteration',
# 'fixed_layer', 'start_pruning_after_n_iterations', 'maximum_pruning_iterations',
# 'starting_neuron', 'prune_neurons_max', 'pruning_method']
has_attribute = lambda x: any([x in a for a in sys.argv])
if has_attribute('pruning-momentum'):
pruning_settings['pruning_momentum'] = vars(args)['pruning_momentum']
if has_attribute('pruning-method'):
pruning_settings['method'] = vars(args)['pruning_method']
if has_attribute('prune-latency-ratio'):
pruning_settings['prune_latency_ratio'] = vars(args)['prune_latency_ratio']
pruning_parameters_list = prepare_pruning_list(pruning_settings, model, model_name=args.model,
pruning_mask_from=args.pruning_mask_from, name=args.name)
print("Total pruning layers:", len(pruning_parameters_list))
print("Pruning Settings:", pformat(pruning_settings))
folder_to_write = "%s"%log_save_folder+"/"
log_folder = folder_to_write
pruning_engine = pytorch_pruning(pruning_parameters_list, pruning_settings=pruning_settings, log_folder=log_folder)
pruning_engine.connect_tensorboard(train_writer)
pruning_engine.dataset = args.dataset
pruning_engine.model = args.model
pruning_engine.pruning_mask_from = args.pruning_mask_from
pruning_engine.load_mask()
gates_to_params = connect_gates_with_parameters_for_flops(args.model, parameters_for_update_named)
pruning_engine.gates_to_params = gates_to_params
pruning_engine.model_instance = model
if args.lookup_table_path:
import pickle
try:
#ECC
bilinear_model = torch.load(args.lookup_table_path)
print('Processing file %s as bilinear model'%args.lookup_table_path,)
bilinear = {key: value.cpu().detach().numpy().squeeze() for key, value in bilinear_model.items()}
pruning_engine.bilinear = bilinear
pruning_engine.resource_type = 'bilinear'
except:
#LUT model
# load the lookup table and store the deserialized table into the pruning engine
print('Processing file %s as LUT model'%args.lookup_table_path,)
lut = pickle.load(open(args.lookup_table_path, 'rb'))
pruning_engine.resource_type = 'LUT'
if not args.full_rbf_path:
raise RuntimeError("full-rbf-path must be specified when lookup table is provided")
elif os.path.isfile(args.full_rbf_path):
with open(args.full_rbf_path, "rb") as f:
full_rbf = pickle.load(f)
else:
full_rbf = compute_full_interpolation_from_lookup_table(lut)
with open(args.full_rbf_path, "wb") as f:
pickle.dump(full_rbf, f)
pruning_engine.full_rbf = full_rbf
pruning_engine.model_instance = model
pruning_engine.lut = lut
pruning_engine.only_estimate_latency = args.only_estimate_latency
if args.dataset == "MNIST":
dummy_input_shape = (1, 28, 28)
elif "CIFAR" in args.dataset:
dummy_input_shape = (3, 32, 32)
elif args.dataset == "Imagenet":
dummy_input_shape = (3, 224, 224)
pruning_engine.input_shape = dummy_input_shape
###=======================end for pruning
# loading model file
if (len(args.load_model) > 0) and (not args.dynamic_network):
if os.path.isfile(args.load_model):
load_model_pytorch(model, args.load_model, args.model)
else:
print("=> no checkpoint found at '{}'".format(args.load_model))
exit()
if args.tensorboard and 0:
if "CIFAR" in args.dataset:
dummy_input = torch.rand(1, 3, 32, 32).to(device)
elif args.dataset == "Imagenet":
dummy_input = torch.rand(1, 3, 224, 224).to(device)
train_writer.add_graph(model, dummy_input)
adjust_lr = adjust_learning_rate #adjust_learning_rate_cifar if 'CIFAR' in args.dataset else adjust_learning_rate
#prec1, _ = validate(args, test_loader, model, device, criterion, -1, train_writer=train_writer)
#print(model)
for epoch in range(1, args.epochs + 1):
if args.distributed:
train_sampler.set_epoch(epoch)
adjust_lr(args, optimizer, epoch, args.zero_lr_for_epochs, train_writer)
if not args.run_test and not args.get_inference_time:
train(args, model, device, train_loader, optimizer, epoch, criterion, train_writer=train_writer, pruning_engine=pruning_engine)
torch.cuda.empty_cache()
if args.pruning:
# skip validation error calculation and model saving
if pruning_engine.method == 50: continue
# evaluate on validation set
prec1, _ = validate(args, test_loader, model, device, criterion, epoch, train_writer=train_writer)
torch.cuda.empty_cache()
# remember best prec@1 and save checkpoint
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
model_save_path = "%s/models/checkpoint.weights"%(log_save_folder)
model_state_dict = model.state_dict()
if args.save_models:
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model_state_dict,
'best_prec1': best_prec1,
}, is_best, filename=model_save_path)
model_signature = pruning_engine._count_layerwise_number_of_neurons()
if pruning_settings['do_iterative_pruning']:
sig = []
for _,(_,p) in model_signature.items():
sig+=[p]
print(sig)
if args.prune_latency_ratio != -1 and pruning_engine.res_pruning == -1: # only break if latency driven pruning
model_signature = pruning_engine._count_layerwise_number_of_neurons()
print("Target achieved ... break at epoch ", epoch)
print(model_signature)
break
if __name__ == '__main__':
main()