-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain_val_segmentor.py
178 lines (153 loc) · 7.16 KB
/
train_val_segmentor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import glob
import os
import warnings
import torch
os.environ["MKL_NUM_THREADS"] = "1"
os.environ["NUMEXPR_NUM_THREADS"] = "1"
os.environ["OMP_NUM_THREADS"] = "1"
import cv2
cv2.ocl.setUseOpenCL(False)
cv2.setNumThreads(0)
from torch.cuda import empty_cache
torch.utils.data._utils.MP_STATUS_CHECK_INTERVAL = 120
import torch.distributed as dist
from tqdm import tqdm
from inference.postprocessing import process_confidence
from inference.run_inference import predict_scene_and_return_mm
from metrics import xview_metric
from metrics.xview_metric import create_metric_arg_parser
from training.config import load_config
from training.val_dataset import XviewValDataset
warnings.filterwarnings("ignore")
import argparse
import os
from typing import Dict
import pandas as pd
from training.trainer import TrainConfiguration, PytorchTrainer, Evaluator
from torch.utils.data import DataLoader
import torch.distributed
class XviewEvaluator(Evaluator):
def __init__(self, args) -> None:
super().__init__()
self.args = args
def init_metrics(self) -> Dict:
return {"xview": 0}
def validate(self, dataloader: DataLoader, model: torch.nn.Module, distributed: bool = False, local_rank: int = 0,
snapshot_name: str = "") -> Dict:
conf_name = os.path.splitext(os.path.basename(self.args.config))[0]
val_dir = os.path.join(self.args.val_dir, conf_name, str(self.args.fold))
os.makedirs(val_dir, exist_ok=True)
dataset_dir = os.path.join(self.args.data_dir, "validation")
for sample in tqdm(dataloader):
scene_id = sample["name"][0]
mask_dict = predict_scene_and_return_mm([model], scene_id=scene_id, dataset_dir=dataset_dir,
use_fp16=self.args.fp16, rotate=True)
data = process_confidence(scene_id, None, mask_dict)
pd.DataFrame(data,
columns=["detect_scene_row", "detect_scene_column", "scene_id", "is_vessel", "is_fishing",
"vessel_length_m", "confidence", "mean_obj", "mean_vessel", "mean_fishing",
"mean_length", "mean_center"]).to_csv(os.path.join(val_dir, f"{scene_id}.csv"))
if distributed:
dist.barrier()
xview = 0
if self.args.local_rank == 0:
csv_paths = glob.glob(os.path.join(val_dir, "*.csv"))
pred_csv = f"pred_{conf_name}_{self.args.fold}.csv"
pd.concat([pd.read_csv(csv_path).reset_index() for csv_path in csv_paths]).to_csv(pred_csv, index=False)
parser = create_metric_arg_parser()
metric_args = parser.parse_args('')
df = pd.read_csv(pred_csv)
df = df.reset_index()
df[["detect_scene_row", "detect_scene_column", "scene_id", "is_vessel", "is_fishing",
"vessel_length_m"]].to_csv(pred_csv, index=False)
metric_args.inference_file = pred_csv
metric_args.label_file = os.path.join(self.args.data_dir, "validation.csv")
metric_args.shore_root = self.args.shoreline_dir
metric_args.shore_tolerance = 2
metric_args.costly_dist = True
metric_args.drop_low_detect = True
metric_args.distance_tolerance = 200
metric_args.output = "out.json"
output = xview_metric.evaluate_xview_metric(metric_args)
xview = output["aggregate"]
if distributed:
dist.barrier()
empty_cache()
return {"xview": xview}
def get_improved_metrics(self, prev_metrics: Dict, current_metrics: Dict) -> Dict:
improved = {}
if current_metrics["xview"] > prev_metrics["xview"]:
print("XView improved from {:.4f} to {:.4f}".format(prev_metrics["xview"], current_metrics["xview"]))
improved["xview"] = current_metrics["xview"]
else:
print("XView {:.4f} current {:.4f}".format(prev_metrics["xview"], current_metrics["xview"]))
return improved
def parse_args():
parser = argparse.ArgumentParser("Pipeline")
arg = parser.add_argument
arg('--config', metavar='CONFIG_FILE', help='path to configuration file', default="configs/vgg13.json")
arg('--workers', type=int, default=16, help='number of cpu threads to use')
arg('--gpu', type=str, default='0', help='List of GPUs for parallel training, e.g. 0,1,2,3')
arg('--output-dir', type=str, default='weights/')
arg('--resume', type=str, default='')
arg('--fold', type=int, default=0)
arg('--prefix', type=str, default='val_')
arg('--data-dir', type=str, default="/mnt/viper/xview3/")
arg('--shoreline-dir', type=str, default="/mnt/viper/xview3/shore/validation")
arg('--val-dir', type=str, default="/mnt/viper/xview3/oof")
arg('--folds-csv', type=str, default='folds4val.csv')
arg('--logdir', type=str, default='logs')
arg('--zero-score', action='store_true', default=False)
arg('--from-zero', action='store_true', default=False)
arg('--fp16', action='store_true', default=False)
arg('--distributed', action='store_true', default=False)
arg("--local_rank", default=0, type=int)
arg("--world-size", default=1, type=int)
arg("--test_every", type=int, default=1)
arg('--freeze-epochs', type=int, default=0)
arg('--multiplier', type=int, default=1)
arg("--val", action='store_true', default=False)
arg("--freeze-bn", action='store_true', default=False)
args = parser.parse_args()
return args
def create_data_datasets(args):
conf = load_config(args.config)
train_annotations = os.path.join(args.data_dir, "validation.csv")
train_dataset = XviewValDataset(mode="train", dataset_dir=args.data_dir, fold=args.fold, folds_csv=args.folds_csv,
annotation_csv=train_annotations,
crop_size=conf["crop_size"],
multiplier=conf["multiplier"],
)
val_dataset = XviewValDataset(mode="val", dataset_dir=args.data_dir, fold=args.fold, folds_csv=args.folds_csv,
annotation_csv=train_annotations, crop_size=conf["crop_size"])
return train_dataset, val_dataset
def main():
args = parse_args()
trainer_config = TrainConfiguration(
config_path=args.config,
gpu=args.gpu,
resume_checkpoint=args.resume,
prefix=args.prefix,
world_size=args.world_size,
test_every=args.test_every,
local_rank=args.local_rank,
distributed=args.distributed,
freeze_epochs=args.freeze_epochs,
log_dir=args.logdir,
output_dir=args.output_dir,
workers=args.workers,
from_zero=args.from_zero,
zero_score=args.zero_score,
fp16=args.fp16,
freeze_bn=args.freeze_bn
)
data_train, data_val = create_data_datasets(args)
seg_evaluator = XviewEvaluator(args)
trainer = PytorchTrainer(train_config=trainer_config, evaluator=seg_evaluator, fold=args.fold,
train_data=data_train, val_data=data_val)
if args.val:
trainer.validate()
return
trainer.fit()
if __name__ == '__main__':
main()