-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_1step.py
260 lines (181 loc) · 5.52 KB
/
train_1step.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import math
import sys
import time
import numpy as np
import lorenz96
import net
if torch.cuda.is_available():
device = torch.device("cuda:0")
else:
device = None
#torch.autograd.set_detect_anomaly(True)
np.random.seed(0)
torch.manual_seed(0)
k = 40
f = 8.0
dt = 0.01
nt = 100
int_obs = 5
nobs = int(nt/int_obs) + 1
sigma = 1e-1
nitr = 2
max_epoch = 50000
args = sys.argv
argn = len(args)
ndata_t = int(args[1]) if argn>1 else 100
batch_size_t = int(args[2]) if argn>2 else 100
nspin = int(args[3]) if argn>3 else 100
if batch_size_t > ndata_t * (nobs-1):
batch_size_t = ndata_t * (nobs-1)
ndata_e = 100
batch_size_e = ndata_e * (nobs-1)
batch_num_t = (nobs-1) * ndata_t // batch_size_t
batch_num_e = (nobs-1) * ndata_e // batch_size_e
print(f"# of ensembles is {ndata_t}")
print(f"# of batch_size is {batch_size_t}")
model = lorenz96.Lorenz96(k, f, dt)
x0 = model.init(f, 0.01)
class DataSet:
def __init__(self, len: int, nobs: int, k: int):
self.len = len
self.nobs = nobs
self.k = k
self.data = np.zeros([len,nobs,k], dtype="float32")
def __len__(self):
return self.len * (self.nobs-1)
def __getitem__(self, index):
i = int(index/(self.nobs-1))
n = index % (self.nobs-1)
return self.data[i,n,:], self.data[i,n+1,:]
def push(self, i, n, data):
self.data[i,n,:] = data
#training data
print("prepare training data")
data_t = DataSet(ndata_t, nobs, k)
for m in range(ndata_t):
x = x0 + np.random.randn(k) * sigma
# spinup
for n in range(nspin):
x = model.forward(x)
data_t.push(m,0,x)
for n in range(nt):
x = model.forward(x)
if (n+1)%int_obs == 0:
data_t.push(m,int((n+1)/int_obs),x)
# evaluation data
print("prepare evaluation data")
data_e = DataSet(ndata_e, nobs, k)
for m in range(ndata_e):
x = x0 + np.random.randn(k) * sigma
# spinup
for n in range(nspin):
x = model.forward(x)
data_e.push(m,0,x)
for n in range(nt):
x = model.forward(x)
if (n+1)%int_obs == 0:
data_e.push(m,int((n+1)/int_obs),x)
loader_t = torch.utils.data.DataLoader(data_t, batch_size=batch_size_t, shuffle=True)
loader_e = torch.utils.data.DataLoader(data_e, batch_size=batch_size_e)
net = net.Net(k, nitr, device=device)
if device:
net = net.to(device)
criterion = nn.MSELoss()
lr = 0.01 * batch_size_t / 1000
optimizer = optim.Adam(net.parameters(), lr=lr)
#optimizer = optim.Adam(net.parameters(), lr=0.01)
#optimizer = optim.Adam(net.parameters(), lr=0.001)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=1000, gamma=0.9)
nint = 10
print("start training")
start = time.time()
loss_t = np.zeros(int(max_epoch/nint+1))
loss_e = np.zeros(int(max_epoch/nint+1))
min = [999.9, 0, 0]
min_tmp = 999.9
unchange = 0
for epoch in range(max_epoch):
net.train()
running_loss_t = 0.0
for data in loader_t:
optimizer.zero_grad()
if device:
data = [data[0].to(device), data[1].to(device)]
out = net(data[0])
loss = criterion(out, data[1])
loss.backward()
# nn.utils.clip_grad_norm_(net.parameters(), max_norm)
optimizer.step()
running_loss_t += loss.item()
scheduler.step()
if (epoch+1)%nint == 0 or epoch==0:
net.eval()
net.drop = False
with torch.no_grad():
running_loss_e = 0.0
for data in loader_e:
if device:
data = [data[0].to(device), data[1].to(device)]
out = net(data[0])
loss = criterion(out, data[1])
running_loss_e += loss.item()
l_t = running_loss_t / batch_num_t
l_e = running_loss_e / batch_num_e
loss_t[int((epoch+1)/nint)] = l_t
loss_e[int((epoch+1)/nint)] = l_e
if l_e < min[0]:
min = [l_e, l_t, epoch+1]
state = {
'net': net.state_dict(),
'opt': optimizer.state_dict(),
'sch': scheduler.state_dict(),
}
unchange = 0
if l_e < min_tmp:
min_tmp = l_e
if (epoch+1)%(math.ceil(max_epoch/50)) == 0 or epoch==0:
print('[%d] lr: %.2e, training: %.6f, eval: %.6f (%.6f, %.6f)' % (epoch + 1, scheduler.get_last_lr()[0], l_t, l_e, min_tmp, min[0]))
if min_tmp > min[0]:
unchange += 1
# if min_tmp > min[0] * 1.5 or unchange >= 5:
if unchange >= 10:
break
min_tmp = 999.9
#print(min)
print("minimam loss: %.6f, %.6f, %d"%(min[0], min[1], min[2]))
print(f"elapsed time: %d sec"%(time.time() - start))
fname = f"train_1step_ens{ndata_t}_bsize{batch_size_t}"
if nspin != 100:
fname = fname + f"_nspin{nspin}"
path = fname+".pth"
torch.save(state, path)
np.savez(fname, loss_t, loss_e)
print("finish saving")
exit()
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
fig = plt.figure()
xx = np.linspace(0,max_epoch,int(max_epoch/nint+1))
xx[0] = 1
mask = loss_t>0
xx = xx[mask]
loss_t = loss_t[mask]
loss_e = loss_e[mask]
plt.plot(xx, loss_t, color="blue", label="train")
plt.plot(xx, loss_e, color="red", label="test")
plt.yscale("log")
plt.title("Learning curve")
plt.xlim([0,max_epoch+1])
plt.ylim([0.0001,1.0])
plt.xlabel("epoch")
plt.ylabel("loss")
plt.legend(loc="upper right")
#plt.show()
path = fname+".png"
fig.savefig(path)