Skip to content

Latest commit

 

History

History
32 lines (25 loc) · 794 Bytes

README.md

File metadata and controls

32 lines (25 loc) · 794 Bytes

FourDVar-Lorenz96

This is scripts for 4D-Var using a neural network surrogate model obtained by machine learning for Lorenz 96 model.

Contents

  • Misc

    • README.md: this file
    • LICENSE: license file
  • For Experiments

    • lorenz96.py: Lorenz 96 model
    • net.py: neural network model
    • train_1step.py: for one-step learing
    • train_10step.py: for ten-step learing
    • 4dvar.py: for 4D-Var experiment without observation error
    • 4dvar_err.py: for 4D-Var experiment with observation error
    • 4dvar_phy.py: for 4D-Var experiment with manually constructed adjoint model
  • For Analysis and Visualization

    • run_err.py
    • learning_curve_1step.py
    • graph_loss.py
    • graph_4dvar.py
    • accuracy_4dvar.py
    • lorenz96.rb
    • learning.rb
    • cost.rb
    • 4dvar.rb
    • 4dvar_rmse.rb