-
Notifications
You must be signed in to change notification settings - Fork 103
/
Copy pathdc_interact.py
87 lines (70 loc) · 2.85 KB
/
dc_interact.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# Import numpy, python's n-dimensional array package,
# the mesh class with differential operators from SimPEG
# matplotlib, the basic python plotting package
import numpy as np
from SimPEG import Mesh, Utils, Solver
import matplotlib.pyplot as plt
plt.set_cmap(plt.get_cmap('viridis')) # use a nice colormap!
def dc_resistivity(
log_sigma_background=1., # Conductivity of the background, S/m
log_sigma_block=2, # Conductivity of the block, S/m
plot_type='potential' # "conductivity", "potential", or "current"
):
from pylab import rcParams
rcParams['figure.figsize'] = 10, 10
# Define a unit-cell mesh
mesh = Mesh.TensorMesh([100, 100]) # setup a mesh on which to solve
# model parameters
sigma_background = 10**log_sigma_background
sigma_block = 10**log_sigma_block
# add a block to our model
x_block = np.r_[0.4, 0.6]
y_block = np.r_[0.4, 0.6]
# assign them on the mesh
# create a physical property model
sigma = sigma_background * np.ones(mesh.nC)
block_indices = ((mesh.gridCC[:, 0] >= x_block[0]) & # left boundary
(mesh.gridCC[:, 0] <= x_block[1]) & # right boundary
(mesh.gridCC[:, 1] >= y_block[0]) & # bottom boundary
(mesh.gridCC[:, 1] <= y_block[1])) # top boundary
# add the block to the physical property model
sigma[block_indices] = sigma_block
# Define a source
a_loc, b_loc = np.r_[0.2, 0.5], np.r_[0.8, 0.5]
source_locs = [a_loc, b_loc]
# locate it on the mesh
source_loc_inds = Utils.closestPoints(mesh, source_locs)
a_loc_mesh = mesh.gridCC[source_loc_inds[0], :]
b_loc_mesh = mesh.gridCC[source_loc_inds[1], :]
if plot_type == 'conductivity':
plt.colorbar(mesh.plotImage(sigma)[0])
plt.plot(a_loc_mesh[0], a_loc_mesh[1], 'wv', markersize=8)
plt.plot(b_loc_mesh[0], b_loc_mesh[1], 'w^', markersize=8)
plt.title('electrical conductivity, $\sigma$')
return
# Assemble and solve the DC resistivity problem
Div = mesh.faceDiv
Sigma = mesh.getFaceInnerProduct(sigma, invProp=True, invMat=True)
Vol = Utils.sdiag(mesh.vol)
# assemble the system matrix
A = Vol * Div * Sigma * Div.T * Vol
# right hand side
q = np.zeros(mesh.nC)
q[source_loc_inds] = np.r_[+1, -1]
# solve the DC resistivity problem
Ainv = Solver(A) # create a matrix that behaves like A inverse
phi = Ainv * q
if plot_type == 'potential':
plt.colorbar(mesh.plotImage(phi)[0])
plt.title('Electric Potential, $\phi$')
return
if plot_type == 'current':
j = Sigma * mesh.faceDiv.T * Utils.sdiag(mesh.vol) * phi
plt.colorbar(mesh.plotImage(
j,
vType='F',
view='vec',
streamOpts={'color': 'w'}
)[0])
plt.title('Current, $j$')
return