-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathpreprocess_ppg.py
43 lines (33 loc) · 1.37 KB
/
preprocess_ppg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import os
import argparse
import torch
import librosa
from glob import glob
from tqdm import tqdm
import utils
from transformers import Wav2Vec2ForCTC
def process(filename):
basename = os.path.basename(filename)
speaker = basename[:4]
save_dir = os.path.join(args.out_dir, speaker)
os.makedirs(save_dir, exist_ok=True)
wav, _ = librosa.load(filename, sr=args.sr)
wav = torch.from_numpy(wav).unsqueeze(0).cuda()
with torch.no_grad():
c = cmodel(wav).logits.transpose(1, 2) # size: (1,392,len)
#print(c.size())
save_name = os.path.join(save_dir, basename.replace(".flac", ".pt"))
torch.save(c.cpu(), save_name)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--sr", type=int, default=16000, help="sampling rate")
parser.add_argument("--in_dir", type=str, default="C:\\GenshinSpeech\\wavs", help="path to input dir")
parser.add_argument("--out_dir", type=str, default="C:\\GenshinSpeech\\w2v2-ppgs", help="path to output dir")
args = parser.parse_args()
os.makedirs(args.out_dir, exist_ok=True)
print("Loading W2V2 for content...")
cmodel = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-xlsr-53-espeak-cv-ft").cuda()
cmodel.eval()
filenames = glob(f'{args.in_dir}/*/*.flac', recursive=True)
for filename in tqdm(filenames):
process(filename)