-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlda_for_fragments.py
919 lines (764 loc) · 36.4 KB
/
lda_for_fragments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
import cPickle
import gzip
import os
import re
import sys
import time
import timeit
import math
import numpy as np
from numpy import int32
import pandas as pd
import pylab as plt
import yaml
from scipy.sparse import coo_matrix
import scipy.cluster.hierarchy as hierarchy
from collections import Counter
from lda_cgs import CollapseGibbsLda
from lda_vb import VariationalLDA
from visualisation.pylab.lda_for_fragments_viz import Ms2Lda_Viz
import visualisation.pyLDAvis as pyLDAvis
import visualisation.sirius.sirius_wrapper as sir
import lda_utils as utils
from efcompute.ef_assigner import ef_assigner
from visualisation.networkx import lda_visualisation
class Ms2Lda(object):
def __init__(self, df, vocab, ms1, ms2, input_filenames=[], EPSILON=0.05):
self.df = df
self.vocab = vocab
self.ms1 = ms1
self.ms2 = ms2
self.EPSILON = EPSILON
self.input_filenames = input_filenames
@classmethod
def lcms_data_from_R(cls, fragment_filename, neutral_loss_filename, mzdiff_filename,
ms1_filename, ms2_filename, vocab_type=1):
print "Loading input files"
input_filenames = []
fragment_data = None
neutral_loss_data = None
mzdiff_data = None
# load all the input files
if fragment_filename is not None:
fragment_data = pd.read_csv(fragment_filename, index_col=0)
input_filenames.append(fragment_filename)
if neutral_loss_filename is not None:
neutral_loss_data = pd.read_csv(neutral_loss_filename, index_col=0)
input_filenames.append(neutral_loss_filename)
if mzdiff_filename is not None:
mzdiff_data = pd.read_csv(mzdiff_filename, index_col=0)
input_filenames.append(mzdiff_filename)
ms1 = pd.read_csv(ms1_filename, index_col=0)
ms2 = pd.read_csv(ms2_filename, index_col=0)
input_filenames.append(ms1_filename)
input_filenames.append(ms2_filename)
ms2['fragment_bin_id'] = ms2['fragment_bin_id'].astype(str)
ms2['loss_bin_id'] = ms2['loss_bin_id'].astype(str)
data = pd.DataFrame()
# discretise the fragment and neutral loss intensities values by converting it to 0 .. 100
if fragment_data is not None:
fragment_data *= 100
data = data.append(fragment_data)
if neutral_loss_data is not None:
neutral_loss_data *= 100
data = data.append(neutral_loss_data)
# make mzdiff values to be within 0 .. 100 as well
if mzdiff_data is not None:
max_mzdiff_count = mzdiff_data.max().max()
mzdiff_data /= max_mzdiff_count
mzdiff_data *= 100
data = data.append(mzdiff_data)
# get rid of NaNs, transpose the data and floor it
data = data.replace(np.nan,0)
data = data.transpose()
sd = coo_matrix(data)
sd = sd.floor()
npdata = np.array(sd.todense(), dtype='int32')
print "Data shape " + str(npdata.shape)
df = pd.DataFrame(npdata)
df.columns = data.columns
df.index = data.index
# decide how to generate vocab
if vocab_type == 1:
# vocab is just a string of the column names
vocab = data.columns.values
elif vocab_type == 2:
# vocab is a tuple of (column name, word_type)
all_words = data.columns.values
vocab = []
for word in all_words:
if word.startswith('fragment'):
word_type = 0
elif word.startswith('loss'):
word_type = 1
elif word.startswith('mzdiff'):
word_type = 2
else:
raise ValueError("Unknown word type")
tup = (word, word_type)
vocab.append(tup)
vocab = np.array(vocab)
else:
raise ValueError("Unknown vocab type")
# return the instantiated object
this_instance = cls(df, vocab, ms1, ms2, input_filenames)
return this_instance
@classmethod
def resume_from(cls, project_in, verbose=True):
start = timeit.default_timer()
with gzip.GzipFile(project_in, 'rb') as f:
obj = cPickle.load(f)
stop = timeit.default_timer()
if verbose:
print "Project loaded from " + project_in + " time taken = " + str(stop-start)
print " - input_filenames = "
for fname in obj.input_filenames:
print "\t" + fname
print " - df.shape = " + str(obj.df.shape)
if hasattr(obj, 'model'):
print " - K = " + str(obj.model.K)
# print " - alpha = " + str(obj.model.alpha[0])
# print " - beta = " + str(obj.model.beta[0])
# print " - number of samples stored = " + str(len(obj.model.samples))
else:
print " - No LDA model found"
print " - last_saved_timestamp = " + str(obj.last_saved_timestamp)
if hasattr(obj, 'message'):
print " - message = " + str(obj.message)
return obj
@classmethod
def gcms_data_from_mzmatch(cls, input_filename, intensity_colname, tol):
# load the data, using the column indicated by intensity_colname as the intensity values
df = pd.DataFrame.from_csv(input_filename, sep='\t');
mass = df.index.tolist()
rt = df['RT'].tolist() # assume the input file always has this column
intensity = df[intensity_colname].tolist()
rid = df['relation.id'].tolist() # assume the input file always has this column
# Group fragments if they are within tol ppm of each other
unique_masses = []
mass_id = []
for m in mass:
# check for previous
previous_pos = [i for i,a in enumerate(unique_masses) if (abs(m-a)/m)*1e6 < tol]
if len(previous_pos) == 0:
# it's a new one
unique_masses.append(m)
mass_id.append(len(unique_masses)-1)
else:
# it's an old one
mass_id.append(previous_pos[0])
# create some dummy MS1 peaklist
ms1_peakids = list(set(rid))
ms1_peakdata = []
for pid in ms1_peakids:
ms1_peakdata.append({'peakID': pid, 'MSnParentPeakID': 0, 'msLevel': 1, \
'rt': 0.0, 'mz': 300.0, 'intensity': 3.0E5})
ms1 = pd.DataFrame(ms1_peakdata, index=ms1_peakids)
# create the MS2 peaklist
n_peaks = len(mass)
pid = max(ms1_peakids)+1
ms2_peakids = []
ms2_peakdata = []
for n in range(n_peaks):
ms2_peakdata.append({'peakID': pid, 'MSnParentPeakID': rid[n], 'msLevel': 2, \
'rt': rt[n], 'mz': mass[n], 'intensity': intensity[n], \
'fragment_bin_id': str(unique_masses[mass_id[n]]), \
'loss_bin_id': np.nan})
ms2_peakids.append(pid)
pid += 1
ms2 = pd.DataFrame(ms2_peakdata, index=ms2_peakids)
# Create the data matrix and then trim to get rid of rare fragments, and dodgy data items
dmat = np.zeros((len(unique_masses),max(rid)+1),np.float)
for i,m in enumerate(mass):
dmat[mass_id[i],rid[i]] = intensity[i]
min_met = 2
r,c = dmat.shape
remove = []
col_names = np.array(range(max(rid)+1))
row_names = np.array(unique_masses)
for i in range(r):
s = np.where(dmat[i,:]>0)[0]
if len(s)<min_met:
remove.append(i)
remove = np.array(remove)
row_names = np.delete(row_names,remove)
dmat = np.delete(dmat,remove,axis=0)
min_frag = 3
r,c = dmat.shape
remove = []
for i in range(c):
s = np.where(dmat[:,i]>0)[0]
if len(s)<min_frag:
remove.append(i)
remove = np.array(remove)
col_names = np.delete(col_names,remove)
dmat = np.delete(dmat,remove,axis=1)
# Remove fragments that appear nowhere
remove = []
for i in range(r):
s = np.where(dmat[i,:]>0)[0]
if len(s) == 0:
remove.append(i)
dmat = np.delete(dmat,remove,axis=0)
row_names = np.delete(row_names,remove)
print dmat.shape,row_names.shape,col_names.shape
# Turn into integer array with biggest peak in each spectra at 100
dmat_int = np.zeros(dmat.shape,np.int)
r,c = dmat.shape
for i in range(c):
ma = dmat[:,i].max()
dmat_int[:,i] = 100*dmat[:,i]/ma
# Make into Pandas structure
row_names = ['fragment_' + str(x) for x in row_names]
col_names = ['300_0_' + str(x) for x in col_names]
df = pd.DataFrame(dmat_int,index=row_names,columns = col_names)
df = df.transpose()
vocab = df.columns
# return the instantiated object
input_filenames = [input_filename]
this_instance = cls(df, vocab, ms1, ms2, input_filenames)
return this_instance
def run_lda_gibbs(self, n_topics, n_samples, n_burn, n_thin, alpha, beta,
use_native=True, random_state=None,
previous_model=None, sparse=False):
print "Fitting model with collapsed Gibbs sampling"
self.n_topics = n_topics
self.model = CollapseGibbsLda(self.df, self.vocab, n_topics, alpha, beta,
previous_model=previous_model, random_state=random_state,
sparse=sparse)
self.n_topics = self.model.K # might change if previous_model is used
start = timeit.default_timer()
self.model.run(n_burn, n_samples, n_thin, use_native=use_native)
stop = timeit.default_timer()
print "DONE. Time=" + str(stop-start)
def convert_corpus(self):
# build metadata
ms1 = self.ms1
metadata = {}
docs = []
parent_peak_ids = []
for index, row in ms1.iterrows():
mz = row['mz']
rt = row['rt']
intensity = row['intensity']
pid = row['peakID']
key = '%s_%s' % (row['mz'], row['rt'])
docs.append(key)
parent_peak_ids.append(row['peakID'])
metadata[key] = {}
metadata[key]['parentmass'] = mz
metadata[key]['rt'] = rt
metadata[key]['intensity'] = intensity
metadata[key]['id'] = pid
# build corpus
vocab = self.vocab
mat = self.df.values
n_docs, n_words = mat.shape
assert n_docs == len(docs)
assert n_words == len(vocab)
term_frequency = {}
for word in vocab:
term_frequency[word] = 0
cd = np.zeros(n_docs, int32)
corpus = {}
for d in range(n_docs):
doc = {}
cd[d] = n_words
for n in range(n_words):
val = mat[d, n]
if val > 0:
word = vocab[n]
doc[word] = val
term_frequency[word] += 1
doc_id = docs[d]
corpus[doc_id] = doc
term_frequency_arr = np.zeros(n_words, int32)
for n in range(n_words):
word = vocab[n]
term_frequency_arr[n] = term_frequency[word]
return metadata, corpus, cd, term_frequency_arr
def convert_output(self, lda_dict, n_topics, corpus):
# reconstruct the topic_word matrix
topic_word = np.zeros((n_topics, len(self.vocab)), np.float)
for k in range(n_topics):
motif = 'motif_%d' % k
for n in range(len(self.vocab)):
word = self.vocab[n]
topic_dist = lda_dict['beta'][motif]
if word in topic_dist:
prob = topic_dist[word]
topic_word[k][n] = prob
# reconstruct the document_topic matrix
doc_topic = np.zeros((len(corpus), n_topics), np.float)
ms1 = self.ms1
d = 0
for index, row in ms1.iterrows():
mz = row['mz']
rt = row['rt']
key = '%s_%s' % (row['mz'], row['rt'])
doc_dist = lda_dict['theta'][key]
for k in range(n_topics):
motif = 'motif_%d' % k
prob = lda_dict['theta'][key][motif]
doc_topic[d, k] = prob
d += 1
return topic_word, doc_topic
def run_lda_vb(self, n_topics, n_its, alpha, beta):
print "Fitting model with variational Bayes"
metadata, corpus, cd, tf = self.convert_corpus()
start = timeit.default_timer()
vlda = VariationalLDA(corpus=corpus, K=n_topics, alpha=alpha, eta=beta, update_alpha=False)
vlda.run_vb(n_its=n_its, initialise=True)
stop = timeit.default_timer()
# parse the output into the old format
lda_dict = vlda.make_dictionary(metadata=metadata,
min_prob_to_keep_beta=0.0,
min_prob_to_keep_phi=0.0,
min_prob_to_keep_theta=0.0)
self.model = vlda
self.n_topics = self.model.K
self.model.topic_word_, self.model.doc_topic_ = self.convert_output(lda_dict, n_topics, corpus)
self.model.beta = self.model.eta
self.model.cd = cd
self.model.vocab = self.vocab
self.model.term_frequency = tf
print "DONE. Time=" + str(stop-start)
def do_thresholding(self, th_doc_topic=0.05, th_topic_word=0.0):
# save the thresholding values used for visualisation later
self.th_doc_topic = th_doc_topic
self.th_topic_word = th_topic_word
selected_topics = None
if hasattr(self.model, 'previous_model'):
previous_model = self.model.previous_model
if previous_model is not None and hasattr(previous_model, 'selected_topics'):
selected_topics = previous_model.selected_topics
# get rid of small values in the matrices of the results
# if epsilon > 0, then the specified value will be used for thresholding
# otherwise, the smallest value for each row in the matrix is used instead
self.topic_word = utils.threshold_matrix(self.model.topic_word_, epsilon=th_topic_word)
self.doc_topic = utils.threshold_matrix(self.model.doc_topic_, epsilon=th_doc_topic)
self.topic_names = []
counter = 0
for i, topic_dist in enumerate(self.topic_word):
if selected_topics is not None:
if i < len(selected_topics):
topic_name = 'Fixed_M2M {}'.format(selected_topics[i])
else:
topic_name = 'M2M_{}'.format(counter)
counter += 1
else:
topic_name = 'M2M_{}'.format(i)
self.topic_names.append(topic_name)
# create document-topic output file
masses = np.array(self.df.transpose().index)
d = {}
for i in np.arange(self.n_topics):
topic_name = self.topic_names[i]
topic_series = pd.Series(self.topic_word[i], index=masses)
d[topic_name] = topic_series
self.topicdf = pd.DataFrame(d)
# make sure that columns in topicdf are in the correct order
# because many times we'd index the columns in the dataframes directly by their positions
cols = self.topicdf.columns.tolist()
sorted_cols = self._natural_sort(cols)
self.topicdf = self.topicdf[sorted_cols]
# create topic-docs output file
(n_doc, a) = self.doc_topic.shape
topic_index = np.arange(self.n_topics)
doc_names = np.array(self.df.index)
d = {}
for i in np.arange(n_doc):
doc_name = doc_names[i]
doc_series = pd.Series(self.doc_topic[i], index=topic_index)
d[doc_name] = doc_series
self.docdf = pd.DataFrame(d)
# sort columns by mass_rt values
cols = self.docdf.columns.tolist()
mass_rt = [(float(m.split('_')[0]),float(m.split('_')[1])) for m in cols]
sorted_mass_rt = sorted(mass_rt,key=lambda m:m[0])
ind = [mass_rt.index(i) for i in sorted_mass_rt]
self.docdf = self.docdf[ind]
# self.docdf.to_csv(outfile)se
self.docdf = self.docdf.replace(np.nan, 0)
def write_results(self, results_prefix):
if not hasattr(self, 'topic_word'):
raise ValueError('Thresholding not done yet.')
# create topic-word output file
outfile = self._get_outfile(results_prefix, '_motifs.csv')
print "Writing Mass2Motif features to " + outfile
with open(outfile,'w') as f:
for i, topic_dist in enumerate(self.topic_word):
ordering = np.argsort(topic_dist)
vocab = self.df.columns.values
topic_words = np.array(vocab)[ordering][::-1]
dist = topic_dist[ordering][::-1]
topic_name = self.topic_names[i]
f.write(topic_name)
# filter entries to display
for j in range(len(topic_words)):
if dist[j] > 0:
f.write(',{}'.format(topic_words[j]))
else:
break
f.write('\n')
# write out topicdf and docdf
outfile = self._get_outfile(results_prefix, '_features.csv')
print "Writing features X motifs to " + outfile
self.topicdf.to_csv(outfile)
outfile = self._get_outfile(results_prefix, '_docs.csv')
print "Writing docs X motifs to " + outfile
docdf = self.docdf.transpose()
docdf.columns = self.topic_names
docdf.to_csv(outfile)
def save_project(self, project_out, message=None):
start = timeit.default_timer()
self.last_saved_timestamp = str(time.strftime("%c"))
self.message = message
with gzip.GzipFile(project_out, 'wb') as f:
cPickle.dump(self, f, protocol=cPickle.HIGHEST_PROTOCOL)
stop = timeit.default_timer()
print "Project saved to " + project_out + " time taken = " + str(stop-start)
def persist_topics(self, topic_indices, model_out, words_out):
self.model.save(topic_indices, model_out, words_out)
def rank_topics(self, sort_by="h_index", selected_topics=None, top_N=None):
plotter = Ms2Lda_Viz(self.model, self.ms1, self.ms2, self.docdf, self.topicdf)
return plotter.rank_topics(sort_by=sort_by, selected_topics=selected_topics, top_N=top_N)
def plot_lda_fragments(self, selected_motifs=None, interactive=False, to_highlight=None,
additional_info={}):
# these used to be user-defined parameters, but now they're fixed
consistency=0.0 # TODO: remove this
sort_by="h_index"
if not hasattr(self, 'topic_word'):
raise ValueError('Thresholding not done yet.')
plotter = Ms2Lda_Viz(self.model, self.ms1, self.ms2, self.docdf, self.topicdf)
if interactive:
# if interactive mode, we always sort by the h_index because we need both the h-index and degree for plotting
plotter.plot_lda_fragments(consistency=consistency, sort_by='h_index',
selected_motifs=selected_motifs, interactive=interactive,
to_highlight=to_highlight)
# self.model.visualise(plotter)
data = {}
data['topic_term_dists'] = self.model.topic_word_
data['doc_topic_dists'] = self.model.doc_topic_
data['doc_lengths'] = self.model.cd
data['vocab'] = self.model.vocab
if hasattr(self.model, 'ckn'):
data['term_frequency'] = np.sum(self.model.ckn, axis=0)
else:
data['term_frequency'] = self.model.term_frequency
data['topic_ranking'] = plotter.topic_ranking
data['topic_coordinates'] = plotter.topic_coordinates
data['plot_opts'] = {'xlab': 'h-index', 'ylab': 'log(degree)', 'sort_by' : plotter.sort_by}
data['lambda_step'] = 5
data['lambda_min'] = utils.round_nicely(plotter.sort_by_min)
data['lambda_max'] = utils.round_nicely(plotter.sort_by_max)
data['th_topic_word'] = self.th_topic_word
data['th_doc_topic'] = self.th_doc_topic
data['topic_wordfreq'] = plotter.topic_wordfreqs
data['topic_ms1_count'] = plotter.topic_ms1_count
data['topic_annotation'] = additional_info
vis_data = pyLDAvis.prepare(**data)
pyLDAvis.show(vis_data, topic_plotter=plotter)
else:
plotter.plot_lda_fragments(consistency=consistency, sort_by=sort_by,
selected_motifs=selected_motifs, interactive=interactive)
def get_network_graph(self, to_highlight=None, degree_filter=0, selected_motifs=None):
plotter = Ms2Lda_Viz(self.model, self.ms1, self.ms2, self.docdf, self.topicdf)
json_data, G = lda_visualisation.get_json_from_docdf(plotter.docdf.transpose(), to_highlight, degree_filter, selected_motifs=selected_motifs)
return G, json_data
# this should only be run once LDA has been run and the thresholding applied,
# because docdf wouldn't exist otherwise
def run_cosine_clustering(self, method='greedy', th_clustering=0.55):
if not hasattr(self, 'topic_word'):
raise ValueError('Thresholding not done yet.')
# Swap the NaNs for zeros. Turn into a numpy array and grab the parent names
data = self.docdf.fillna(0)
data_array = np.array(data)
peak_names = list(data.columns.values)
# Create a matrix with the normalised values (each parent ion has magnitude 1)
l = np.sqrt((data_array**2).sum(axis=0))
norm_data = np.divide(data_array,l)
if method.lower() == 'hierarchical': # scipy hierarchical clustering
clustering = hierarchy.fclusterdata(norm_data.transpose(), th_clustering, criterion = 'distance',
metric='euclidean', method='single')
elif method.lower() == 'greedy': # greedy cosine clustering
cosine_sim = np.dot(norm_data.transpose(),norm_data)
finished = False
total_intensity = data_array.sum(axis=0)
total_intensity = total_intensity
n_features, n_parents = data_array.shape
clustering = np.zeros((n_parents,),np.int)
current_cluster = 1
thresh = th_clustering
count = 0
while not finished:
# Find the parent with the max intensity left
current = np.argmax(total_intensity)
total_intensity[current] = 0.0
count += 1
clustering[current] = current_cluster
# Find other parents with cosine similarity over the threshold
friends = np.where((cosine_sim[current,:]>thresh) * (total_intensity > 0.0))[0]
clustering[friends] = current_cluster
total_intensity[friends] = 0.0
# When points are clustered, their total_intensity is set zto zero.
# If there is nothing left with zero, quit
left = np.where(total_intensity > 0.0)[0]
if len(left) == 0:
finished = True
current_cluster += 1
else:
raise ValueError('Unknown clustering method')
return peak_names, clustering
def plot_cosine_clustering(self, motif_id, clustering, peak_names):
if not hasattr(self, 'topic_word'):
raise ValueError('Thresholding not done yet.')
colnames = self.docdf.columns.values
row = self.docdf.iloc[[motif_id]]
pos = row.values[0] > 0
ions_of_interest = colnames[pos]
plotter = Ms2Lda_Viz(self.model, self.ms1, self.ms2, self.docdf, self.topicdf)
G, cluster_interests = plotter.plot_cosine_clustering(motif_id, ions_of_interest, clustering, peak_names)
return G, cluster_interests
def print_topic_words(self, selected_topics=None, with_probabilities=True, compact_output=False):
raise ValueError("print_topic_words is now called print_motif_features")
def print_motif_features(self, selected_motifs=None, with_probabilities=True, quiet=False):
if not hasattr(self, 'topic_word'):
raise ValueError('Thresholding not done yet.')
word_map = {}
topic_map = {}
for i, topic_dist in enumerate(self.topic_word):
show_print = False
if selected_motifs is None:
show_print = True
if selected_motifs is not None and i in selected_motifs:
show_print = True
if show_print:
ordering = np.argsort(topic_dist)
topic_words = np.array(self.vocab)[ordering][::-1]
dist = topic_dist[ordering][::-1]
topic_name = 'Mass2Motif {}:'.format(i)
front = topic_name
back = ""
for j in range(len(topic_words)):
if dist[j] > 0:
single_word = topic_words[j]
if single_word in word_map:
word_map[single_word].add(i)
else:
word_map[single_word] = set([i])
if with_probabilities:
back += '%s (%.3f),' % (single_word, dist[j])
else:
back += '%s,' % (single_word)
else:
break
topic_map[i] = back
if not quiet:
output = front + back
print output
return word_map, topic_map
def get_motif_contributions(self, parent_peak_id):
# work out the contributions of different M2Ms
row_idx = self.ms1['peakID'] == parent_peak_id
pos = np.nonzero(row_idx.values)[0]
d = np.asscalar(pos)
motifs_of_interest = np.nonzero(self.doc_topic[d])[0].tolist()
document = self.df.iloc[[d]]
word_idx = utils.word_indices(document)
results = {}
for pos in range(len(word_idx)):
n = word_idx[pos]
k = self.model.Z[(d, pos)]
# IMPORTANT: consider only the validated M2M, but a word might be generated by
# other M2M not in our list!!
if k in motifs_of_interest:
word = self.vocab[n]
if word in results:
results[word].append(k)
else:
results[word] = [k]
contributions = {}
for word in results:
topics = Counter(results[word])
total = float(np.sum(topics.values()))
ratio = { key : (topics[key]/total) for key in topics}
contributions[word] = ratio
return contributions
def plot_posterior_alpha(self):
posterior_alpha = self.model.posterior_alpha
posterior_alpha = posterior_alpha / np.sum(posterior_alpha)
ind = range(len(posterior_alpha))
plt.bar(ind, posterior_alpha, 2)
def annotate_with_sirius(self, sirius_platform="orbitrap", mode="pos", ppm_max=5, min_score=0.01, max_ms1=700,
verbose=False):
mode = mode.lower()
annot_ms1, annot_ms2 = sir.annotate_sirius(self.ms1, self.ms2, sirius_platform=sirius_platform,
mode=mode, ppm_max=ppm_max, min_score=min_score,
max_ms1=max_ms1, verbose=verbose)
self.ms1 = annot_ms1
self.ms2 = annot_ms2
def annotate_peaks(self, mode="pos", target="ms2_fragment", ppm=5,
scale_factor=1000, max_mass=200, n_stages=1,
rule_8_max_occurrences=None, verbose=False):
self._check_valid_input(mode, target, ppm)
self._print_annotate_banner(target, mode, ppm, scale_factor, max_mass)
## override with sensible values
if target == 'ms2_loss':
mode = 'none'
# will return different mass list, depending on whether it's for MS1 parents,
# MS2 fragments or MS2 losses
mass_list = self._get_mass_list(target)
# run first-stage EF annotation on the mass list
ef = ef_assigner(scale_factor=scale_factor, do_7_rules=True,
second_stage=False, rule_8_max_occurrences=rule_8_max_occurrences)
_, top_hit_string, _ = ef.find_formulas(mass_list, ppm=ppm, polarisation=mode.upper(),
max_mass_to_check=max_mass)
assert len(mass_list) == len(top_hit_string)
# anything that's None is to be annotated again for the second stage
if n_stages == 2:
mass_list_2 = []
to_process_idx = []
for n in range(len(mass_list)):
mass = mass_list[n]
tophit = top_hit_string[n]
if tophit is None:
mass_list_2.append(mass)
to_process_idx.append(n)
print
print "=================================================================="
print "Found " + str(len(mass_list_2)) + " masses for second-stage EF annotation"
print "=================================================================="
print
# run second-stage EF annotation
ef = ef_assigner(scale_factor=scale_factor, do_7_rules=True,
second_stage=True, rule_8_max_occurrences=rule_8_max_occurrences)
_, top_hit_string_2, _ = ef.find_formulas(mass_list_2, ppm=ppm, polarisation=mode.upper(),
max_mass_to_check=max_mass)
# copy 2nd stage result back to the 1st stage result
for i in range(len(top_hit_string_2)):
n = to_process_idx[i]
top_hit_string[n] = top_hit_string_2[i
]
# set the results back
self._set_annotation_results(target, mass_list, top_hit_string)
def _check_valid_input(self, mode, target, ppm_list):
''' Checks EF annotation input parameters are valid '''
## Checks mode is valid
mode = mode.lower()
if mode != "pos" and mode != "neg" and mode != 'none':
raise ValueError("mode is either 'pos', 'neg' or 'none'")
## Checks target is valid
target = target.lower()
if target != "ms1" and target != "ms2_fragment" and target != 'ms2_loss':
raise ValueError("target is either 'ms1', 'ms2_fragment' or 'ms2_loss'")
## Checks if it's a conditional ppm list then it's in a valid format
if type(ppm_list) is list:
# check length
if len(ppm_list) != 2:
raise ValueError("The list of conditional ppm values is not valid. Valid example: [(80, 5), (200, 10)]")
# check items are in the right order
prev = 0
for item in ppm_list:
mass = item[0]
if mass < prev:
raise ValueError("The list of conditional ppm values is in the right order. Valid example: [(80, 5), (200, 10)]")
prev = mass
def _print_annotate_banner(self, title, mode, ppm, scale_factor, max_mass):
print "***********************************"
print "Annotating " + title
print "***********************************"
print
print "- mode = " + mode
print "- ppm = " + str(ppm)
print "- scale_factor = " + str(scale_factor)
print "- max_mass = " + str(max_mass)
print
sys.stdout.flush()
def _get_mass_list(self, target):
''' Retrieves a different mass list, depending on the target
(whether it's for ms1 or ms2 fragment or ms2 loss annotation)'''
if target == 'ms1':
# use the masses from the MS1 peaklist
mass_list = self.ms1.mz.values.tolist()
elif target == 'ms2_fragment':
# use the fragment bins, rather than the actual MS2 peaklist
mass_list = self.ms2.fragment_bin_id.values.tolist()
for n in range(len(mass_list)):
mass_list[n] = float(mass_list[n])
mass_list = sorted(set(mass_list))
elif target == 'ms2_loss':
# use the loss bins, rather than the actual MS2 loss values
from_dataframe = self.ms2.loss_bin_id.values.tolist()
mass_list = []
for mass in from_dataframe:
mass = float(mass)
if not math.isnan(mass):
mass_list.append(mass)
mass_list = sorted(set(mass_list))
return mass_list
def _set_annotation_results(self, target, mass_list, top_hit_string):
''' Writes annotation results back into the right dataframe column '''
if target == 'ms1': # set the results back into the MS1 dataframe
# replace all formulae from None to NaN
for i in range(len(top_hit_string)):
if top_hit_string[i] is None:
top_hit_string[i] = np.NaN
self.ms1['annotation'] = top_hit_string
elif target == 'ms2_fragment' or target == 'ms2_loss':
# annotation doesn't exist, set new annotation column
new_column = False
if 'annotation' not in self.ms2.columns:
self.ms2['annotation'] = np.NaN
new_column = True
for n in range(len(mass_list)):
# write to the annotation column in the dataframe for all MS2 having this fragment or loss bin
mass_str = str(mass_list[n])
if target == 'ms2_fragment':
members = self.ms2[self.ms2.fragment_bin_id==mass_str]
elif target == 'ms2_loss':
members = self.ms2[self.ms2.loss_bin_id==mass_str]
for row_index, row in members.iterrows():
formula = top_hit_string[n]
if new_column:
# annotation column is empty for this row, so overwrite it
if formula is None:
formula = np.NaN
elif target == 'ms2_loss':
formula = "loss_" + formula
self.ms2.loc[row_index, 'annotation'] = formula
else:
# annotation column already exists
if formula is not None:
if target == 'ms2_loss':
formula = "loss_" + formula
current_val = self.ms2.loc[row_index, 'annotation']
try: # detect NaN
parsed_val = float(current_val)
if np.isnan(parsed_val):
append = False # if NaN then overwrite
except ValueError:
parsed_val = current_val
append = True # otherwise append to the existing annotation value
if append:
self.ms2.loc[row_index, 'annotation'] += ',' + formula
else:
self.ms2.loc[row_index, 'annotation'] = formula
def remove_all_annotations(self):
''' Clears all EF annotations from the dataframes '''
if 'annotation' in self.ms1.columns:
self.ms1.drop('annotation', inplace=True, axis=1)
if 'annotation' in self.ms2.columns:
self.ms2.drop('annotation', inplace=True, axis=1)
def plot_log_likelihood(self):
plt.plot(self.model.loglikelihoods_)
def _natural_sort(self, l):
convert = lambda text: int(text) if text.isdigit() else text.lower()
alphanum_key = lambda key: [ convert(c) for c in re.split('([0-9]+)', key) ]
return sorted(l, key = alphanum_key)
def _get_outfile(self, results_prefix, doctype):
parent_dir = 'results/' + results_prefix
outfile = parent_dir + '/' + results_prefix + doctype
if not os.path.exists(parent_dir):
os.makedirs(parent_dir)
return outfile