forked from thu-ml/SageAttention
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsetup.py
188 lines (166 loc) · 6.28 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
"""
Copyright (c) 2024 by SageAttention team.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import os
import subprocess
from packaging.version import parse, Version
from typing import List, Set
import warnings
from setuptools import setup, find_packages
import torch
from torch.utils.cpp_extension import BuildExtension, CUDAExtension, CUDA_HOME
HAS_SM80 = False
HAS_SM86 = False
HAS_SM89 = False
HAS_SM90 = False
HAS_SM120 = False
# Supported NVIDIA GPU architectures.
SUPPORTED_ARCHS = {"8.0", "8.6", "8.9", "9.0", "12.0"}
# Compiler flags.
CXX_FLAGS = ["-g", "-O3", "-fopenmp", "-lgomp", "-std=c++17", "-DENABLE_BF16"]
NVCC_FLAGS = [
"-O3",
"-std=c++17",
"-U__CUDA_NO_HALF_OPERATORS__",
"-U__CUDA_NO_HALF_CONVERSIONS__",
"--use_fast_math",
"--threads=8",
"-Xptxas=-v",
"-diag-suppress=174", # suppress the specific warning
]
ABI = 1 if torch._C._GLIBCXX_USE_CXX11_ABI else 0
CXX_FLAGS += [f"-D_GLIBCXX_USE_CXX11_ABI={ABI}"]
NVCC_FLAGS += [f"-D_GLIBCXX_USE_CXX11_ABI={ABI}"]
if CUDA_HOME is None:
raise RuntimeError(
"Cannot find CUDA_HOME. CUDA must be available to build the package.")
def get_nvcc_cuda_version(cuda_dir: str) -> Version:
"""Get the CUDA version from nvcc.
Adapted from https://github.com/NVIDIA/apex/blob/8b7a1ff183741dd8f9b87e7bafd04cfde99cea28/setup.py
"""
nvcc_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"],
universal_newlines=True)
output = nvcc_output.split()
release_idx = output.index("release") + 1
nvcc_cuda_version = parse(output[release_idx].split(",")[0])
return nvcc_cuda_version
# Iterate over all GPUs on the current machine. Also you can modify this part to specify the architecture if you want to build for specific GPU architectures.
compute_capabilities = set()
device_count = torch.cuda.device_count()
for i in range(device_count):
major, minor = torch.cuda.get_device_capability(i)
if major < 8:
warnings.warn(f"skipping GPU {i} with compute capability {major}.{minor}")
continue
compute_capabilities.add(f"{major}.{minor}")
nvcc_cuda_version = get_nvcc_cuda_version(CUDA_HOME)
if not compute_capabilities:
raise RuntimeError("No GPUs found. Please specify the target GPU architectures or build on a machine with GPUs.")
else:
print(f"Detect GPUs with compute capabilities: {compute_capabilities}")
# Validate the NVCC CUDA version.
if nvcc_cuda_version < Version("12.0"):
raise RuntimeError("CUDA 12.0 or higher is required to build the package.")
if nvcc_cuda_version < Version("12.4") and any(cc.startswith("8.9") for cc in compute_capabilities):
raise RuntimeError(
"CUDA 12.4 or higher is required for compute capability 8.9.")
if nvcc_cuda_version < Version("12.3") and any(cc.startswith("9.0") for cc in compute_capabilities):
raise RuntimeError(
"CUDA 12.3 or higher is required for compute capability 9.0.")
if nvcc_cuda_version < Version("12.8") and any(cc.startswith("12.0") for cc in compute_capabilities):
raise RuntimeError(
"CUDA 12.8 or higher is required for compute capability 12.0.")
# Add target compute capabilities to NVCC flags.
for capability in compute_capabilities:
if capability.startswith("8.0"):
HAS_SM80 = True
num = "80"
elif capability.startswith("8.6"):
HAS_SM86 = True
num = "86"
elif capability.startswith("8.9"):
HAS_SM89 = True
num = "89"
elif capability.startswith("9.0"):
HAS_SM90 = True
num = "90a" # need to use sm90a instead of sm90 to use wgmma ptx instruction.
elif capability.startswith("12.0"):
HAS_SM120 = True
num = "120" # need to use sm120a to use mxfp8/mxfp4/nvfp4 instructions.
NVCC_FLAGS += ["-gencode", f"arch=compute_{num},code=sm_{num}"]
if capability.endswith("+PTX"):
NVCC_FLAGS += ["-gencode", f"arch=compute_{num},code=compute_{num}"]
ext_modules = []
if HAS_SM80 or HAS_SM86 or HAS_SM89 or HAS_SM90 or HAS_SM120:
qattn_extension = CUDAExtension(
name="sageattention._qattn_sm80",
sources=[
"csrc/qattn/pybind_sm80.cpp",
"csrc/qattn/qk_int_sv_f16_cuda_sm80.cu",
],
extra_compile_args={
"cxx": CXX_FLAGS,
"nvcc": NVCC_FLAGS,
},
)
ext_modules.append(qattn_extension)
if HAS_SM89 or HAS_SM120:
qattn_extension = CUDAExtension(
name="sageattention._qattn_sm89",
sources=[
"csrc/qattn/pybind_sm89.cpp",
"csrc/qattn/qk_int_sv_f8_cuda_sm89.cu",
],
extra_compile_args={
"cxx": CXX_FLAGS,
"nvcc": NVCC_FLAGS,
},
)
ext_modules.append(qattn_extension)
if HAS_SM90:
qattn_extension = CUDAExtension(
name="sageattention._qattn_sm90",
sources=[
"csrc/qattn/pybind_sm90.cpp",
"csrc/qattn/qk_int_sv_f8_cuda_sm90.cu",
],
extra_compile_args={
"cxx": CXX_FLAGS,
"nvcc": NVCC_FLAGS,
},
extra_link_args=['-lcuda'],
)
ext_modules.append(qattn_extension)
# Fused kernels.
fused_extension = CUDAExtension(
name="sageattention._fused",
sources=["csrc/fused/pybind.cpp", "csrc/fused/fused.cu"],
extra_compile_args={
"cxx": CXX_FLAGS,
"nvcc": NVCC_FLAGS,
},
)
ext_modules.append(fused_extension)
setup(
name='sageattention',
version='2.1.1',
author='SageAttention team',
license='Apache 2.0 License',
description='Accurate and efficient plug-and-play low-bit attention.',
long_description=open('README.md').read(),
long_description_content_type='text/markdown',
url='https://github.com/thu-ml/SageAttention',
packages=find_packages(),
python_requires='>=3.9',
ext_modules=ext_modules,
cmdclass={"build_ext": BuildExtension},
)