-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathpoloy_metrics.py
471 lines (374 loc) · 16.9 KB
/
poloy_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
# -*- coding: utf-8 -*-
# @Time : 2021/09/13
# @Author : Johnson-Chou
# @Email : johnson111788@gmail.com
# @FileName : metrics.py
# @Reference: https://github.com/mczhuge/SOCToolbox
import numpy as np
from scipy.ndimage import convolve, distance_transform_edt as bwdist
_EPS = np.spacing(1)
_TYPE = np.float64
def _prepare_data(pred: np.ndarray, gt: np.ndarray) -> tuple:
gt = gt > 0.5
# pred = pred / 255
if pred.max() != pred.min():
pred = (pred - pred.min()) / (pred.max() - pred.min())
return pred, gt
def _get_adaptive_threshold(matrix: np.ndarray, max_value: float = 1) -> float:
return min(2 * matrix.mean(), max_value)
class Fmeasure(object):
def __init__(self, length, beta: float = 0.3):
self.beta = beta
self.precisions = []
self.recalls = []
self.adaptive_fms = []
self.changeable_fms = []
def step(self, pred: np.ndarray, gt: np.ndarray, idx):
pred, gt = _prepare_data(pred, gt)
adaptive_fm = self.cal_adaptive_fm(pred=pred, gt=gt)
self.adaptive_fms.append(adaptive_fm)
precisions, recalls, changeable_fms = self.cal_pr(pred=pred, gt=gt)
self.precisions.append(precisions)
self.recalls.append(recalls)
self.changeable_fms.append(changeable_fms)
def cal_adaptive_fm(self, pred: np.ndarray, gt: np.ndarray) -> float:
adaptive_threshold = _get_adaptive_threshold(pred, max_value=1)
binary_predcition = pred >= adaptive_threshold
area_intersection = binary_predcition[gt].sum()
if area_intersection == 0:
adaptive_fm = 0
else:
pre = area_intersection / np.count_nonzero(binary_predcition)
rec = area_intersection / np.count_nonzero(gt)
# F_beta measure
adaptive_fm = (1 + self.beta) * pre * rec / (self.beta * pre + rec)
return adaptive_fm
def cal_pr(self, pred: np.ndarray, gt: np.ndarray) -> tuple:
pred = (pred * 255).astype(np.uint8)
bins = np.linspace(0, 256, 257)
fg_hist, _ = np.histogram(pred[gt], bins=bins)
bg_hist, _ = np.histogram(pred[~gt], bins=bins)
fg_w_thrs = np.cumsum(np.flip(fg_hist), axis=0)
bg_w_thrs = np.cumsum(np.flip(bg_hist), axis=0)
TPs = fg_w_thrs
Ps = fg_w_thrs + bg_w_thrs
Ps[Ps == 0] = 1
T = max(np.count_nonzero(gt), 1)
precisions = TPs / Ps
recalls = TPs / T
numerator = (1 + self.beta) * precisions * recalls
denominator = np.where(numerator == 0, 1, self.beta * precisions + recalls)
changeable_fms = numerator / denominator
return precisions, recalls, changeable_fms
def get_results(self):
adaptive_fm = np.mean(np.array(self.adaptive_fms, _TYPE))
# precision = np.mean(np.array(self.precisions, dtype=_TYPE), axis=0) # N, 256
# recall = np.mean(np.array(self.recalls, dtype=_TYPE), axis=0) # N, 256
changeable_fm = np.mean(np.array(self.changeable_fms, dtype=_TYPE), axis=0)
# return dict(fm=dict(adp=adaptive_fm, curve=changeable_fm),
# pr=dict(p=precision, r=recall))
return dict(adpFm=adaptive_fm, meanFm=changeable_fm, maxFm=changeable_fm)
class MAE(object):
def __init__(self, length=1):
self.maes = []
def step(self, pred: np.ndarray, gt: np.ndarray):
pred, gt = _prepare_data(pred, gt)
mae = self.cal_mae(pred, gt)
self.maes.append(mae)
def cal_mae(self, pred: np.ndarray, gt: np.ndarray) -> float:
mae = np.mean(np.abs(pred - gt))
return mae
def get_results(self):
mae = np.mean(np.array(self.maes, _TYPE))
return dict(MAE=mae)
class Smeasure(object):
def __init__(self, length=1, alpha: float = 0.5):
self.sms = []
self.alpha = alpha
def step(self, pred: np.ndarray, gt: np.ndarray):
pred, gt = _prepare_data(pred=pred, gt=gt)
sm = self.cal_sm(pred, gt)
# print(sm)
self.sms.append(sm)
def cal_sm(self, pred: np.ndarray, gt: np.ndarray) -> float:
y = np.mean(gt)
if y == 0:
sm = 1 - np.mean(pred)
elif y == 1:
sm = np.mean(pred)
else:
sm = self.alpha * self.object(pred, gt) + (1 - self.alpha) * self.region(pred, gt)
sm = max(0, sm)
return sm
def object(self, pred: np.ndarray, gt: np.ndarray) -> float:
fg = pred * gt
bg = (1 - pred) * (1 - gt)
u = np.mean(gt)
object_score = u * self.s_object(fg, gt) + (1 - u) * self.s_object(bg, 1 - gt)
return object_score
def s_object(self, pred: np.ndarray, gt: np.ndarray) -> float:
x = np.mean(pred[gt == 1])
sigma_x = np.std(pred[gt == 1], ddof=1)
score = 2 * x / (np.power(x, 2) + 1 + sigma_x + _EPS)
return score
def region(self, pred: np.ndarray, gt: np.ndarray) -> float:
x, y = self.centroid(gt)
part_info = self.divide_with_xy(pred, gt, x, y)
w1, w2, w3, w4 = part_info['weight']
pred1, pred2, pred3, pred4 = part_info['pred']
gt1, gt2, gt3, gt4 = part_info['gt']
score1 = self.ssim(pred1, gt1)
score2 = self.ssim(pred2, gt2)
score3 = self.ssim(pred3, gt3)
score4 = self.ssim(pred4, gt4)
return w1 * score1 + w2 * score2 + w3 * score3 + w4 * score4
def centroid(self, matrix: np.ndarray) -> tuple:
"""
To ensure consistency with the matlab code, one is added to the centroid coordinate,
so there is no need to use the redundant addition operation when dividing the region later,
because the sequence generated by ``1:X`` in matlab will contain ``X``.
:param matrix: a bool data array
:return: the centroid coordinate
"""
h, w = matrix.shape
area_object = np.count_nonzero(matrix)
if area_object == 0:
x = np.round(w / 2)
y = np.round(h / 2)
else:
# More details can be found at: https://www.yuque.com/lart/blog/gpbigm
y, x = np.argwhere(matrix).mean(axis=0).round()
return int(x) + 1, int(y) + 1
def divide_with_xy(self, pred: np.ndarray, gt: np.ndarray, x, y) -> dict:
h, w = gt.shape
area = h * w
gt_LT = gt[0:y, 0:x]
gt_RT = gt[0:y, x:w]
gt_LB = gt[y:h, 0:x]
gt_RB = gt[y:h, x:w]
pred_LT = pred[0:y, 0:x]
pred_RT = pred[0:y, x:w]
pred_LB = pred[y:h, 0:x]
pred_RB = pred[y:h, x:w]
w1 = x * y / area
w2 = y * (w - x) / area
w3 = (h - y) * x / area
w4 = 1 - w1 - w2 - w3
return dict(gt=(gt_LT, gt_RT, gt_LB, gt_RB),
pred=(pred_LT, pred_RT, pred_LB, pred_RB),
weight=(w1, w2, w3, w4))
def ssim(self, pred: np.ndarray, gt: np.ndarray) -> float:
h, w = pred.shape
N = h * w
x = np.mean(pred)
y = np.mean(gt)
sigma_x = np.sum((pred - x) ** 2) / (N - 1)
sigma_y = np.sum((gt - y) ** 2) / (N - 1)
sigma_xy = np.sum((pred - x) * (gt - y)) / (N - 1)
alpha = 4 * x * y * sigma_xy
beta = (x ** 2 + y ** 2) * (sigma_x + sigma_y)
if alpha != 0:
score = alpha / (beta + _EPS)
elif alpha == 0 and beta == 0:
score = 1
else:
score = 0
return score
def get_results(self):
sm = np.mean(np.array(self.sms, dtype=_TYPE))
return dict(Smeasure=sm)
class Emeasure(object):
def __init__(self, length=1):
self.adaptive_ems = []
self.changeable_ems = []
def step(self, pred: np.ndarray, gt: np.ndarray):
pred, gt = _prepare_data(pred=pred, gt=gt)
self.gt_fg_numel = np.count_nonzero(gt)
self.gt_size = gt.shape[0] * gt.shape[1]
changeable_ems = self.cal_changeable_em(pred, gt)
self.changeable_ems.append(changeable_ems)
adaptive_em = self.cal_adaptive_em(pred, gt)
self.adaptive_ems.append(adaptive_em)
def cal_adaptive_em(self, pred: np.ndarray, gt: np.ndarray) -> float:
adaptive_threshold = _get_adaptive_threshold(pred, max_value=1)
adaptive_em = self.cal_em_with_threshold(pred, gt, threshold=adaptive_threshold)
return adaptive_em
def cal_changeable_em(self, pred: np.ndarray, gt: np.ndarray) -> np.ndarray:
changeable_ems = self.cal_em_with_cumsumhistogram(pred, gt)
return changeable_ems
def cal_em_with_threshold(self, pred: np.ndarray, gt: np.ndarray, threshold: float) -> float:
binarized_pred = pred >= threshold
fg_fg_numel = np.count_nonzero(binarized_pred & gt)
fg_bg_numel = np.count_nonzero(binarized_pred & ~gt)
fg___numel = fg_fg_numel + fg_bg_numel
bg___numel = self.gt_size - fg___numel
if self.gt_fg_numel == 0:
enhanced_matrix_sum = bg___numel
elif self.gt_fg_numel == self.gt_size:
enhanced_matrix_sum = fg___numel
else:
parts_numel, combinations = self.generate_parts_numel_combinations(
fg_fg_numel=fg_fg_numel, fg_bg_numel=fg_bg_numel,
pred_fg_numel=fg___numel, pred_bg_numel=bg___numel,
)
results_parts = []
for i, (part_numel, combination) in enumerate(zip(parts_numel, combinations)):
align_matrix_value = 2 * (combination[0] * combination[1]) / \
(combination[0] ** 2 + combination[1] ** 2 + _EPS)
enhanced_matrix_value = (align_matrix_value + 1) ** 2 / 4
results_parts.append(enhanced_matrix_value * part_numel)
enhanced_matrix_sum = sum(results_parts)
em = enhanced_matrix_sum / (self.gt_size - 1 + _EPS)
return em
def cal_em_with_cumsumhistogram(self, pred: np.ndarray, gt: np.ndarray) -> np.ndarray:
pred = (pred * 255).astype(np.uint8)
bins = np.linspace(0, 256, 257)
fg_fg_hist, _ = np.histogram(pred[gt], bins=bins)
fg_bg_hist, _ = np.histogram(pred[~gt], bins=bins)
fg_fg_numel_w_thrs = np.cumsum(np.flip(fg_fg_hist), axis=0)
fg_bg_numel_w_thrs = np.cumsum(np.flip(fg_bg_hist), axis=0)
fg___numel_w_thrs = fg_fg_numel_w_thrs + fg_bg_numel_w_thrs
bg___numel_w_thrs = self.gt_size - fg___numel_w_thrs
if self.gt_fg_numel == 0:
enhanced_matrix_sum = bg___numel_w_thrs
elif self.gt_fg_numel == self.gt_size:
enhanced_matrix_sum = fg___numel_w_thrs
else:
parts_numel_w_thrs, combinations = self.generate_parts_numel_combinations(
fg_fg_numel=fg_fg_numel_w_thrs, fg_bg_numel=fg_bg_numel_w_thrs,
pred_fg_numel=fg___numel_w_thrs, pred_bg_numel=bg___numel_w_thrs,
)
results_parts = np.empty(shape=(4, 256), dtype=np.float64)
for i, (part_numel, combination) in enumerate(zip(parts_numel_w_thrs, combinations)):
align_matrix_value = 2 * (combination[0] * combination[1]) / \
(combination[0] ** 2 + combination[1] ** 2 + _EPS)
enhanced_matrix_value = (align_matrix_value + 1) ** 2 / 4
results_parts[i] = enhanced_matrix_value * part_numel
enhanced_matrix_sum = results_parts.sum(axis=0)
em = enhanced_matrix_sum / (self.gt_size - 1 + _EPS)
return em
def generate_parts_numel_combinations(self, fg_fg_numel, fg_bg_numel, pred_fg_numel, pred_bg_numel):
bg_fg_numel = self.gt_fg_numel - fg_fg_numel
bg_bg_numel = pred_bg_numel - bg_fg_numel
parts_numel = [fg_fg_numel, fg_bg_numel, bg_fg_numel, bg_bg_numel]
mean_pred_value = pred_fg_numel / self.gt_size
mean_gt_value = self.gt_fg_numel / self.gt_size
demeaned_pred_fg_value = 1 - mean_pred_value
demeaned_pred_bg_value = 0 - mean_pred_value
demeaned_gt_fg_value = 1 - mean_gt_value
demeaned_gt_bg_value = 0 - mean_gt_value
combinations = [
(demeaned_pred_fg_value, demeaned_gt_fg_value),
(demeaned_pred_fg_value, demeaned_gt_bg_value),
(demeaned_pred_bg_value, demeaned_gt_fg_value),
(demeaned_pred_bg_value, demeaned_gt_bg_value)
]
return parts_numel, combinations
def get_results(self):
adaptive_em = np.mean(np.array(self.adaptive_ems, dtype=_TYPE))
changeable_em = np.mean(np.array(self.changeable_ems, dtype=_TYPE))
return dict(adpEm=adaptive_em, meanEm=changeable_em, maxEm=changeable_em)
class WeightedFmeasure(object):
def __init__(self, length, beta: float = 1):
self.beta = beta
self.weighted_fms = []
def step(self, pred: np.ndarray, gt: np.ndarray, idx):
pred, gt = _prepare_data(pred=pred, gt=gt)
if np.all(~gt):
wfm = 0
else:
wfm = self.cal_wfm(pred, gt)
self.weighted_fms.append(wfm)
def cal_wfm(self, pred: np.ndarray, gt: np.ndarray) -> float:
# [Dst,IDXT] = bwdist(dGT);
Dst, Idxt = bwdist(gt == 0, return_indices=True)
# %Pixel dependency
# E = abs(FG-dGT);
E = np.abs(pred - gt)
Et = np.copy(E)
Et[gt == 0] = Et[Idxt[0][gt == 0], Idxt[1][gt == 0]]
# K = fspecial('gaussian',7,5);
# EA = imfilter(Et,K);
K = self.matlab_style_gauss2D((7, 7), sigma=5)
EA = convolve(Et, weights=K, mode="constant", cval=0)
# MIN_E_EA = E;
# MIN_E_EA(GT & EA<E) = EA(GT & EA<E);
MIN_E_EA = np.where(gt & (EA < E), EA, E)
# %Pixel importance
B = np.where(gt == 0, 2 - np.exp(np.log(0.5) / 5 * Dst), np.ones_like(gt))
Ew = MIN_E_EA * B
TPw = np.sum(gt) - np.sum(Ew[gt == 1])
FPw = np.sum(Ew[gt == 0])
R = 1 - np.mean(Ew[gt == 1])
P = TPw / (TPw + FPw + _EPS)
# % Q = (1+Beta^2)*(R*P)./(eps+R+(Beta.*P));
Q = (1 + self.beta) * R * P / (R + self.beta * P + _EPS)
return Q
def matlab_style_gauss2D(self, shape: tuple = (7, 7), sigma: int = 5) -> np.ndarray:
"""
2D gaussian mask - should give the same result as MATLAB's
fspecial('gaussian',[shape],[sigma])
"""
m, n = [(ss - 1) / 2 for ss in shape]
y, x = np.ogrid[-m: m + 1, -n: n + 1]
h = np.exp(-(x * x + y * y) / (2 * sigma * sigma))
h[h < np.finfo(h.dtype).eps * h.max()] = 0
sumh = h.sum()
if sumh != 0:
h /= sumh
return h
def get_results(self):
weighted_fm = np.mean(np.array(self.weighted_fms, dtype=_TYPE))
return dict(wFmeasure=weighted_fm)
class Medical(object):
def __init__(self, length):
self.Thresholds = np.linspace(1, 0, 256)
self.threshold_Sensitivity = np.zeros((length, len(self.Thresholds)))
self.threshold_Specificity = np.zeros((length, len(self.Thresholds)))
self.threshold_Dice = np.zeros((length, len(self.Thresholds)))
self.threshold_IoU = np.zeros((length, len(self.Thresholds)))
def Fmeasure_calu(self, pred, gt, threshold):
if threshold > 1:
threshold = 1
Label3 = np.zeros_like(gt)
Label3[pred >= threshold] = 1
NumRec = np.sum(Label3 == 1)
NumNoRec = np.sum(Label3 == 0)
LabelAnd = (Label3 == 1) & (gt == 1)
NumAnd = np.sum(LabelAnd == 1)
num_obj = np.sum(gt)
num_pred = np.sum(Label3)
FN = num_obj - NumAnd
FP = NumRec - NumAnd
TN = NumNoRec - FN
if NumAnd == 0:
RecallFtem = 0
Dice = 0
SpecifTem = 0
IoU = 0
else:
IoU = NumAnd / (FN + NumRec)
RecallFtem = NumAnd / num_obj
SpecifTem = TN / (TN + FP)
Dice = 2 * NumAnd / (num_obj + num_pred)
return RecallFtem, SpecifTem, Dice, IoU
def step(self, pred, gt, idx):
pred, gt = _prepare_data(pred=pred, gt=gt)
threshold_Rec = np.zeros(len(self.Thresholds))
threshold_Iou = np.zeros(len(self.Thresholds))
threshold_Spe = np.zeros(len(self.Thresholds))
threshold_Dic = np.zeros(len(self.Thresholds))
for j, threshold in enumerate(self.Thresholds):
threshold_Rec[j], threshold_Spe[j], threshold_Dic[j], \
threshold_Iou[j] = self.Fmeasure_calu(pred, gt, threshold)
self.threshold_Sensitivity[idx, :] = threshold_Rec
self.threshold_Specificity[idx, :] = threshold_Spe
self.threshold_Dice[idx, :] = threshold_Dic
self.threshold_IoU[idx, :] = threshold_Iou
def get_results(self):
column_Sen = np.mean(self.threshold_Sensitivity, axis=0)
column_Spe = np.mean(self.threshold_Specificity, axis=0)
column_Dic = np.mean(self.threshold_Dice, axis=0)
column_IoU = np.mean(self.threshold_IoU, axis=0)
return dict(meanSen=column_Sen, meanSpe=column_Spe, meanDice=column_Dic, meanIoU=column_IoU,
maxSen=column_Sen, maxSpe=column_Spe, maxDice=column_Dic, maxIoU=column_IoU)