SCALE Developer Document

Team SCALE

March 20, 2019

Contents

1	開発	本制	4
	1.1	概略	4
		1.1.1 体制	4
		1.1.2 リリースポリシー	4
	1.2	開発ツール	4
		1.2.1 Redmine	4
		1.2.2 GitLab	5
		1.2.3 Jenkins	5
		1.2.4 Doxygen	6
		1.2.5 メーリングリスト	6
	1.3	開発フロー	7
		1.3.1 役割	7
		1.3.2 チケット	7
		1.3.3 OODA $\mathcal{V} - \mathcal{T}$	7
		1.3.4 チケットの発行から解決まで	8
		1.3.5 ソースコードの変更からマージまで	9
0	TTO		
2	UG	口的近毛	11
2	UG 2.1	目的・活動	11 11
2	UG 2.1 2.2	目的・活動 SCALE Description	11 11 11
2	UG 2.1 2.2 2.3	目的・活動 SCALE Description SCALE User's Guide	 11 11 11 12 12
2	UG 2.1 2.2 2.3 2.4	目的・活動 SCALE Description	 11 11 11 12 12
2	UG 2.1 2.2 2.3 2.4 全体	目的・活動SCALE DescriptionSCALE DescriptionSCALE User's Guide 割は 連絡先	 11 11 12 12 14
2 3	UG 2.1 2.2 2.3 2.4 全体 3.1	目的・活動 SCALE Description SCALE User's Guide 連絡先 構造 ライブラリとモデル	 11 11 12 12 14 14
2	UG 2.1 2.2 2.3 2.4 全体 3.1 3.2	目的・活動 SCALE Description SCALE User's Guide 連絡先 構造 ライブラリとモデル ソースコード構造	 11 11 12 12 14 14 14
2 3	UG 2.1 2.2 2.3 2.4 全体 3.1 3.2	目的・活動 SCALE Description SCALE User's Guide 連絡先 構造 ライブラリとモデル ソースコード構造	 11 11 12 12 14 14 14 14
2 3 4	UG 2.1 2.2 2.3 2.4 全体 3.1 3.2 大気	目的・活動 SCALE Description SCALE User's Guide 連絡先 構造 ライブラリとモデル ソースコード構造 力学過程	 11 11 11 12 12 12 14 14 14 14 16 16
2 3 4	UG 2.1 2.2 2.3 2.4 全体 3.1 3.2 大気 4.1	目的・活動 SCALE Description SCALE User's Guide 連絡先 構造 ライブラリとモデル ソースコード構造 力学過程 SCALE-RM	 11 11 11 12 12 14 14 14 16 16 17
2 3 4	UG 2.1 2.2 2.3 2.4 全体 3.1 3.2 大気 4.1	目的・活動 SCALE Description SCALE User's Guide 連絡先 構造 ライブラリとモデル リースコード構造 力学過程 SCALE-RM 4.1.1 空間差分スキーム	 11 11 11 12 12 14 14 14 14 16 17 17
2 3 4	UG 2.1 2.2 2.3 2.4 全体 3.1 3.2 大気 4.1	目的・活動 SCALE Description SCALE User's Guide SCALE User's Guide 連絡先 第 ブラリとモデル SCALE ソースコード構造 SCALE-RM 4.1.1 空間差分スキーム 4.1.2 非負保証	 11 11 11 12 12 14 14 14 14 16 17 17 17
2 3 4	UG 2.1 2.2 2.3 2.4 全体 3.1 3.2 大気 4.1	目的・活動 SCALE Description SCALE User's Guide SCALE User's Guide 連絡先 連絡先 ブラリとモデル ジロン オブラリとモデル ジロン ク学過程 SCALE-RM ジロン 4.1.1 空間差分スキーム 4.1.2 非負保証 4.1.3 時間積分スキーム	 11 11 11 12 12 14 14 14 14 16 17 17 17 10
2 3 4	UG 2.1 2.2 2.3 2.4 全体 3.1 3.2 大気 4.1	目的・活動 SCALE Description SCALE User's Guide SCALE User's Guide 連絡先 連絡先 ブラリとモデル ジロン ソースコード構造 ジロン ケジ過程 SCALE-RM SCALE-RM ジロ 4.1.1 空間差分スキーム 4.1.2 非負保証 4.1.3 時間積分スキーム 4.1.4 袖領域データ交換	 11 11 12 12 14 14 14 16 17 17 19 10

5.1 乱流 20 5.1.1 Smagorinsky-Lilly model 20 5.1.2 Deardorff model 21 5.1.3 MYNN model 22 5.2 雲微物理 22 5.2.1 解いている雲微物理過程 23 5.2.2 雷モデル 24 5.3 エアロゾル微物理 25 5.4 放射 25 5.5 積雲バラメタリゼーション 25 5.5.1 Kain-Fritsch CPS 25 6.1 地表面フラックス 28 6.1 地表面フラックス 28 6.2 陸面 29 6.2.1 多層パケツモデル 30 6.3 海洋 30 6.3 海洋 30 6.4.1 Single urban canopy model: Kusaka et al.(2001) 31 7 I/O 33 7.1 設定・ログ 33 7.2 History・Restart 33 7.2 History・Restart 33 7.3 Extln 35 7.4 初期値・境界値 35 7.4.2 現実大気	5	大気物理過程 2				
5.1.1 Smagorinsky-Lilly model 20 5.1.2 Deardorff model 21 5.1.3 MYNN model 22 5.2 gk(h)mu 22 5.2.1 fw) T い S 雪微物理 23 5.2.2 ff et \vec{r} ル 24 5.3 x T ロ ゾ ル 微物理 25 5.4 放射 25 5.5 積重 パラ メ タ リ ゼ ー シ ョ ン 25 5.5.1 Kain-Fritsch CPS 25 5.5.1 Kain-Fritsch CPS 28 6.1 地表面 フ ラ ッ ク ス 28 6.2 陸面 29 6.2.1 多層 パケ ツ モ デ ル 30 6.3 海洋 30 6.3 海洋 ハー 30 6.4 都 市 キ ヤ ノ ビ ー 31 6.4.1 Single urban canopy model: Kusaka et al.(2001) 31 7 I/O 33 7.1 ソ ー ス コ ー ド 33 7.2 History · Restart 33 7.2 History · Restart 33 7.3 アム コ ー ド 34 7.4 羽期値 · 境界値		5.1	乱流			
5.1.2 Deardorff model 21 5.1.3 MYNN model 22 5.2 雪微物理 22 5.2.1 解いている雪微物理過程 23 5.2.2 雷モデル 24 5.3 エアロゾル微物理 25 5.4 放射 25 5.5 積雲バラメタリゼーション 25 5.5.1 Kain-Fritsch CPS 25 6.1 地表面フラックス 28 6.2 陸面 29 6.2.1 多層パケツモデル 30 6.3 海洋 30 6.3.1 水たまりモデル 30 6.4.1 Single wban canopy model: Kusaka et al.(2001) 31 7 I/O 33 7.1.1 ソースコード 33 7.2.1 ソースコード 34 7.3.1 ソースコード 35 7.4 初期値・境界値 35 7.4.1 理想実験 35 7.4.2 現実大気 35 8 3 net2g 8.3 net2g 39 8.4 コンパイルオブション 40			5.1.1 Smagorinsky-Lilly model			
5.1.3 MYNN model. 22 5.2 雲微物理 22 5.2.1 解いている雲微物理過程 23 5.2.2 雷モデル 24 5.3 エアロゾル微物理 25 5.4 放射 25 5.5 積雲パラメタリゼーション 25 6 下端モデル 28 6.1 地表面フラックス 29 6.2.1 多層バケツモデル 30 6.3 海洋 30 6.3.1 水たまりモデル 30 6.3.1 水たまりモデル 30 6.4.1 Single urban canopy model: Kusaka et al.(2001) 31 7 I/O 33 7.1 設定・ログ 33 7.1 設定・ログ 33 7.2 History・Restart 33 7.3 Extln 34 7.3.1 ソースコード 35 7.4 初期値・境界値 35 7.4.2 現実大気 35 8 ツール群 37 8.3 net2g 38 8.3 net2g 39 8.4 コンパイルオブション 40 8.5 統計情報モニター 41 8.6 Conf Generator 42 8.6 Conf Generator 42 8.6.1 使い方 42 9 テスト 44			5.1.2 Deardorff model			
5.2 雲微物理 22 5.2.1 解いている雲微物理過程 23 5.2.2 雷モデル 24 5.3 エアロゾル微物理 25 5.4 放射 25 5.5 積雲パラメタリゼーション 25 5.5.1 Kain-Fritsch CPS 25 6 下端モデル 28 6.1 地表面フラックス 28 6.2 陸面 29 6.2.1 多層パケツモデル 30 6.3 海洋 30 6.3.1 水たまりモデル 30 6.4 都市キャノビー 31 6.4.1 Single urban canopy model: Kusaka et al.(2001) 31 7.1 設定・ログ 33 7.1 設定・ログ 33 7.2.1 ソースコード 34 7.3 ExtIn 34 7.3 ExtIn 34 7.3 ExtIn 35 7.4 初期値・境界値 35 7.4.1 理想実験 35 7.4.2 現実大気 35 8 ツール群 37 8.3 net2g 39 8.4 コンパイルオブション 40 8.5 統計情報モニター 41 8.5 Conf Generator 42 8.6 Conf Generator 42 8.6.1 使い方 44			5.1.3 MYNN model			
5.2.1 解いている雲微物理過程 23 5.2.2 雷モデル 24 5.3 エアロゾル微物理 25 5.4 放射 25 5.5 積雲パラメタリゼーション 25 5.5.1 Kain-Fritsch CPS 25 6 下端モデル 28 6.1 地表面フラックス 28 6.2 陸面 29 6.2.1 多層パケツモデル 30 6.3 海洋 30 6.3 海洋 30 6.3 市洋・ハ 30 6.4 都市キャノビー 31 6.4.1 Single urban canopy model: Kusaka et al.(2001) 31 7 I/O 33 7.1 設定・ログ 33 7.1.1 ソースコード 33 7.2 History・Restart 33 7.3 ExtIn 34 7.3.1 ソースコード 35 7.4 初期値・境界値 35 7.4.2 現実大気 35 7.4.2 現実大気 35 7.4.2 現実大気 35 8 ツール群 37 8.3 net2g 39 8.4 コンパイルオプション 40 8.5.1 ソースコード 42 8.6 Conf Generator 42 8.6.1 使い方 42		5.2	雲微物理			
5.2.2 雷モデル 24 5.3 エアロゾル微物理 25 5.4 放射 25 5.5 積雲パラメタリゼーション 25 5.5.1 Kain-Fritsch CPS 25 6 下端モデル 28 6.1 地表面フラックス 29 6.2 陸面 29 6.2 陸面 29 6.3 海洋 30 6.3 海洋 30 6.4 都市キャノピー 30 6.4.1 Single urban canopy model: Kusaka et al.(2001) 31 6.4.1 Single urban canopy model: Kusaka et al.(2001) 31 7.1 設定・ログ 33 7.1.1 ソースコード 33 7.2.1 ソースコード 34 7.3 ExtIn 34 7.3 ExtIn 34 7.3 Lt1 ソースコード 7.4 初期値・境界値 35 7.4.1 理想実験 35 7.4.2 現実大気 35 8 ツール群 37 8.3 net2g 39 8.4 コンパイルオプション 40 8.5.1 ソースコード 42 8.6 Conf Generator 42 8.6.1 使い方 42			5.2.1 解いている雲微物理過程 23			
5.3 エアロゾル微物理 25 5.4 放射 25 5.5 積雲パラメタリゼーション 25 5.5.1 Kain-Fritsch CPS 28 6.1 地表面フラックス 28 6.2 陸面 29 6.2.1 多層パケツモデル 30 6.3 海洋 30 6.4 都市キャノピー 30 6.4.1 Single urban canopy model: Kusaka et al.(2001) 31 7 I/O 33 7.1 設定・ログ 33 7.1.1 ソースコード 33 7.2.1 ソースコード 34 7.3 Extln 35 7.4 初期値・境界値 35 7.4.2 現実大気 35 7.4.2 現実大気 35 8 ツール群 37 8.1 CONeP 37 8.2 Bulk Job System 38 8.3 net2g 39 8.4 コンパイルオプション 40 8.5.1 ソースコード 41 8.5.1 ソースコード 42 8.6 Conf Generator 42 8.6.1 使い方 42			5.2.2 雷モデル 24			
5.4 放射 25 5.5 積雲パラメタリゼーション 25 5.5.1 Kain-Fritsch CPS 25 6 下端モデル 28 6.1 地表面フラックス 28 6.2 陸面 29 6.2 陸面 29 6.3 海洋 30 6.3 市羊・ 30 6.4 都市キャノピー 30 6.4.1 Single urban canopy model: Kusaka et al.(2001) 31 7 I/O 33 7.1 設定・ログ 33 7.1 以一スコード 33 7.2 History・Restart 33 7.3 Extln 34 7.3.1 ソースコード 35 7.4 初期値・境界値 35 7.4.2 現実大気 35 8 ツール群 37 8.1 CONeP 37 8.2 Bulk Job System 38 8.3 net2g 39 8.4 コンパイルオプション 40 8.5.1 ツースコード 41 8.5.1 ツースコード 42 8.6 Conf Generator 42 8.6.1 使い方 42		5.3	エアロゾル微物理 25			
5.5 積雲パラメタリゼーション 25 5.5.1 Kain-Fritsch CPS 25 6 下端モデル 28 6.1 地表面フラックス 28 6.2 陸面 29 6.2.1 多層パケツモデル 30 6.3 海洋 30 6.4 都市キャノピー 30 6.4 都市キャノピー 31 6.4.1 Single urban canopy model: Kusaka et al.(2001) 31 7 I/O 33 7.1 設定・ログ 33 7.1.1 ソースコード 33 7.2.1 ソースコード 34 7.3 ExtIn 34 7.3.1 ソースコード 34 7.3.1 ソースコード 35 7.4 初期値・境界値 35 7.4.2 現実大気 35 8 ツール群 37 8.1 CONeP 37 8.2 Bulk Job System 38 8.3 net2g 39 8.4 コンパイルオブション 40 8.5 統計情報モニター 41 8.5 (Conf Generator 42 8.6 Conf Generator 42 8.6.1 使い方 42		5.4	放射			
5.5.1 Kain-Fritsch CPS. 25 6 下端モデル 28 6.1 地表面フラックス 28 6.2 陸面 29 6.2.1 多層パケツモデル 30 6.3 海洋 30 6.3.1 水たまりモデル 30 6.3.1 水たまりモデル 30 6.4 都市キャノピー 31 6.4.1 Single urban canopy model: Kusaka et al.(2001) 31 7 I/O 33 7.1 設定・ログ 33 7.1 以定・ログ 33 7.1 リースコード 33 7.2 History · Restart 33 7.3 ExtIn 34 7.3.1 ソースコード 35 7.4 初期値・境界値 35 7.4.2 現実大気 35 7.4.2 現実大気 35 7.4.2 現実大気 37 8.3 net2g 39 8.4 コンパイルオプション 40 8.5 統計情報モニター 41 8.5.1 ソースコード 42		5.5	積雲パラメタリゼーション 25			
6下端モデル286.1地表面フラックス296.2陸面296.2.1多層バケツモデル306.3海洋306.3.1水たまりモデル306.4都市キャノピー316.4.1Single urban canopy model: Kusaka et al.(2001)317I/O337.1設定・ログ337.1.1ソースコード337.2.1ソースコード347.3ExtIn347.3.1ソースコード357.4初期値・境界値357.4.2現実大気358ツール群378.1CONeP378.3net2g398.4コンパイルオプション408.5統計情報モニター418.5.1ソースコード428.6.1使い方429テスト44			5.5.1 Kain-Fritsch CPS $\dots \dots \dots$			
6 下晒モデル 28 6.1 地表面フラックス 28 6.2 陸面 29 6.2.1 多層バケツモデル 30 6.3 海洋 30 6.3.1 水たまりモデル 30 6.4 都市キャノピー 31 6.4.1 Single urban canopy model: Kusaka et al.(2001) 31 7 I/O 33 7.1 設定・ログ 33 7.1.1 ソースコード 33 7.2.1 ソースコード 34 7.3 ExtIn 34 7.3.1 ソースコード 35 7.4 初期値・境界値 35 7.4.1 理想実験 35 7.4.2 現実大気 35 8 ツール群 37 8.3 net2g 39 8.4 コンパイルオプション 40 8.5 統計情報モニター 41 8.5.1 ソースコード 42 8.6 Conf Generator 42 8.6.1 使い方 42	0	- - - 1:11				
6.1<地衣面 ノラックス 28 6.2<陸面 29 6.2.1 多層バケツモデル 30 6.3<海洋 30 6.3.1 水たまりモデル 30 6.4 都市キャノピー 31 6.4.1 Single urban canopy model: Kusaka et al.(2001) 31 7 I/O 33 7.1 設定・ログ 33 7.1.1 ソースコード 33 7.2.1 ソースコード 34 7.3 ExtIn 34 7.3 ExtIn 35 7.4 初期値・境界値 35 7.4.2 現実大気 35 8 ツール群 37 8.3 net2g 39 8.4 コンパイルオプション 40 8.5 統計情報モニター 41 8.5.1 ソースコード 42 8.6 Conf Generator 42 8.6.1 使い方 42	6	下垢	「モアル 28 地主西コニックコ 20			
6.2 陸間 29 6.2.1 多層パケツモデル 30 6.3 海洋 30 6.3.1 水たまりモデル 30 6.4 都市キャノピー 31 6.4.1 Single urban canopy model: Kusaka et al.(2001) 31 7 I/O 33 7.1 設定・ログ 33 7.1 リーン 33 7.2 History · Restart 33 7.2.1 ソースコード 34 7.3 Extln 34 7.3 Extln 34 7.3.1 ソースコード 35 7.4 初期値・境界値 35 7.4.2 現実大気 35 7.4.2 現実大気 35 8 ツール群 37 8.3 net2g 39 8.4 コンパイルオプション 40 8.5 統計情報モニター 41 8.5.1 ソースコード 42 8.6 Conf Generator 42 8.6.1 使い方 42		0.1	地衣面ノフツクス			
6.2.1 多層ハケノモナル 30 6.3 海洋 30 6.3.1 水たまりモデル 30 6.4 都市キャノピー 31 6.4.1 Single urban canopy model: Kusaka et al.(2001) 31 7 I/O 33 7.1 設定・ログ 33 7.1 リースコード 33 7.2 History · Restart 33 7.2.1 ソースコード 34 7.3 ExtIn 34 7.3 ExtIn 34 7.3 I ソースコード 35 7.4 初期値・境界値 35 7.4.2 現実大気 35 8 ツール群 37 8.1 CONeP 37 8.2 Bulk Job System 38 8.3 net2g 39 8.4 コンパイルオプション 40 8.5 統計情報モニター 41 8.5.1 ソースコード 42 8.6 Conf Generator 42 8.6.1 使い方 42		6.2	座山			
6.3.1 水たまりモデル 30 6.4 都市キャノピー 31 6.4.1 Single urban canopy model: Kusaka et al.(2001) 31 7 I/O 33 7.1 設定・ログ 33 7.1 以フスコード 33 7.2 History・Restart 33 7.2 History・Restart 33 7.3 ExtIn 34 7.3 ExtIn 34 7.3 ExtIn 34 7.4 初期値・境界値 35 7.4.1 理想実験 35 7.4.2 現実大気 35 8 ツール群 37 8.1 CONeP 37 8.2 Bulk Job System 38 8.3 net2g 39 8.4 コンパイルオプション 40 8.5 統計情報モニター 41 8.5.1 ソースコード 42 8.6 Conf Generator 42 8.6.1 使い方 42		6 9	0.2.1 多増ハクワモナル 30 海洋 20			
6.3.1 ホたまサノビー 30 6.4 都市キャノビー 31 $6.4.1$ Single urban canopy model: Kusaka et al.(2001) 31 7 I/O 33 7.1 設定・ログ 33 7.1 設定・ログ 33 7.1 ジー 33 7.1 ジースコード 33 $7.2.1$ ゾースコード 34 7.3 ExtIn 34 7.3 ExtIn 34 $7.3.1$ ゾースコード 35 7.4 初期値・境界値 35 $7.4.2$ 現実大気 35 8 ツール群 37 8.1 CONeP 37 8.2 Bulk Job System 38 8.3 net2g 39 8.4 コンパイルオプション 40 8.5 統計情報モニター 41 $8.5.1$ ソースコード 42 8.6 Conf Generator 42 $8.6.1$ 使い方 42		0.3	一 伊子 · · · · · · · · · · · · · · · · · ·			
6.4 福田中年ヤアビー 31 $6.4.1$ Single urban canopy model: Kusaka et al.(2001) 31 7 I/O 33 7.1 設定・ログ 33 7.1 ジースコード 33 7.2 リースコード 34 7.3 ExtIn 34 7.3 ExtIn 34 7.3 ビースコード 35 7.4 初期値・境界値 35 $7.4.2$ 現実大気 35 $7.4.2$ 現実大気 35 $7.4.2$ 現実大気 37 8.1 CONeP 37 8.3 net2g 39 8.4 コンパイルオプション 40 8.5 統計情報モニター 41 8.5 統計情報モニター 41 8.6 Conf Generator 42 $8.6.1$ 使い方 42 9 $\overline{7}スト 44$		6 1	0.3.1 小によりモリル			
7 I/O 33 7.1 設定・ログ 33 7.1 ソースコード 33 7.2 History・Restart 33 7.2.1 ソースコード 34 7.3 ExtIn 34 7.3.1 ソースコード 35 7.4 初期値・境界値 35 7.4.1 理想実験 35 7.4.2 現実大気 35 8 ツール群 37 8.1 CONeP 37 8.2 Bulk Job System 38 8.3 net2g 39 8.4 コンパイルオプション 40 8.5 統計情報モニター 41 8.5.1 ソースコード 42 8.6 Conf Generator 42 8.6.1 使い方 42		0.4	$\begin{array}{cccc} \text{fluid} & \text$			
7I/O337.1設定・ログ337.1.1 $\mathcal{Y} - \mathcal{X} = \mathcal{I} = \mathcal{I}$ 337.2History・Restart337.2.1 $\mathcal{Y} - \mathcal{X} = \mathcal{I} = \mathcal{I}$ 347.3ExtIn347.3ExtIn347.3ExtIn347.4 $\mathcal{I} = \mathcal{I} = \mathcal{I} = \mathcal{I}$ 357.4 $\mathcal{I} = \mathcal{I} = \mathcal{I} = \mathcal{I}$ 357.4.1 $\mathcal{I} = \mathcal{I} = \mathcal{I} = \mathcal{I}$ 357.4.2 $\mathcal{I} = \mathcal{I} = \mathcal{I} = \mathcal{I}$ 358 $\mathcal{Y} - \mathcal{I} = \mathcal{I}$ 378.1CONeP378.2Bulk Job System388.3net 2g398.4 $\mathcal{I} \vee \mathcal{I} \wedge \mathcal{I} \vee $			0.4.1 Single urban canopy model. Rusaka et al. (2001) 51			
7.1 設定・ログ 33 7.1.1 ソースコード 33 7.2 History・Restart 33 7.2.1 ソースコード 34 7.3 ExtIn 34 7.3.1 ソースコード 35 7.4 初期値・境界値 35 7.4.2 現実大気 35 7.4.2 現実大気 35 8.1 CONeP 37 8.2 Bulk Job System 38 8.3 net2g 39 8.4 コンパイルオプション 40 8.5 統計情報モニター 41 8.6 Conf Generator 42 8.6 Conf Generator 42 8.6.1 使い方 42	7	I/O	33			
7.1.1 ソースコード 33 7.2 History · Restart 33 7.2.1 ソースコード 34 7.3 ExtIn 35 7.4 初期値・境界値 35 7.4.1 理想実験 35 7.4.2 現実大気 35 8 ツール群 37 8.1 CONeP 37 8.2 Bulk Job System 38 8.3 net2g 39 8.4 コンパイルオプション 40 8.5 統計情報モニター 41 8.6 Conf Generator 42 8.6.1 使い方 42 9 テスト 44 <th>-</th> <td>7.1</td> <td>設定・ログ 33</td>	-	7.1	設定・ログ 33			
7.2History・Restart33 7.2.1347.3ExtIn347.3ExtIn347.3.1 $\mathcal{Y} - \mathcal{X} \exists - \mathbb{K}$ 357.4初期値・境界値357.4.1理想実験357.4.2現実大気358 $\mathcal{Y} - \mathcal{V}$ 群378.1CONeP378.2Bulk Job System388.3net2g398.4 $\exists \mathcal{V} \mathcal{N} \mathcal{I} \mathcal{V} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} \exists \exists \mathcal{V}$ 408.5統計情報モニター418.5.1 $\mathcal{Y} - \mathcal{X} \exists - \mathbb{K}$ 429 $\mathcal{T} \mathcal{X} \mathbb{K}$ 44			7.1.1 ソースコード			
7.2.1 ソースコード 34 7.3 ExtIn 34 7.3 ExtIn 34 7.3.1 ソースコード 35 7.4 初期値・境界値 35 7.4.1 理想実験 35 7.4.2 現実大気 35 7.4.2 現実大気 35 8 ツール群 37 8.1 CONeP 37 8.2 Bulk Job System 38 8.3 net2g 39 8.4 コンパイルオプション 40 8.5 統計情報モニター 41 8.5.1 ソースコード 42 8.6 Conf Generator 42 8.6.1 使い方 42 9 テスト 44		7.2	History \cdot Restart $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 33$			
7.3 ExtIn 34 $7.3.1$ $y - \lambda \exists - k$ 7.4 初期値・境界値 7.4.1 理想実験 7.4.2 現実大気 8 $y - \lambda \ddot{x}$ 8 $y - \lambda \ddot{x}$ 8.1 CONeP 8.2 Bulk Job System 8.3 net2g 8.4 $\exists \gamma n \lambda \pi J^2 \psi \exists \gamma \lambda$ 8.5 統計情報モニター 8.5 統計情報モニター 8.6 Conf Generator 8.6.1 使い方 9 $\overline{\gamma} Z h$			7.2.1 ソースコード			
7.3.1 ソースコード 35 7.4 初期値・境界値 35 7.4.1 理想実験 35 7.4.2 現実大気 35 7.4.2 現実大気 35 8 ツール群 37 8.1 CONeP 37 8.2 Bulk Job System 38 8.3 net2g 39 8.4 コンパイルオプション 40 8.5 統計情報モニター 41 8.5.1 ソースコード 42 8.6 Conf Generator 42 8.6.1 使い方 42 9 テスト 44		7.3	ExtIn			
7.4 初期値・境界値 35 7.4.1 理想実験 35 7.4.2 現実大気 35 8 ツール群 37 8.1 CONeP 37 8.2 Bulk Job System 38 8.3 net2g 39 8.4 コンパイルオプション 40 8.5 統計情報モニター 41 8.5.1 ソースコード 42 8.6 Conf Generator 42 8.6.1 使い方 42			7.3.1 ソースコード 35			
7.4.1理想実験 		7.4	初期値・境界値35			
7.4.2現実大気358ツール群378.1CONeP378.2Bulk Job System388.3net2g398.4 $\neg \vee \wedge \wedge \pi \neg \vee \neg \neg \neg \neg \vee \neg \rightarrow \vee \neg \rightarrow \vee$ 408.5統計情報モニター418.5.1 $\lor - \varkappa \neg \neg - \vee \vee$ 8.6Conf Generator428.6.1使い方429テスト44			7.4.1 理想実験			
8 ツール群 37 8.1 CONeP 37 8.2 Bulk Job System 38 8.3 net2g 39 8.4 コンパイルオプション 40 8.5 統計情報モニター 41 8.5.1 ソースコード 42 8.6 Conf Generator 42 8.6.1 使い方 42 9 テスト 44			7.4.2 現実大気			
 8 ツール群 37 8.1 CONeP						
 8.1 CONeP	8	ツー	・ル群 37			
 8.2 Bulk Job System		8.1	CONeP			
8.3 net2g		8.2	Bulk Job System			
8.4 コンハイルオブジョン 40 8.5 統計情報モニター 41 8.5.1 ソースコード 42 8.6 Conf Generator 42 8.6.1 使い方 42 9 テスト 44		8.3	$\operatorname{net}_{2g} \ldots 39$			
 8.5 統計情報モーター		8.4	コンハイルオフンヨン			
8.5.1 ノースコート		8.5	統計 間報 セーター ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 41 $ $			
8.6 Com Generator 42 8.6.1 使い方 42 9 テスト 44		0.0	$8.5.1 7 = 5 = 5 \cdot \cdot$			
8.0.1 使い方 42 9 テスト 44		8.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
9 テスト 44			0.0.1 1欠v ¹ 刀			
~ , , , , 11	9	テス				
9.1 Test Case	5	9.1	Test Case			
9.1.1 unit test		0.1	9.1.1 unit test \dots			
9.1.2 test case \ldots 44			9.1.2 test case			
9.2 CI		9.2	CI			

執筆のための注意点

本ドキュメントの目的は、読者が概要を把握するために必要な要点の記述 と、詳細を調べる際に必要となる他のドキュメントや参考文献、ソースコー ドなどへのポインタを示すことである。

各自、自分の担当部分の執筆を行い、\input で指定されているファイル名で保存する。書き方は 5.1章のテンプレート(phy_tb_sample.tex)を参考に。節の構造は原則テンプレートに従うこととするが、必要であれば変更しても良い。物理過程以外の部分の節構造はそれぞれの執筆者が適切だと思うように設定する。各自の発表資料および SCALE_Week_2017春-メモ.docx の内容を適宜 copy & paste する。

参考文献の引用は \citep or \citet を使用すること (ref. http://www. biwako.shiga-u.ac.jp/sensei/kumazawa/tex/natbib.html). reference.bib の編集は、他の人の編集とコンフリクトする可能性があるので、他の人の編 集内容を消してしまわないように注意すること。 scale/doc/description/reference.bib への反映はまとめて行うため、各自で行う必要はない。

ファイル名やモジュール名を記述するときは \name{} コマンドを使うこと。

締め切り: 6/2(金)

開発体制

1.1 概略

1.1.1 体制

SCALE の開発グループは、Team SCALE と呼ばれる。開発のタスク等は Redmine (1.2節参照) によりチケット管理されており、原則、Redmine 上で 議論や方針の通知が行われる。別途、月に一度程度開発者ミーティングを行 い、現状の共有や Redmine 上ではやりにくい議論を行っている。

Team SCALE の中には、SCALE Core と User's Group (UG¹) の2つのサ ブグループが組織されている。 SCALE Core グループは開発のマネージメン トを行う。主に、チケットの管理 (優先順位の設定、担当者アサイン)、フィ ーチャーブランチのレビューアーアサインなどを行っている。 UG は、ユー ザー視点から開発のドライブを行う。マニュアルの整備やユーザーからの質 問等の管理、ユーザー利便性向上のための提案等を行っている。

1.1.2 リリースポリシー

開発は、develop ブランチに対して行われており、リリースに合わせて master ブランチが更新される (1.3節参照)。リリースには、メジャーリリース、マイ ナーリリース、バグフィックスリリースがある。バグフィックスリリースは 致命的なバグが発見された場合に、最新版のリリースに対する修正版となる。 メジャーリリースとマイナーリリースの明確な定義は決まってはいないが、 これまでは、内部構造や設定項目が大きく変わったときにメジャーリリース とした。ある程度定義を決めておくべきであろう。

1.2 開発ツール

SCALE開発で使用しているツールやメーリングリストを紹介する。

1.2.1 Redmine

Redmineとは?

• Webベースのプロジェクト管理ソフトウェア

¹User's Group または User's Guide はともに UG と称されている

- タスク管理・進捗管理(チケット)、情報共有(Wiki)が可能
- ソフトウェア開発の現場で10年前から使われているスタンダードなツ ール

SCALE開発における役割

- 開発の知見の蓄積、保存が大きな目的。今後新たに開発に参加した人も、過去の経過を見ることが出来る。
- 利用頻度が高いのはチケットの発行・閲覧・更新
- 発行・更新されたチケット・wikiの内容はメールで開発メンバーに周知 される
- チケットの内容に関する議論についてもredmine上に残しておく
- 対応済みチケットは開発ミーティングでフォローアップ
- Ranchu上で運用されている (https://ranchu.aics.riken.jp/redmine)

1.2.2 GitLab

GitLabとは?

- WebベースのGitリポジトリ管理ソフトウェア (ClosedなGitHubのよう なもの)
- マージリクエストの発行といったコラボレーションを促進するための 機能
- コミットの内容やブランチの分岐の歴史をグラフィカルに確認可能

SCALE開発における役割

- 開発者(非管理者)的にはマージリクエストが主な用途
- 管理者的には権限設定や鍵の管理などユーザ管理が容易というメリットがある
- Ranchu上で運用されている (http://ranchu.aics.riken.jp/gitlab/)

1.2.3 Jenkins

Jenkinsとは?

- 継続的インテグレーション(CI)ツール → バグを早期に発見する
- ビルド・テストを自動化する
- CIツールのデファクトスタンダード(最近は競合も?)

SCALE開発における役割

- Gitリポジトリへのコミットを契機としてコンパイル・テストを行う
- コンパイル結果やテストケース実行結果の可視化画像をブラウザ上で 確認可能

- 居室のディスプレイで常時モニタリングしている

• Pearlscale上で運用されている (http://pearlscale.aics27.riken.jp/jenkins/)

1.2.4 Doxygen

Doxygenとは?

- ソースコード構造をドキュメント化するためのツール
- ソースコードそのものとソースコード中のコメントを解析しHTMLやLaTeX形式のドキュメントを生成する
- C, Java, Pythonなど様々な言語に対応。Fortranでも使える

SCALE開発における役割

- 開発時にはソースコード中にDoxygenに対応したコメントを付加する
- パッケージの中(scale-rm/doc)にDoxygen実行用のMakefileが用意されて いる
- リリース版で生成したHTML形式のドキュメントをSCALEホームページ(http://scale.aics.riken.jp/doc/5.1.2/index.html)で公開

1.2.5 メーリングリスト

- 情報基盤センターで運用しているMLサービス(GNU Mailman)を使用
- SCALE開発で使用しているのは以下の3つ
 - 開発者用(scale-dev@ml.riken.jp)
 - * 開発者間の情報共有に用いる
 - * 開発ミーティングのアナウンスなど
 - ユーザ用(scale-users@ml.riken.jp)
 - * 一般ユーザとの情報交換に用いる
 - * リリース時の周知など
 - 管理者用(scale@ml.riken.jp)
 - * ユーザ用MLへの登録窓口

1.3 開発フロー

SCALEの開発には、チケット駆動開発ワークフローを採用している。これは多くのソフトウェアにおいて採用されている開発手法であり、同時並行での共同作業に向いている。加えて、ソースコードのリポジトリ管理にはgit-flowモデルを採用している。これはgitをベースとしたワークフローの手法の一つで、たくさんの変更が同時進行で行われていても、最終的に整然とした履歴を残すことが出来る優れた開発モデルである (https://danielkummer.github.io/git-flow-cheatsheet/index.ja_JP.html)。これを読む人はこれらのワークフローを理解し、積極的に共同開発に参加してもらいたい。自らの手元で死に絶え、日の目を見ない派生版ソースコードがなくなりますように。

1.3.1 役割

開発に関係する人は主に3種類に分類される。

- ユーザー:開発に対しては、要望や報告の形でコミットする人
- 開発者:コーディングなど、アプリケーションの実際の開発を行う人
- 管理者:開発者の中で、開発ブランチやリリースブランチの更新を行う 権限を持った人

管理者はソースコードの変更依頼(マージリクエスト)に対して、コードレ ビューを行う人でもある。

1.3.2 チケット

チケットとは、単一の目的を持ったタスクにつけられた札である。開発はチ ケットを中心として進行する。チケットは完了されるために発行される。だ からこそ、以下の点について心に留めておいてもらいたい。

- 完了条件のないチケットは作らない
- 壮大な課題を立ち上げていつまでも終わらないより、内容を細分化して 個々のチケットに割り当て、順に片付けていくようにする
- やるほどゴールが遠ざかっていくような問題は、ある程度になったら、
 完了できるところまででタスクを分割し、チケットを分ける
- 完璧なタスクの完遂、完璧なソフトウェアなど存在しないので、凝りす ぎず悩みすぎず、まず終わらせる

1.3.3 OODAループ

OODAループとは、チケット駆動開発の中での意思決定手順にあたる。以下の4つの頭文字をとってOODA(ウーダ)と呼ぶ。

- Observe: バグに気が付いたり、機能を増やしたいと思いつく
- Orient: 重要度の認識や、議論と検討を行う
- Decide: 担当者の決定、優先度の設定

• Act: 実際の作業を行う(コードを書く、実験をする、等)

これらのサイクルの各フェーズは、チケットのそれぞれの状態に対応してい る。すなわち、

- Observe="New"
- Orient="Discussion"
- Decide="Assigned"
- Act→ソースコード変更(または実験結果報告)を経て"Complete"

である。以下でフローの詳細について説明する。

1.3.4 チケットの発行から解決まで

[Observe="New"]

バグに気が付いたり、機能を増やしたいと思いついたり、テストすべき事柄 を認識したユーザー・開発者は、これを報告する。すべての開発者、ユーザ ーが観察者である。開発者はredmineに自らチケットを発行する。ユーザーか らの要望は、UG委員会が代わりにチケットを発行する。発行の際に留意する 点は以下の通りである。

- 何をするためのチケットなのか、一目でわかる題名にする
- ステータス欄はNewに設定
- カテゴリ欄に該当するものがあれば選ぶ
- 優先度、対象バージョン、担当者、期日などの欄は入力しなくてよい

SCALE Core グループは発行されたチケットを振り分ける。

- 開発マイルストーンに従って対象バージョンを決定する
- まだ議論に乗せないものはNewのまま
- 今議論すべきものはDiscussionへ
- 議論の余地なく意思決定に進むもの(バグ修正など)はAssignへ
- 必要に応じて更に優先度を設定する
- ・付随するチケット(ドキュメントの追加修正)がある場合は併せて発行 する

[Orient="Discussion"]

Discussionとなった事柄について、開発者間で議論する。議論の必要がある開 発案件とは、いわばSCALEの開発の歴史における曲がり角である。絶対的な 正解などなく、これまでの経験や開発ポリシーを踏まえて考えていく必要の ある事柄に相当する。この議論の中で、SCALEらしさが育つと考えられる。 議論は、その経過を将来にわたり検索できる形で残しておきたい。そのため、 なるべくredmineに書き込むようにする。

[Decide="Assigned"]

SCALE Core グループが決定者としての役を担い、意思決定を行う。まず、 このタスクを実行するかしないかの決定を行い、実行するとなった場合には チケットのステータスをAssignに変更し、さらに以下の事項を決める。

- 担当者
- 期日(担当者に決めてもらう場合も多い)
- 対象バージョン(変更の必要があれば)

[Act→"Complete"]

チケットの担当者は実際のソースコードの変更や実験の実行を行う。ソース コードの場合は次の1.3.5に説明する通り、作業内容をgitにプッシュし、マー ジリクエストを行う。コードレビューを経て、変更はマージされる。テスト 評価等の場合、結果をredmineにチケットのコメントとして残しておき、内容 を開発ミーティング等で報告する。ミーティングでの議論を踏まえて、作業 を継続する完了するかをその場で判断する。継続の場合は完了まで追加のテ ストを進める。

タスクが完了したら、チケットのステータスはcompleteへ変更される。

1.3.5 ソースコードの変更からマージまで

チケットのタスクがソースコードの追加や修正である場合、以下に説明す るフロー (git-flowモデルの手法) に従って進める。最終的に変更分は最新 の開発ブランチに取り込まれる。フローでは、gitのコマンドを用いた作業、 gitlab、redmine上での操作にそれぞれ(git)(gitlab)(redmine)のタグをつけてあ る。

ソースコードの入手

- (git) リポジトリをcloneして、checkoutする
- (git) developブランチから新たなfeatureまたはhotfixを分岐させる(ト ピックブランチ)

トピックブランチでの作業

- (git) 手元での変更分をcommit (コメントにredmineの該当チケット番号 を付加してもよい)
- (git) 必要に応じて親リポジトリの変更をフォロー(=rebase)

リモートへのpush

- (git) 親リポジトリヘトピックブランチをpush
- (gitlab) トピックブランチのマージリクエストを作成
 - コミット時にredmineのチケット番号を付加
 - Assign toは空欄で良い(指名してもよい)

レビュー

- (gitlab) SCALE Core グループがレビューアをアサイン
- (redmine) レビューアは該当するチケットにレビューのコメントを付け る
- (git) レビューを受けて、必要であればブランチに追加commitしてpush

マージ

- (gitlab) レビューアはOKになったら、developブランチへマージを実行。
 必要ならマージの前にrebaseする
- (redmine) マージが完了したら、redmineのチケットに "commit:」コミット番号; でマージ"等のコメントを入れて、チケットのステータスをcompleteに変更する

UG

2.1 目的·活動

UG活動は、SCALEのユーザーがモデルを使用したり、内容について理解す る際のサポート活動の総称である。主な活動として、1)SCALEの機能及び 使い方に関する説明書であるユーザーズガイドの作成、2)SCALEの各コン ポーネントのインプリメンテーションを説明したModel descriptionの整備、 3)メーリングリストに投稿された質問対応などのユーザー対応、4)講習 会等の実施、がある。これらの活動は全ての開発者全員で担当するが、UG core委員会(UGC)は、これらの業務の実施計画を立て、適任者への担当の 割り振りを行うといったマネジメント業務を行っている。本活動の目的は、 ユーザーの利便性の充実にあるが、実際には、開発者自身の整理や記録、ま た、後続の開発者にもわかるような軌跡を文書として残すという面もあり重 要な活動である。

2.2 SCALE Description

文書のソースディレクトリ scale/doc/descriptions

文書の公開先

https://scale.aics.riken.jp/doc/index.html https://scale.aics.riken.jp/ja/doc/index.html SCALEのリリースとともにscale_rm_description-X.X.X.pdfという ファイル名で公開する。 X.X.Xはバージョン番号。

執筆者

原則、コードを書いた人が担当部分について書く。

進捗管理

原則、インプリと同じタイミングで執筆する。現在(17/5/31時点)は 進捗管理を行っていないが、今後、定期的にupdateするシステムが必要 である。

- 基本的には、支配方程式を示すとともに、離散化後の形式も示し、 文書とコードが1対1対応するように、コードに書いたことを全て文章にする。
- ・論文に書いているものは論文を引用しても良いが、論文に書かれていない細かい情報、更新した情報も加える。
- 各パラメータについても、本論文と値が異なる場合には、根拠等 を記載する。
- コードを読んだ人が、SCALE descriptionを読めば、詳細を理解出 来ることが目安である。

2.3 SCALE User's Guide

文書のソースディレクトリ

scale/doc/users-guide

文書の公開先

https://scale.aics.riken.jp/doc/index.html https://scale.aics.riken.jp/ja/doc/index.html SCALEのリリースとともにバージョン名を入れて公開。 scale_users_guide.vX.X.X.pdf: SCALE-RM 日本語版。 scale_users_guide_En.vX.X.X.pdf: SCALE-RM 英語版。 SCALE-GMは準備中。 X.X.Xはバージョン番号。

執筆者

開発者全員が対象だが、UGCによりアサインされる。

進捗管理

Redmineのチケットで管理。

執筆の流れ

- 新たな機能を追加、既存の機能を変更など、ユーザーに見える部 分で変更があった場合、コードを書いた人がRedmineのチケットを 切る。具体的には、ネームリストの変更や追加があった場合には、 該当することが多い。
- UGCは各チケットに担当者をアサインする。必ずしもコードを書いた人とは限らない。これは、機能レビューを兼ねているためである。開発担当者が文書も書く場合には、マージの際にレビューを行う。
- アサインされた人は、期日までに執筆を行い、マージリクエストを出す。
- 4. 日本語版と英語版の両方を更新する。

2.4 連絡先

第1.2.5節で紹介した通り、ユーザー用MLや管理者アドレスにおいて、 SCALEに関する質問や要望を受け付けている。そこで受け付けた質問や 要望は、図2.4.1のフローに沿って対応する。

Figure 2.4.1: ユーザー対応フロー。

全体構造

3.1 ライブラリとモデル

SCALE は Scalable Computing for Advanced Library and Environment であ り、ライブラリ環境であると謳っている。アプリケーションであるモデルや 解析ツール等は、ライブラリが提供するコンポーネントのなかで必要なもの を適切に呼びだすことで目的の計算を行うという使い方を想定している。例 えば SCALE-RM では、以下のような実行フローにより時間発展を計算して いる。

- 各物理過程のコンポーネントを呼び出し、現在の予報変数をもとに各過 程によるテンデンシーを得る
- 力学過程コンポーネントを呼び出し、得られたテンデンシーをもとに次の時刻の予報変数を得る

しかしながら、現状ではSCALE-RM での利用を前提とした仕様になって おり、他のアプリケーションからの利用はほとんど考慮されていない。また、 各コンポーネントが互いに強く依存しており、単体のコンポーネントを簡単 に呼び出すことができるようにはなっていない。つまり、表面的にはライブ ラリ的な構造にはなっているものの、実質的にはモデルである。今後、実質 的なライブラリとするために構造の整理や修正が必要である。また、同様な 機能が重複して複数のコンポーネント内に実装されているものがあるが、こ れらは切り出した上で、共通に利用するようにする必要がある。

3.2 ソースコード構造

ソースコードのトップディレクトリには以下のディレクトリが配置されてい る。

dc_utils 浮動小数点精度やテストのためのユーティリティー群。地球流体 電脳倶楽部からもってきた

scale-gm SCALE-Global Model 全球二十面体準一様格子モデル

scale-rm SCALE-Regional Model 領域モデル

scalelib ライブラリ

sysdep システム依存情報を記述したファイル群

SCALE-LETKF 用のソースコードはそのままでは入っていない。必要な場合は、README.letkf を参照のこと。

大気力学過程

4.1 SCALE-RM

力学過程では、連続の式、運動方程式、熱力の式により次の時刻における予 報変数の値を求める。このとき、物理過程で計算されたテンデンシーを各時 間発展方程式の右辺に加えて時間発展させる。

$$\frac{\partial \rho q_v}{\partial t} + \nabla \cdot \left(\rho q_v \mathbf{u}\right) = \left(\frac{\partial \rho q_v}{\partial t}\right)_{physics} \tag{4.1}$$

$$\frac{\partial \rho q_l}{\partial t} + \nabla \cdot \left(\rho q_l \mathbf{u}\right) = \left(\frac{\partial \rho q_l}{\partial t}\right)_{physics}$$
(4.2)

$$\frac{\partial \rho q_s}{\partial t} + \nabla \cdot \left(\rho q_s \mathbf{u}\right) = \left(\frac{\partial \rho q_s}{\partial t}\right)_{physics} \tag{4.3}$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = \left(\frac{\partial \rho}{\partial t}\right)_{physics} \tag{4.4}$$

$$\frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) = -\nabla p - \rho g \mathbf{e}_{\mathbf{z}} + \left(\frac{\partial \rho \mathbf{u}}{\partial t}\right)_{physics} \tag{4.5}$$

$$\frac{\partial \rho \theta}{\partial t} + \nabla \cdot (\rho \theta \mathbf{u}) = \left(\frac{\partial \rho \theta}{\partial t}\right)_{physics} \tag{4.6}$$

$$p = p_{00} \left(\frac{\rho \theta R^*}{p_{00}}\right)^{\frac{c_p^*}{c_p^* - R^*}}.$$
(4.7)

ここで、

$$c_{p}^{*} \equiv q_{d}c_{pd} + q_{v}c_{pv} + q_{l}c_{l} + q_{s}c_{s}$$
(4.8)

$$R^* \equiv q_d R_d + q_v R_v. \tag{4.9}$$

詳しくは、SCALE Description の Chapter 2 や Nishizawa et al. (2015) を参照 のこと。

- 力学過程の計算において考えるべき事を以下に挙げる。
- 空間微分の差分スキーム
- トレーサー変数の非負保証

- 時間積分の数値スキーム
- プロセス並列化のための袖領域のデータ交換

以下、それぞれの項目について説明する。

4.1.1 空間差分スキーム

SCALE-RM では空間差分スキームとして、一次、三次、五次の風上差分ス キーム、二次、四次、六次の中央差分スキームが利用可能である。力学変数 とトレーサー変数に対して、別々に差分スキームを選択する。選択するスキ ームに応じて、必要な袖領域の格子点数が異なる。

ソースコード

- atmos-rm/dynamics/scale_atmos_dyn_fvm_flux_ud1.F90
- atmos-rm/dynamics/scale_atmos_dyn_fvm_flux_ud3.F90
- atmos-rm/dynamics/scale_atmos_dyn_fvm_flux_ud3Koren1993.F90
- atmos-rm/dynamics/scale_atmos_dyn_fvm_flux_ud5.F90
- atmos-rm/dynamics/scale_atmos_dyn_fvm_flux_cd2.F90
- atmos-rm/dynamics/scale_atmos_dyn_fvm_flux_cd4.F90
- atmos-rm/dynamics/scale_atmos_dyn_fvm_flux_cd6.F90

4.1.2 非負保証

トレーサー変数は、物理的に負値をとり得ず、負の値とならないような取り扱いが必要である。 SCALE-RM では、非負保証のために、FCT (Fluxcorrected transport) スキーム (Zalesak, 1979)、および Koren フィルター (Koren, 1993) の利用が可能である。ただし、Koren フィルターは三次風上ス キームとともにしか使う事ができない。

ソースコード

- atmos-rm/dynamics/scale_atmos_dyn_fvm_flux_ud3Koren1993.F90
- atmos-rm/dynamics/scale_atmos_dyn_common.F90

ATMOS_DYN_fct: FCT による anti-flux を計算する

4.1.3 時間積分スキーム

時間積分を計算するスキームとして、 Euler スキーム、 Heun's 三段三次 Runge-Kutta (RK) スキーム、 Wicher and Skamarock's 三段 RK スキーム (Wicker and Skamarock, 2002)、四段四次 RK スキームが利用可能である。ラ ージステップ、ショートステップ、トレーサーステップそれぞれにスキーム を選択する。なお、CWC (Consistency with Continuity) (Gross et al., 2002) を満たすため、ショートステップで計算された質量フラックスを用いてトレ ーサー移流を計算している。

Figure 4.1.1: ラージステップ、ショートステップ、およびトレーサーステップのイメージ図。

ソースコード

- atmos-rm/dynamics/scale_atmos_dyn_tinteg_large.F90
- atmos-rm/dynamics/scale_atmos_dyn_tinteg_large_euler.F90
- atmos-rm/dynamics/scale_atmos_dyn_tinteg_large_rk3.F90
- atmos-rm/dynamics/scale_atmos_dyn_tinteg_short.F90
- atmos-rm/dynamics/scale_atmos_dyn_tinteg_short_rk3.F90
- atmos-rm/dynamics/scale_atmos_dyn_tinteg_short_rk4.F90
- atmos-rm/dynamics/scale_atmos_dyn_tinteg_tracer.F90
- atmos-rm/dynamics/scale_atmos_dyn_tinteg_tracer_euler.F90
- atmos-rm/dynamics/scale_atmos_dyn_tinteg_tracer_rk3.F90

4.1.4 袖領域データ交換

隣接する東西南北の計算ノードとの袖領域のデータ交換は、MPIを使って行う。ただし、MPIを陽に呼ぶのではなく scale_comm モジュールの comm_vars8 サブルーチンを用いる。

ソースコード

• atmos-rm/communication/scale_comm.F90

COMM_vars8: 隣接計算ノードとの袖領域データの交換を開始する COMM_wait: 隣接計算ノードとの袖領域データ交換の完了を待つ

4.2 SCALE-GM

大気物理過程

5.1 乱流

LES 用の SGS (Sug-Grid Scale) 乱流モデルとして、Smagorinsky-Lilly モデ ル、および、Deardorff モデルが実装されている。

RANS 用の境界層乱流モデルとして、MYNN level 2.5 モデルが実装されている。

Smagorinsky モデルは、RANSにおける水平の渦粘性にも用いられる。

5.1.1 Smagorinsky-Lilly model

解くべき物理法則

LES における SGS モデルは、移流項に起因する SGS 乱流の寄与を評価す るものである。 Smagorinsky-Lilly モデル (Lilly, 1962; Smagorinsky, 1963) は SGS乱流の寄与を診断的に評価するものであり、 SGS モデルとしてはもっと も簡単なものである。

渦粘性フラックス τ_{ij} は、

$$\tau_{ij} = -2\nu_{\rm SGS} \left(S_{ij} - \frac{1}{3} S_{kk} \delta_{ij} \right) + \frac{2}{3} \delta_{ij} TKE$$
(5.1)

である。ここで、 S_{ij} は応力テンソル、 δ_{ij} はクロネッカーのデルタである。 TKE は SGS の Turbulence Kinetic Energy (TKE) であり、渦粘性係数から 診断的に計算される。渦粘性係数 ν_{SGS} は

$$\nu_{\text{SGS}} = (C_s f(a)\Delta)^2 |S| F_s.$$
(5.2)

 C_s は Smagorinsky 定数とよばれ、デフォルトでは 0.13 である。成層の効果 F_s およびプラントル数の評価は Brown et al. (1994) にならっている。また、非等方格子のアスペクト比を考慮し、その効果を f(a) として入れている (Scotti et al., 1993)。長さスケール Δ は、2-grid ノイズ削減のための超粘性 を考慮して、2 格子幅としている (Nishizawa et al., 2015)。詳しくは、SCALE Description manual の Section 8.1 や Nishizawa et al. (2015) を参照のこと。

Smagorinsky model は、LES の SGS 乱流モデルとは別に、 RANS におけ る水平渦粘性としても利用可能である。この目的のために利用するためには、 PARAM_ATMOS_PHY_TB_SMG NAMELIST group の ATMOS_PHY_TB_SMG_horizontal を.true.とする。この場合、水平の渦粘性のみが計算される。また、長さ スケールが水平格子間隔のみを考慮して決定されるとともに、渦粘性フラッ クスのなかの TKE の項が無視される。

離散化

渦粘性を求めるためには、応力テンソルが必要になるが、その計算には3方向 のフルレベルおよびハーフレベルの様々な点における値が必要となり、ナイ ーブに行うと、同じ計算をフルレベルやハーフレベルの様々な点で行う必要 があり、ソースコードがが煩雑になる。したがって、まず、フルレベルのみ における渦粘性係数を求め、ハーフレベルにおける渦粘性はその内挿によっ て求めている。

デフォルトでは陽的に解くが、鉛直解像度が高い場合、鉛直方向に陰的に 解くことも可能である。その場合は、 PARAM_ATMOS_PHY_TB_SMG NAMELIST group の ATMOS_PHY_TB_SMG_implicit を .true. とする。陰解法には、3重 対角行列の直接法を用いている。

ソースコード

Smagorinsky スキームによる計算を行っているサブルーチンを以下に示す。

• atmos-physics/turbulence/scale_atmos_phy_tb_smg.F90

ATMOS_PHY_TB_SMB: 渦粘性によるテンデンシー計算

• atmos-physics/turbulence/scale_atmos_phy_tb_common.F90

ATMOS_PHY_TB_calc_strain_tensor: ストレインテンソルの計算 ATMOS_PHY_TB_diffusion_solver: 渦粘性陰解法ソルバー

5.1.2 Deardorff model

解くべき物理法則

Smagorinsky model は診断型であり力学変数から渦粘性の計算が可能である が、一方、Deardorff model (Deardorff, 1980) は、別途 TKE e を予報し、そ れをもとに渦粘性係数 K_m を計算する。

$$K_m = 0.1le^{1/2}. (5.3)$$

ここで、1は混合長で、不安定な場合は格子サイズである。安定の時は

$$l = 0.76e^{1/2}N^{-1}. (5.4)$$

ただし、格子サイズを超えない。 N² はブラントバイサラ振動数である。

離散化

TKE は、質量を持たないトレーサーとして登録しており、移流計算は力学の なかで行われる。

渦粘性係数を求める格子位置や鉛直の陰的計算については、Smagorinsky-Lilly model と同様である。 ソースコード

Deardorff スキームによる計算を行っているサブルーチンを以下に示す。

• atmos-physics/turbulence/scale_atmos_phy_tb_d1980.F90

ATMOS_PHY_TB_d1980: 渦粘性によるテンデンシー計算

• atmos-physics/turbulence/scale_atmos_phy_tb_common.F90

ATMOS_PHY_TB_calc_strain_tensor: ストレインテンソルの計算 ATMOS_PHY_TB_diffusion_solver: 渦粘性陰解法ソルバー

5.1.3 MYNN model

解くべき物理法則

MYNN model (Mellor and Yamada, 1982; Nakanishi and Niino, 2004) は、 RANS 用の境界層乱流モデルである。 SCALE では level 2.5 のみを実装 している。

水平方向には一様であることを仮定し、鉛直方向の渦粘性を求める。 level 2.5 では、TKE を予報しそれをもとに渦粘性係数を計算する。 sub-grid scale の部分凝結の効果も考慮されている。

詳しくは、SCALE description manual Section 8.2 を参照のこと。

離散化

TKE の扱いは、Deardorff model と同様である。鉛直混合は陰解法で計算される。

ソースコード

MYNN スキームによる計算を行っているサブルーチンを以下に示す。

• atmos-physics/turbulence/scale_atmos_phy_tb_mynn.F90

ATMOS_PHY_TB_mynn: 渦粘性によるテンデンシー計算

• atmos-physics/turbulence/scale_atmos_phy_tb_common.F90

ATMOS_PHY_TB_diffusion_solver: 渦粘性陰解法ソルバー

5.2 雲微物理

SCALEには以下の5つの雲微物理モデルが実装されている。

・1モーメントバルク(水雲のみ): KESSLER(Kessler, 1969) (雲水混合比 (q_c) 、雨水混合比 (q_r))

・1 モーメントバルク(氷含む): TOMITA08(Tomita, 2008):NICAMの雲物

理と同様 (q_c, q_r) 、雲氷混合比 (q_i) 、雪水混合比 (q_s) 、霰水混合比 (q_g))

・2モーメントバルク(氷含む): SN14(Seiki and Nakajima, 2014) ($q_c, q_r, q_i, q_s, q_g, N_c, N_r, N_i, N_s, N_g$ (N**は数濃度を表す))

・ l モーメントビン (水雲のみ、氷含むスイッチ可能): SUZUKI10(Suzuki et al., 2010) (各ビンの質量濃度 (gspc(m):mは各ビンの質量、spcは粒子の

種類))

・超水滴法(水雲のみ):SDM(Shima et al., 2009) (超水滴の属性(位置情 報、サイズなど))

ここで括弧内は予報変数を表す。超水滴方以外は雲水や雲氷などの雲物理 に関わる予報変数ををトレーサーとして扱い、各グリッドの平均量として雲 関係の予報変数を定義するEulerian Cloud microphysical model(ECM)、超水 滴法は雲粒を粒子的に扱うLagrangian Cloud microphysical model (LCM)であ る。

5.2.1 解いている雲微物理過程

雲微物理モデルが計算している雲微物理過程は(モデルによって扱っていな いものもあるが)以下の5つである。

- ・雲粒、氷粒の発生(飽和調整、雲粒活性化)
- ・凝結成長(蒸発、昇華も含む)
- ・衝突併合
- ・融解、凍結
- ・分裂

雲の発生(飽和調節、雲粒活性化)

雲粒の発生は飽和調節と雲粒活性化のどちらかで表現される。(Kessler, 1969; Tomita, 2008)は飽和調節、その他は雲粒活性化の式を解くことで雲粒の発生 を表現している。

飽和調節はある時刻にそのグリッドが過飽和であれば過飽和を解消するように水蒸気 (q_v) を雲粒 (q_c) または氷粒 (q_i) として発生させる。また未飽和な時は雲粒・氷粒を水蒸気に変換する。

このとき過飽和とは、雲粒が発生する時は水に対する過飽和度、氷粒が発生する時は氷に対する過飽和度を用いる。

一方雲粒活性化は、以下の2種類の解き方をする。一つ目の解き方は、観 測などの経験に基づく手法である。

ある時刻にそのグリッドの過飽和度が与えられた時に、雲粒数(N_c)、氷粒 数(N_i)が経験的に

$$N_c = N_0 S_l^k \tag{5.5}$$

$$N_i = N_{0,i} exp(a_{in} + b_{in}S_i)$$
(5.6)

と定まる。ここで a_{in} , b_{in} , N_0 , $N_{0,i}$ は観測などから経験的に定まるパラメー タ、 S_l , S_i はそれぞれ水、氷に対する過飽和度である。この雲粒数よりも、そ のグリッドに存在している雲粒数が少ない時は、 N_c から不足している文を 雲粒として発生させる。この方法は(Seiki and Nakajima, 2014; Suzuki et al., 2010)に採用されている。

また雲粒活性化を理論的に求める方法は、Kohler理論に基づく方法であり、(Suzuki et al., 2010)(オプションにより選択可能)とSDMはこの方法に基づいている。

凝結・蒸発・昇華成長過程

凝結・蒸発・昇華成長過程は以下の式に基づいて解く。

$$C_{spc}R_{i}\frac{dR_{i}}{dt} = \frac{(S-1) + \frac{a_{ces}}{R_{i}} + \frac{b_{ces}}{R_{i}^{3}}}{F_{k} + F_{d}}$$

$$F_{k} = \left(\frac{L}{R_{v}T} - 1\right)\frac{L\rho_{w}}{KT}$$

$$F_{d} = \frac{\rho_{w}R_{v}T}{De_{s}(T)}$$
(5.7)

ここでS, a_{ces} , b_{ces} , C_{spc} , R_i , R_v , T, L, ρ_w , e_s , D, Kはそれぞれ、過飽和度(粒 子が液体の時は水に対する過飽和度、個体の時は氷に対する過飽和度)、曲 率の効果を表すパラメータ、溶質の効果を表すパラメータ、粒子の形状に 関するパラメータ、雲粒子の半径、気体定数、温度、潜熱、水の密度、飽和 水蒸気圧、分子の拡散係数、熱伝導度である。その他Ventilationの効果や、 Limiterによって上記の式の補正が入ることはあるが、基本的にはこの式を解 くことで凝結(Sが正の時)・蒸発(Sが負の時)・昇華成長を表現している。

衝突併合過程

衝突併合はStochastic Collision Equation(SCE)と呼ばれる以下の式を解くこ とで計算される。

$$\frac{\partial}{\partial t}f^{(\lambda)}(m) = \sum_{\nu} \sum_{\mu} \int_{0}^{\frac{m}{2}} f^{(\mu)}(m-m')K_{\nu\mu}(m',m-m')dm' - f^{(\xi)}(m) \sum_{\sigma} \int_{0}^{\infty} f^{(\sigma)}(m'')K_{\xi\sigma}(m,m'')dm''$$

ここでf, m, Kは雲粒数濃度(粒径分布関数)、雲粒の質量、衝突カーネル, μ, ν, σ, ξ は粒子の種類(例えば雲粒、雨粒など)を表す。

融解

固体の雲粒が融解する際には例えば下記のような式を解くことで計算する。

$$\left(\frac{dm}{dt}\right) = \frac{2\pi}{L} K_a D(T - T_0) \tag{5.8}$$

ここで*K*_a, *T*₀は熱伝導度、基準温度(経験的なパラメータ)である。

凍結

凍結については以下の(Bigg, 1953)の式に従って計算する

$$F_{i} = m_{i} \frac{g_{i}^{(w)}}{\rho_{w}} N_{im,0} \left(0.1 (T_{0} - T)^{\gamma} \right)$$
(5.9)

ここで $F_i, g_i^{(w)}, N_{im,0}$ はそれぞれ単位時間に凍結する質量、雲粒の質量粒 径分布関数、経験的なパラメータである。 分裂の効果は(Seiki and Nakajima, 2014)のみが考慮しているが、詳細は割愛 する。

5.2.2 雷モデル

SCALEには雷モデルを実装中である。実装したコンポーネントは

- ・電荷分離機構(着氷電荷分離(Takahashi, 1978))
- ・電荷の移動

・電場の計算(電荷の空間分布からポアソン方程式を解く)

・放電(中和)機構(MacGorman et al., 2001) である。

5.3 エアロゾル微物理

エアロゾルモデルは(Kajino et al., 2013)の3モーメントバルク法が実装され ており、説いている物理過程は ・新粒子生成(前駆体ガスからエアロゾル粒子) ・凝集 ・衝突併合(エアロゾル同士の衝突) である

5.4 放射

5.5 積雲パラメタリゼーション

積雲対流パラメタリゼーション(Convective Parameterization Scheme: CPS) とは、数値モデルが低解像度の場合にも対流雲の効果を表現するためのパラ メタリゼーションである. Fig. ??にコンセプトのイメージ図を示す. モデル の解像度が高く細かな積雲対流の上昇流や下降流を解像することが出来る場 合は、力学コアと雲微物理スキームの組み合わせで積雲対流を直接解像する ことができる. しかし、水平格子間隔が10km以上あり積雲対流が格子の中に 入ってしまうような場合には、そのカラムの気圧、温度、水蒸気量を入力す ることで大気の安定性をもとに積雲対流が発生するか否かを判断し、発生す る場合、非断熱加熱や降水量を見積もる. これが積雲対流パラメタリゼーシ ョンである. これまでに様々な種類のCPSが考え出されているが、次の2つに 大別することができる (Stensrud, 2007).

- Deep-layer control type: CAPEを消費するためにどれだけの対流を必要とするかを考えるコンセプト.以下のような例がある. (Kuo, 1965)は最も古いCPSの1つであり, (Arakawa and Schubert, 1974)の改良型は現在も多くの全球気候モデルで使用されている.
 - Kuo ((Kuo, 1965))
 - Arakawa-Schubert ((Arakawa and Schubert, 1974))
- Low-level control type (Mass-flux control type):どんなパーセルがCINに 打ち勝ってCAPEを消費できるかを考えるコンセプト、以下のような例 がある、SCALE-RMにはKain-FritschのCPSが実装されている。

分裂

Figure 5.5.1: 積雲対流パラメタリゼーションのコンセプト:積雲対流を直接 解像する場合(左)とパラメタリゼーションの場合(右)

- Tiedtke ((Tiedtke, 1989))

- KF ((Kain and Fritsch, 1990); (Kain, 2004))

5.5.1 Kain-Fritsch CPS

解くべき物理法則

CPSにおいては,明確に解く物理を表現することが難しい. CPSは単一の物 理過程を解くのではなく,様々な物理過程を含んだ「積雲対流」そのものを 解く.ここでは,物理法則を説明する代わりに,Kain-FritechのCPSで考えて いる積雲対流について説明する.

積雲対流は、ある空気塊を少し持ち上げたときに周りの空気に比べて浮力 を持ち上昇流を発生させ、対流が降水を伴うことで下降流を発生させる.上 昇流と下降流を足した結果として余ったMass Fluxは補償流として対流コア の外のFluxとなる.これらの対流圏内の深い混合が行われた結果として、積 雲対流はもともとあったCAPEを90%消費すると考える.

離散化

基本的にはパーセル法に基づいて構築されており、全層を積算した結果として、消費した水蒸気量と降雨量+凝結物が保存するように計算する.鉛直層毎にエントレインメントとデトレインメントを評価し、混合気体としての浮力を評価してMass-fluxを算出する.各パートは次の概略のように計算される.

1. 対流発生の判断

- 持ち上げるパーセルの高度を診断する
- パーセルのT, QvからLCLを診断する
- 対流雲内の上昇流の見積もり
- LCLにおけるT, Qv, Pから上昇流を見積もる
- 上昇流から雲頂高度(CTL)を診断する
- 同時に上昇流内で生成される雨滴や雲粒の量も診断する
- 対流発生を判断する

- CTL > LCL : 十分に高い→深い対流
- CTL > LCL:ただし高くない→浅い対流
- CTLがLCLを上回っていない→対流なし
- 2. 対流雲内の下降流の見積もり
 - 環境場と雲底高度から降水効率を見積もる
 - ETL(空気塊が浮力を失った高度)を開始高度として下降流を見積 もる
 - パーセルの持ち上げ高度まで計算する
- 3. 補償流の見積もり
 - 対流のLifetimeを決定する
 - 正味のupward mass fluxだけ補償流が一面に存在すると仮定して補 償流速度を見積もる
 - 補償流速度から△tを決めてLifetime分だけ時間積分する
 - CAPEが元の10%以下になったことを確認する→まだCAPEが多け れば時間積分を継続
 - 全体の処理が保存しているかチェックする

ソースコード

Kain-Fritsch CPSによる計算を行っているサブルーチンを以下に示す。

• atmos-physics/cumulus/scale_atmos_phy_cp.F90

ATMOS_PHY_CP_setup: CPタイプの選択(現状はKFしかない)

• atmos-physics/cumulus/scale_atmos_phy_cp_kf.F90

```
ATMOS_PHY_CP_main: メイン関数 (テンデンシーの計算を含む)
ATMOS_PHY_CP_trigger: トリガー判定ルーチン
ATMOS_PHY_CP_updraft: 上昇流評価ルーチン
ATMOS_PHY_CP_downdraft: 下降流評価ルーチン
ATMOS_PHY_CP_compensational: 鉛直積算と補償流評価ルーチン
```

SCALEのKFではWRF型のトリガー関数と降水関数,およびJMA-NHM型のトリガー関数と降水関数を選択することができる.デフォルトはWRF型になっており,下記のようにrun.confに記述することでJMA-NHM型の設定を使用することができる.

```
&PARAM_ATMOS_PHY_CP_KF
PARAM_ATMOS_PHY_CP_kf_trigger = 3,
PARAM_ATMOS_PHY_CP_kf_dlcape = 0.15,
PARAM_ATMOS_PHY_CP_kf_dlifetime = 900.D0,
PARAM_ATMOS_PHY_CP_kf_slifetime = 600.D0,
PARAM_ATMOS_PHY_CP_kf_prec = 2,
PARAM_ATMOS_PHY_CP_kf_thres = 2.0D-3,
PARAM_ATMOS_PHY_CP_kf_w_time = 8,
```

27

下端モデル

6.1 地表面フラックス

地表面スキームでは、地表面における運動量収支と熱収支を考える。大気モ デルの下端境界の情報を与えるものである。陸面では地表面に厚みがあるか どうかの選択を行う。海洋では粗度を計算手法の選択を行う。

解くべき物理法則

熱収支の式は以下の通りとする。

$$C_s\left(\frac{\partial T_s}{\partial t}\right) = (1 - \alpha_{SW})SW + (1 - \alpha_{LW})LW + SH + LH + GH \qquad (6.1)$$

ここでC_sは地表面熱容量、T_sは地表面温度、αは短波および長波のアルベド、SWは短波、LWは長波、SHは顕熱フラックス、LHは潜熱フラックス、GHは地中熱フラックスを示す。このうち、運動量、顕熱、および潜熱フラックスのバルク交換係数をどのように計算するかでスキームを選択する。陸面モデルでは、C_sが非零とするか否かによりスキームを選択する。海面モデルでは、海面粗度の扱い方によりスキームを選択する。

- 地表面熱容量C_sの扱い
 - $C_s/=0$: 厚みのある地表面スキームを仮定する(海洋はこちらのみ)。 前ステップの T_s を用いてLW, SH, LH, GHを求め、 $\frac{\partial T_s}{\partial t}$ を直接計算 する。
 - $C_s = 0$: 厚みのない地表面スキームを仮定する。 SW, LW, SH, LH, GHのエネルギーバランスがとれるように、Tomita et al. (2008)に よる修正ニュートン法を用いて反復計算を行う。
- 海面粗度の扱い
 - 粗度をの扱いは固定か、診断的に判断するか(Miller 1992)、時間発展 させるか(Moon et al. 2007)を選択する。 Moon et al. (2007)は 台風などの強風時の海面粗度を観測値に合わせられるように設定 されたもの。
- バルク交換係数の計算手法

- Unoスキーム(Uno et al. 1995): Louis (1979)の拡張版。バルク交換 係数を診断的に求める。 Louis系は安定(夜間)時のフラックスが 過大になる傾向がある
- Beljaarsスキーム: Beljaars and Holtslag (1991), Beljaars (1994), Wilson (2001)の組み合わせている。バルク交換係数を反復計算で求める。 より原理的なスキームといえる。

ソースコード

• scalelib/src/coupler/scale_bulkflux.F90

U95: Unoスキームに従ってバルク交換係数を求める。 B91W01: Beljaarsスキームに従ってバルク交換係数を求める。

• scalelib/src/coupler/scale_roughness.F90

CONST: 海面粗度を変化させないようにする。

MILLER92: Miller (1992)に従って海面粗度を計算する。

MOON07: Moon et al. (2007), Fairall et al. (2003)に従って海面粗度を計算する。

• scalelib/src/ocean/scale_ocean_sfc_slab.F90

CONST: 海洋のSSTを固定して、熱収支を計算する。 FILE: 海洋のSSTを外部ファイルから与え、熱収支を計算する。 SLAB: 海洋のSSTを熱収支を計算して時間変化させる。

• scalelib/src/land/scale_land_sfc_const.F90

CONST:陸面の表面温度を固定して、熱収支を計算する。

• scalelib/src/land/scale_land_sfc_thin-slab.F90

THIN-SLAB: 地表面熱容量をゼロとして、ニュートン法による反復計算 で熱収支および表面温度を計算する。

- scalelib/src/land/scale_land_sfc_thick-slab.F90
 - THICK-SLAB: 地表面熱容量を与え、直接解法で熱収支および表面温度 を計算する。

6.2 陸面

格子点の土地利用データにおいて、土地利用が陸で、かつ100%都市要素でない格子は全て陸面スキームを解く。土地利用の種類は、森林、裸地、草原、 耕作地など、現在15種類ある。この陸面モデルについて説明する。

6.2.1 多層バケツモデル

解くべき物理法則

土壌温度、土壌水分量は鉛直1次元の拡散方程式を解く。

$$\frac{\partial T}{\partial t} = \kappa_T \frac{\partial^2 T}{\partial z} + F_T, \qquad (6.2)$$

$$\frac{\partial W}{\partial t} = \kappa_W \frac{\partial^2 W}{\partial z} + F_W, \tag{6.3}$$

ここでTは土壌温度、Wは土壌水分量、κは拡散係数、Fは外部からの入力を 示す。外部入力としては、地表面からの地中熱フラックス、地表面での蒸発、 降水などを指す。

また海洋と異なり、多層のバケツモデルのうち、地面第1層の土壌水分 量Wが蒸発(潜熱フラックス)の効率を決定する。すなわち、

$$E = \beta E_p, \tag{6.4}$$

ここで、

$$\beta = 1, (W \ge W_c) \tag{6.5}$$

$$\beta = \frac{W}{W_c}, (W < W_c) \tag{6.6}$$

であり、Eは実際の蒸発量、 E_p はポテンシャル蒸発量、 β は蒸発効率、 W_c は 臨界土壌水分量を示す。

離散化

地中内部の温度および含水量計算は、地表面熱収支における*GH、LH、*降水 量を入力として時間発展を計算する。計算には陰解法を使用し、3重対角行列 を解いている。

ソースコード

• scalelib/src/land/scale_land_phy_slab.F90

SLAB: 多層バケツモデルについて、各層の土壌温度および土壌水分を計算する。

6.3 海洋

格子点の土地利用データにおいて、「陸面」が100%でない限り、海洋が混じっている。この海洋モデルについて説明する。

6.3.1 水たまりモデル

現在の海洋モデルは1層しかなく、単に深さのある水たまりといえる。熱容量 が非常に大きく、一瞬で混合されるという想定。 解くべき物理法則

熱収支の式は以下の通りとする。

$$C_w \frac{\partial T_w}{\partial t} = WH \tag{6.7}$$

ここでC_wは海洋熱容量、T_wは海洋温度、WHは地表面スキームにおける残 差として得られた海中熱フラックス。海洋の温度を外部ファイルから入力し て更新する場合、海中熱フラックスは無視される。

ソースコード

• scalelib/src/ocean/scale_ocean_phy_file.F90

FILE: 外部入力ファイルから海洋温度の変化を読み取り、海洋温度を更 新する。

• scalelib/src/ocean/scale_ocean_phy_slab.F90

SLAB: 地表面スキームから得られた残差の海中熱フラックスにより、海 洋温度を時間発展させる。

6.4 都市キャノピー

ここでは、陸面過程のうち「都市」の扱いについて特化して記述する。大気 モデルの中での都市モデルの役割は、基本的に陸面モデルと同じで、地表面 からの熱・運動量エネルギーを計算することである。

6.4.1 Single urban canopy model: Kusaka et al.(2001)

解くべき物理法則

都市モデルは、陸面モデルと同じく、地表面からの熱フラックスと運動量フ ラックスを評価するものである。 (Kusaka et al., 2001)は、単層キャノピーモ デルであり、都市キャノピー内部のエネルギーのやり取りをモデル化し、最 終的にはキャノピーと大気の間での交換フラックス量を見積もる。平板モデ ルでは、地表面を平板で表すが、キャノピーモデルでは建物の凸凹を考慮し、 建物間の放射の多重反射の効果を考慮する。

地表面(キャノピー面)での熱エネルギーバランスは、

$$(1-\alpha)S^{\downarrow} + \varepsilon L^{\downarrow} - \varepsilon \sigma T_s^{4} - H - lE = G \tag{6.8}$$

で表される。ここで、 α , ε , σ はアルベド、射出率、ステファンボルツマン定数である。 S^{\downarrow} 、 L^{\downarrow} は下向きの短波と長波放射であり、入力データとして与えられる。 $H \ge lE$ は顕熱と潜熱で、基本的にはバルク式で求める。Gは貯熱量である。予報変数は、H、lE、表面温度 T_s である。

平板モデルであれば、Eq.(6.8)を直接解くことになるが、キャノピーモデ ルでは、屋根面-大気、壁面・道路面-キャノピー、キャノピー-大気の間のエ ネルギー方程式をそれぞれ立て、それらの総和(実際には重み付け平均)が Eq.(6.8)になるようにモデル化されている。詳細については参考文献 (Kusaka et al., 2001)を参照いただきたい。

離散化

離散化が必要なところは、建物内部の温度の計算である。建物内部の温度は、 Eq.(6.8) で残差として計算したGを入力として時間発展を計算する。計算に は陰解法を使用し、3重対角行列を解いている。

ソースコード

Kusaka et al.(2001)の単層キャノピーモデルによる計算を行っているサブルー チンを以下に示す。

• scalelib/src/urban/scale_urban_phy_slc.F90

URBAN_PHY_SLC: 都市グリットからの各フラックス、温度を計算。

I/O

7.1 設定・ログ

SCALE の各種設定は、Fortran の NAMELIST を利用して与える。 NAMELIST ファイルは、実行時引数として与える。

ログは、エラーメッセージは標準出力に、各種情報メッセージはファイ ルに出力される。ログのファイル出力は、デフォルトでは MPI の rank0 の プロセスのみ行われるが、全プロセスからそれぞれ出力させることも可能で ある。全プロセスから出力させるためには、 PARAM_IO NAMELIST group の IO_LOG_ALLNODE を .true. とする。ファイル名は、 PARAM_IO NAMELIST group の IO_LOG_BASENAME に ".pe*****" をつけたものである。 "******" は、MPIプロセスのランク番号を6桁で表したものである。

NAMELIST の一覧は、デフォルトでは上記のログファイルに出力される が、別のファイルに出力させることも可能である。そのためには、PARAM_IO NAMELIST group の IO_NML_FILENAME にファイル名を与える。このファイ ルは、SCALE の設定ファイルとしてそのまま実行時引数に与えることがで きる。

7.1.1 ソースコード

io/scale_stdio.F90 各種ファイル装置番号を管理する

7.2 History · Restart

解析のために出力する時系列データ(ヒストリーデータ)と、再計算のための 瞬間値のチェックポイントデータ(リスタートデータ)がある。

現在の SCALE は、netCDF フォーマットを採用している。最下層のファ イルを入れ替えると他のフォーマットでも出力することが可能になる(はず)。 デフォルトは、プロセス毎に分割された netCDF4 形式のファイルが出力さ れている。ファイル内のデータは zip 圧縮されている。

コンパイル時に、USE_NETCDF3=Tとしてコンパイルすることで、 netCDF3 形式も利用可能である。コンパイルオプションについてっは、8.4 を参照の こと。 netCDF3 形式を利用する際は、同じファイルに異なる時間間隔のデ ータを出力できない、圧縮することができないという制約がある。 また、pnetCDF を利用することで、全プロセスで単一のファイルの 入出力が可能である pnetCDF を利用するためには、 ENABLE_PNETCDF=T としてコンパイルするとともに、実行時に、PARAM_IO NAMELIST group の IO_AGGREGATE を .true. とする。 pnetCDF による単一ファイルは、 netCDF3 形式であり、上記の制約がある。

7.2.1 ソースコード

• atmos-rm/io/scale_history.F90

HIST_in: ヒストリー出力用のデータを与える HIST_get: ヒストリーファイルからデータを読み込む

- atmos-rm/io/scale_fileio.F90 SCALE-RM のデータ入出力を管理する
- gtool/gtool_history.f90 ヒストリー出力の制御
- gtool/gtool_file.f90 ファイルフォーマットによらないアブストラク トレイアー
- gtool/gtool_file_h.f90 I/O 関係の定数、構造体定義
- gtool/gtool_file_f.c Fortran C 間の変換
- gtool/gtool_netcdf.c netCDF へのマッピング

7.3 ExtIn

external.inputモジュールは、configファイルに記述したデータを読み込み、 必要なサブルーチンが時間内挿しながら参照するためのユーティリティモジ ュールである。ナッジングのための時系列外部データをモデル時刻に合わせ ながら準備する、などの用途に用いることができる。外部データはモデルの 並列数・格子数と一致していなければならない。

- EXTIN_setup configファイルに書かれているEXTITEMネームリストを探して読む または、どこかのコンポーネントがEXTIN_registを直接コールする
- EXTIN_regist

ファイルを読み込んで指定の変数があるか探す 指定の変数の各時刻が現在時刻の期間内に含まれているかチェックす る 現在時刻の前と後ろの二つの値(1D,2D,3D)をバッファしておく 便利オプションあり

- 値にオフセット値を追加する、見つからない場合に定数を返す
- 時刻無視してステップ番号指定してずっと利用
- 年を無視して毎年使い回す
- 月を無視して同年同月を毎日使い回す
- 日を無視して同年同月同日の値を毎時使い回す

- モデル内での利用法 あるサブルーチンからEXTIN_updateをコールして、指定した変数の値 (1D,2D,3D)を受け取る
- EXTIN_update 現在時刻が進んでいれば、後ろの値を前に移動して後ろの値を新たに読 み込む 時間方向に線形内挿した値を返す

7.3.1 ソースコード

• io/scale_external_input.F90

7.4 初期値・境界値

モデルの地形・土地利用や大気の初期状態・境界条件といった初期値・境界 値の設定は、scale-pp、scale_initバイナリにて行われる。

7.4.1 理想実験

機能

- 理想実験の場合は、scale-ppは使わず、scale_initで全ての境界条件 を設定する。
- あらかじめ用意されたテストケースに対応する設定は、ネイムリストを 設定するだけで良い。
- ソースコードにない条件を設定したい場合には、mod_user.f90 により 与えることが可能である。

ソースコードの参照先

- scale-rm/src/preprocess/mod_mktopo.F90 (地形)
- scale-rm/src/preprocess/mod_mkinit.F90(初期值・境界值)

ドキュメント

• 今はない。いずれ、UGに追加の必要あり。

7.4.2 現実大気

機能

- scale-rm_initは大気条件のみ、地形はscale-rm_ppが担当。
- 元のフォーマットから、SCALEグリットの値を内挿により計算、NetCDF形 式にて出力。
- 内挿方法には、いくつか選択肢が設けられている。PARAM_NESTのNEST_INTERP_LEVELにより設定。

対応済み地形・土地利用データ

- 地形
 - GTOPO30(全球、HPで配布)
 - DEM50M (日本域のみ)
- 土地利用
 - GLCCv2(全球、HPで配布)
 - LU100M(日本域のみ)

大気データの入力フォーマット

- GrADS形式
- SCALE history file
- WRF output file
- NICAM AMIP run (これは、単にNetCDFフォーマットに変更するのが 望ましい)

ソースコードの参照先

- 地形 scale/scale-rm/src/preprocess/mod_cnvtopo.f90
- 土地利用 scale/scale-rm/src/preprocess/mod_cnvlanduse.f90

```
    初期値・境界値
scale/scale-rm/src/preprocess/mod_realinput.f90
scale/scale-rm/src/preprocess/mod_realinput_scale.f90
mod_realinput_nicam.f90
mod_realinput_wrfarw.f90
mod_realinput_grads.f90
```

 内挿ルーチン scalelib/src/atmos-rm/grid/scale_interpolation_nest.F90

ドキュメント

- 地形と土地利用(UG 4章、5.3節)
- 大気データ(UG 5.4節)
- 内挿方法(記載無し)

ツール群

8.1 CONeP

SCALE-RMには1-way Online Nesting システムが実装されている. Costeffective Online Nesting Procedure (CONeP; (Yoshida et al., 2017))という並列 計算時にも計算効率を維持しやすい機構が用いられている.

CONePでは、計算に使用するMPIプロセスを計算ドメイン数のグループ に分割して各ドメインを同時的に計算する.プロセスの分割と割り当てイ メージをFig. 8.1.1に示した.例えば、2つの計算ドメインを使用する場合、 MPIプロセスを2つのグループに分割し、それぞれのMPIプロセスグループを 各ドメインに割り当て、各プロセスは分割された計算ドメインを担当する. 分割時の各グループのMPIプロセス数は、ドメインの問題サイズに依存する. 最も単純なポリシーに従えば、どのドメインも1プロセス当たりの格子点数 と単位時間の積分に必要なステップ数の積が揃うように設定する. Online Nestingの実行方法はUGの5章に詳しい説明がある.

実装方法

- MPIを用いて実装されており, MPIプロセスのグループ分割(COMM_WORLDの 分割)はMPI_COMM_SPLITを用いている.
- 実態としては、各ドメインが別々のモデル計算として動いており、必要なときに同期を取り、通信する形になっている。そのため、各ドメインの実験設定について特にOnline Nestingだけで発生する制約がない。
- ドメイン間通信にはISEND/IRECVを用いて,できる限り時間積分のバックグラウンドで通信出来るように実装している.
- 子ドメインにおける境界条件を作成するときに使用される内挿方法は、現状は簡単な線形内挿である.これはOnline NestingもOffline Nestingも 共通である.

ソースコード

CONePを構成するソースコードを下記に挙げる.

 scale-lib/src/atmos-rm/grid/scale_grid_nest.F90: nestingのメイ ンモジュール

Figure 8.1.1: CONePのMPIプロセス分割とドメインへのプロセス割り当てイメージ

- scale-lib/src/atmos-rm/grid/scale_interpolation_nest.F90: nesting用の内挿ルーチン
- scale-lib/src/atmos-rm/forcing/scale_atmos_sub_boundary.F90: boundaryモジュール
- scale-lib/src/common/scale_process.F90: COMM_WORLDの管理とSPLIT関数
- scale-lib/src/scale_rm.F90 : launcherプログラム

8.2 Bulk Job System

SCALE-RMにはバルクジョブ実行システムが実装されている.スーパーコン ピュータ等でジョブを実行する場合,同時に投げられるジョブ数が制限され ていることがある.そのような場合,ジョブ間で依存関係がない計算,例え ばパラメータスウィープ実験,アンサンブル実験,Time Slice実験であれば バルクジョブ実行システムを用いて一括実行することができる.

実装

CONePのために実装されたMPIプロセスのグループ分割を用いて実装されて いる. Fig. 8.2.1のイメージ図のようにMPIプロセスが分割される. バルク ジョブ実行システムを用いる場合は, Online NestingのためにMPIプロセスが 分割される前にジョブ数に応じて,もともとのMPIプロセスを分割しておく. そして,各ジョブの中で再びドメイン数に応じてMPIプロセスが分割される. 使用方法は,UGの5.12節を参照して欲しい.

Figure 8.2.1: バルクジョブ実行システムにおけるMPIプロセス分割イメージ

ソースコード

Online Nestingシステムのフレームワークを使用して実現しているため,特別 に追加されたファイルは無い. バルクシステムのメイン部分はlauncherにな る.

バルクジョブ実行システムを構成するソースコードを下記に挙げる.

- scale-lib/src/common/scale_process.F90: COMM_WORLDの管理とSPLIT関数
- scale-lib/src/scale_rm.F90 : launcherプログラム

8.3 net2g

net2gはSCALEの分散型netcdfファイルを単一のGrADS型バイナリデータに 変換するツールである.当所は大規模計算結果をQuick Viewするため,任意 の層,任意の変数に限って処理することで,実行時間を短縮し,ハンドリン グしやすいデータサイズにすることを目的としたツールであった.現在は機 能拡張がすすみ,Gradsで解析する際のポスト処理として使用するなど,よ り広範な目的で利用されている.

変換作業はFig. 8.3.1のイメージ図のように実行される.分散型netcdfファイルとSCALE-RMを実行したときのrun.conf,およびnet2g用のrun.confを入力として,Grads用のCTLファイル,およびバイナリデータを出力する.

- 鉛直層毎,時間ステップ毎など多様な出力ファイル形式が可能
- 鉛直層は任意の高度(m or Pa)に変換可能
- Grads用のCTLファイルも自動生成するようになっており、ランベルト 図法に対応したCTLファイルを生成することも出来る.

実装

計算を自分で行わず,計算結果の解析だけをしたいというユーザーの要望に応えるため,SCALE内部のLibraryに依存しない形で実装されており, MPI並列からI/Oにまで独自関数によって構築されている.MPIを使わない でコンパイルすることも出来る.

Figure 8.3.1: net2gの実行イメージ

ソースコード

net2gを構成するソースコード群を以下に示す。

- scale-rm/util/netcdf2grads_h/src/mod_net2g_anal.F90: 鉛直内挿 等の計算
- scale-rm/util/netcdf2grads_h/src/mod_net2g_calender.F90: カレ ンダー処理
- scale-rm/util/netcdf2grads_h/src/mod_net2g_comm.F90: MPI通信
- scale-rm/util/netcdf2grads_h/src/mod_net2g_error.F90: エラー処 理
- scale-rm/util/netcdf2grads_h/src/mod_net2g_io.F90: ファイルIOメ インルーチン群
- scale-rm/util/netcdf2grads_h/src/mod_net2g_netcdf.F90: netcdf fortran関係のIOルーチン
- scale-rm/util/netcdf2grads_h/src/mod_net2g_setup.F90: プログラ ム開始時のセットアップ群
- scale-rm/util/netcdf2grads_h/src/mod_net2g_vars.F90: 変数コン テナ
- scale-rm/util/netcdf2grads_h/src/prg_netcdf2grads_h.F90: メイ ンプログラム
- scale-rm/util/netcdf2grads_h/inc/inc_net2g.h: 定数や標準鉛直座 標等の定義

8.4 コンパイルオプション

SCALEのビルドシステムは、configureやCMakeのようなツールは使ってい ない。汎用化は労力に見合わず、しかもクロスコンパイラを用いるような スパコン環境では逆に障害となるケースも多いからである。基本的にGNU Makeの機能だけを使って、ビルドシステムを構築している。依存関係につい ては、ソースコードから自動で収集するRubyスクリプトを準備しており、必 要に応じて更新する。いくつかのファイルは、Makeの実行時の環境変数によ って使い分けるようになっている。

ビルドのための環境変数で最も重要なのは、SCALE_SYSである。この環境 変数で指定された名前を元に、/sysdep/Makedef.\$SCALE_SYSが利用される。 このマシン別設定ファイルには、コンパイラやオプションについての設定群 が記述されている。 FortranとCのコンパイルオプションには、fastとdebugの 2つを用意し、後述する環境変数で切り替えるようにしている。

必ず依存しているライブラリはNetCDFのみである。NetCDFのライブラ リパスは、原則として環境変数で指定されていることを期待している。スパ コンなどで必ず誰もが同じライブラリを使うことが想定される場合は、マシ ン別設定ファイルに直接書かれていることもある。このどちらでも設定され ていない場合、Makeの中でnc-config, nf-configコマンドを用いてライブラリ を探そうとするが、万能ではないので明示的に環境変数で指定することを推 奨する。

make時に設定できるSCALE環境変数は色々ある。bashだとexport XXX=Tと いう書き方で指定するが、makeコマンドに続けてmake XXX=Tという書き方で もよい。 INCLUDE, LIBS以外の変数は原則として、Tを設定していたら有効 というルールに統一しており、環境変数が定義されているかいないかでの判 定は用いない。

8.5 統計情報モニター

monitorモジュール実行時間を短縮し,ハンドリングしやすいデータサイズに することを目的としたツールであった.現在は機能拡張がすすみ,Gradsで 解析する際のポスト処理として使用するなど,より広範な目的で利用されて いる.

- MONIT_setup configファイルに書かれているMONITITEMネームリストを探して読 む:リクエスト側
- MONIT_reg セットアップ時またはメインループ内でどこかのコンポーネントから 呼ばれる:供給側 リクエストされていれば登録
- MONIT_in, MONIT_put 変数登録されていなければMONIT_reg 変数配列を渡す STAT_total関数を使って領域平均値を作成
- MONIT_write PARAM_MONITORのMONITOR_STEP_INTERVALに指定されたステ ップ間隔でASCIIファイルに書き出す
- データの単位は? monitorモジュールはもらった変数を領域平均して指定のステップ間隔 で書き出すのみ: MONIT_inやMONIT_regでユーザーが渡す変数の単位 を明示的に与える

Figure 8.6.1: Configuration Generator の動作概念図。

 どの領域を平均しているの?
 PARAM_STATISTICSのSTATISTICS_use_globalcommの指定に依存する trueなら全領域を平均して、通信で集めて計算、1ファイルだけ出す falseなら自分のプロセスの領域だけ計算、それぞれのプロセスが出す

8.5.1 ソースコード

• io/scale_monitor.F90

8.6 Conf Generator

Configuration Generatorは、もともとは京でプロダクトランを行う際に、設定の編集ミスを減らすために作られたものである。 SCALE-RMは現在、モデル実行の都合上、複数の設定ファイルに同じ記述、似た記述を何度も繰り返す必要がある。例えばバルクジョブ、リスタートジョブ、オンラインネスティングを含むジョブなどで、設定のコピペが発生しうる。そのため、共通部分を何度もコピペしなくても済むようにするため、ツールで設定ファイルを自動生成できるようにしている。

現在はSCALE-RM tutorialにおける実験設定自動生成ツールとしても組 み込まれている。Gitlabに登録してあるので、gitを使って簡単にダウンロ ードできる(git clone git@ranchu.aics.riken.jp:scale/project.git)。 /project/config 以下、色々なプロジェクトに使ってきたconf.の数々がある。 設定はプロダクトラン当時の設定のまま変更していないので、古いプロダク トランのものは最新版では使えない可能性が高い。自分で生成ツールを作る のであれば、最も新しいプロダクトラン設定のものを参考にするのが良い。

8.6.1 使い方

makeコマンドのみで実験設定が整う。ただし複雑な設定を施す場合や、基本 以外の部分の設定を触る場合は、内部を直接弄る必要があるファイルのコピ ーや読込が複数あり、依存関係は一見するとわかりづらいので、動作を追う には図8.6.1を参照のこと。

14010	CO.4.1. DOMELAR A XX
名称	内容
SCALE_SYS	システム選択(必須)
SCALE_DISABLE_MPI	MPIを使わない(utilsのみ)
SCALE_DEBUG	デバッグ用コンパイルオプションでコンパイ
	N
SCALE_QUICKDEBUG	クイックデバッグ用コンパイルオプション
	利用(高速化そのまま + 浮動小数点エフー検
SCALE_USE_MASSCHECK	負重保存ナエック用の計昇を迫加(RM力子 過程のな)
SCALE USE SINCLEED	回住のの) 畄特府河動小粉占を庙田(百則として会ソー
SCALE_USE_SINGLEFF	平相反行動小数点を使用(原則として主) ス)
SCALE USE FIXEDINDEX	
BOUND_ODD_I INDDINDDA	促進
SCALE_ENABLE_OPENMP	OpenMP機能を有効にする
SCALE_ENABLE_OPENACC	OpenACC機能を有効にする
SCALE_USE_AGRESSIVEOPT	副作用が出る可能のある強い最適化まで行う
	(京・FXのみ)
SCALE_DISABLE_INTELVEC	ベクトル化オプションの抑制(インテルコン
	パイラのみ)
SCALE_NETCDF_INCLUDE	NetCDFライブラリのincludeディレクトリパ
SCALE_NETCDF_LIBS	NetCDFフイ ノフリのティレクトリハスとフ イゴニリ北空
SCALE ENABLE DNETCDE	イノノリ相足 parallel NotCDEを利用する
SCALE_ENABLE_FNETCDF3	Not CDF3 互換の機能に限定する
SCALE ENABLE MATHLIB	数値計算ライブラリを利用する
SCALE MATHLIB LIBS	数値計算ライブラリのディレクトリパスとラ
	イブラリ指定
SCALE_ENABLE_PAPI	PAPIを利用する
SCALE_PAPI_INCLUDE	PAPIライブラリのincludeディレクトリパス
SCALE_PAPI_LIBS	PAPIライブラリのディレクトリパスとライ
	ブラリ指定
SCALE_DISABLE_LOCALBIN	テストケースディレクトリに特別版のバイナ
	リか作られないようにする
SCALE_IGNORE_SRCDEP	コンハイル時にソースコードの依存関係確認
COME ENADLE COM	そ1」わない 招水滴エデルを利田オス
SCALE_ENABLE_SDM	旭小個モノルを利用する

Table 8.4.1: SCALE環境変数

テスト

9.1 Test Case

テストとして、ライブラリの単体サブルーチンのバグ確認ための unit テスト と、気象モデル計算の性能確認のための test case がある。

9.1.1 unit test

各サブルーチン毎に、入力を与え、出力が期待されたものであるかを確認する。確認には dc_test モジュールのチェックルーチンを利用する。

ソースコード

- scalelib/test/unit/unit.f90 unit test メインプログラム
- scalelib/test/unit/test_comm.f90 通信モジュールテストルーチン
- scalelib/test/unit/test_atmos_dyn.f90 力学モジュールテストルー チン
- scalelib/test/unit/test_atmos_phy_tb_smg.f90 SMG 乱流モジュー ルテストルーチン
- dc_utils/dc_test.f90 データチェックルーチン集

9.1.2 test case

気象モデルとして、設定を与えて実行する。結果の妥当性は、別途描画等に より確認する必要がある。

ソースコード

理想実験は atmos-rm/test/case 以下に、現実大気実験は atmos-rm/test/case_real 以下にある。表9.1.1 は、テストの一覧である。

	Table 9.1.1:	test case 一覧
理想実験	advection	パッシブトレーサー移流実験
	barocwave	順圧不安定実験
	boundarylayer	境界層実験
	boxaero	エアロゾルボックス実験
	cavity	キャビティー流実験
	coldbubble	密度流実験
	coupling	カップラー実験
	dns	DNS実験
	gravitywave	重力波実験
	grayzone	乱流グレーゾーン実験
	hydrostatic	静力学平衡実験
	khwave	K-H 不安定実験
	lambwave	ラム波実験
	mountanwave	山岳波実験
	orographicrain	山岳性降水実験
	rad-conv	放射対流平衡実験
	radiation	放射実験
	restart	リスタート実験
	seabreeze	海陸風実験
	shallowcloud	浅い雲実験
	squallline	スコールライン実験
	supercell	スーパセル実験
	turbulence	乱流実験
	twpice	TWC ICE 実験
	urban	都市キャノピー実験
	warmbubble	暖気塊実験
現実大気実験	check_awajishima	淡路島実験
	check_japan	日本実験
	check_mass	質量保存実験
	restart_7.5km	リスタート実験

9.2 CI

git の develop ブランチにコミットがあると、 9.1 節の各テストケースが自動 的に実行され、結果の図が作成される。このように、ビルドやテストを継続 的に実行していくことを継続的インテグレーション (Continuous integration; CI) と呼ぶ。 CI により問題の早期発見が期待される。また、問題が発覚した 際、、図の履歴を見ることで、どのコミットの前後で変わったのか特定する ことも可能である。

unit test では、テストに失敗するとエラーになるため、テストの結果を自動で判別できる。 test case では、コンパイルや計算実行の失敗は自動判別が できるが、物理的な妥当性までは判断するようにしていない。そのため、作 成される図を開発者が確認し、その妥当性を判断する必要がある。

SCALE では、CI を実現するために CI用ソフト Jenkins (1.2 参照) を利用 している。結果の図は http://jikin.aics27.riken.jp/jenkins_results/ index.cgi で見ることができる。また、AICS R504 に設置している SCALE health check monotor 上で常に表示されている。

References

- Arakawa, A. and W. H. Schubert (1974), Interaction of a cumulus cloud ensemble with the large-scale environment. part i. *Journal of the Atmospheric Sciences*, 31, 674–701.
- Bigg, E. K. (1953), The formation of atmospheric ice crystals by the freezing of droplets. Quarterly Journal of the Royal Meteorological Society, 79, 510–519.
- Brown, A. R., S. H. Derbyshire, and P. J. Mason (1994), Large-eddy simulation of stable atmospheric boundary layers with a revised stochastic subgrid model. *Quarterly Journal of the Royal Meteorological Society*, 120, 1485–1512.
- Deardorff, J. W. (1980), Stratocumulus-capped mixed layers derived from a three-dimensional model. *Boundary-Layer Meteorology*, 18, 495–527.
- Gross, E. S., L. Bonaventura, and G. Rosatti (2002), Consistency with continuity in conservative advection schemes for free-surface models. Int. J. Numer. Meth. Fl., 38, 307–327.
- Kain, J. S. (2004), The kain-fritsch convective parameterization: an update. J. Appl. Meteor., 43, 170–181.
- Kain, J. S. and J. M. Fritsch (1990), A one-dimensional entraining/detraining plume model and its application in convective parameterization. *Journal of* the Atmospheric Sciences, 47, 2784–2802.
- Kajino, M., R. Easter, and S. J. Ghan (2013), Modal bin hybrid model: A surface area consistent, triple-moment sectional method for use in processoriented modeling of atmospheric aerosols. *Journal of Geophysical Research: Atmosphere*, 118, 10011?–10040.
- Kessler, E. (1969), On the distribution and continuity of water substance in atmospheric circulation. *Meteorological Monograph*, 10, 1–84.
- Koren, B. (1993), A robust upwind discretization method for advection, diffusion and source terms. Centrum voor Wiskunde en Informatica Amsterdam.
- Kuo, H. L. (1965), On the formation and intensification of tropical cyclones through latent heat release by cumulus convection. *Journal of the Atmo*spheric Sciences, 22, 40–63.
- Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura (2001), A simple singlelayer urban canopy model for atmospheric models: comparison with multilayer and slab models. *Boundary-Layer Meteorol.*, 101, 329–358.

- Lilly, D. K. (1962), On the numerical simulation of buoyant convection. *Tellus*, 14, 148–171.
- MacGorman, D., J. M. Straka, and C. L. Ziegler (2001), A lightning parameterization for numerical cloud models. *Journal of Applied Meteorology*, 40, 459?–478.
- Mellor, G. L. and T. Yamada (1982), Development of a turbulence closure model for geophysical fluid problems. *Rev. Geophys. Space Phys.*, 20, 851–875.
- Nakanishi, M. and H. Niino (2004), An improved mellor-yamada level-3 model with condensation physics: Its design and verification. *Bound-Lay. Meteorol.*, 112, 1–31.
- Nishizawa, S., H. Yashiro, Y. Sato, Y. Miyamoto, and H. Tomita (2015), Influence of grid aspect ratio on planetary boundary layer turbulence in large-eddy simulations. *Geosci. Model Dev.*, 8(10), 3393–3419.
- Scotti, A., C. Meneveau, and D. K. Lilly (1993), Generalized smagorinsky model for anisotropic grids. *Physics of Fluids A*, 5, 2306–2308.
- Seiki, T. and T. Nakajima (2014), Aerosol effects of the condensation process on a convective cloud simulation. *Journal of the Atmospheric Sciences*, 71, 833–853.
- Shima, S., K. Kusano, A. Kawano, T. Sugiyama, and S. Kawahara (2009), The super-droplet method for the numerical simulation of clouds and precipitation: a particle-based and probabilistic microphysics model coupled with a nonhydrostatic model. *Quarterly Journal of the Royal Meteorological Society*, 135(642), 1307–1320.
- Smagorinsky, J. (1963), General circulation experiments with the primitive equations. Mon. Weather Rev., 91, 99–164.
- Stensrud, J., D. (2007), Parameterization Schemes, Keys to Understanding Numerical Weather Prediction Models. The Edinburgh Building, Cambridge, CB2, 8RU, UK: Cambridge University Press.
- Suzuki, K., T. Nakajima, T. Y. Nakajima, and A. P. Khain (2010), A study of microphysical mechanisms for correlation patterns between droplet radius and optical thickness of warm clouds with a spectral bin microphysics cloud model. *Journal of the Atmospheric Sciences*, 67(4), 1126–1141.
- Takahashi, T. (1978), Riming electrification as a charge generation mechanism in thunderstorm. Journal of the Atmospheric Sciences, 35, 1536?–1548.
- Tiedtke, M. (1989), A comprehensice mass flux scheme for cumulus parameterization in large-scale models. Monthly Weather Review, 117, 1779–1800.
- Tomita, H. (2008), New microphysical schemes with five and six categories by diagnostic generation of cloud ice (ispecial issue; the international workshop on high-resolution and cloud modeling, 2006). Journal of the Meteorological Society of Japan. Ser. II, 86, 121–142.

- Wicker, L. J. and W. C. Skamarock (2002), Time-splitting methods for elastic models using forward time schemes. *Monthly Weather Review*, 130(8), 2088– 2097.
- Yoshida, R., S. Nishizawa, H. Yashiro, S. A. Adachi, Y. Sato, T. Yamaura, and H. Tomita (2017), Conep: A cost-effective online nesting procedure for regional atmospheric models. *Parallel Computing*, 65, 21–31.
- Zalesak, S. T. (1979), Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys., 31, 335–362.