diff --git a/lib/instrumenter.js b/lib/instrumenter.js index 4ae909a1..809782a5 100644 --- a/lib/instrumenter.js +++ b/lib/instrumenter.js @@ -87,7 +87,10 @@ class Instrumenter { // Handle contracts which only contain import statements contract.contractName = (root.length) ? root[0].name : null; + + contract.finalParse = true; parse[ast.type](contract, ast); + // We have to iterate through these points in descending order const sortedPoints = Object.keys(contract.injectionPoints).sort((a, b) => b - a); diff --git a/lib/parse.js b/lib/parse.js index 979d245f..34a3de6e 100644 --- a/lib/parse.js +++ b/lib/parse.js @@ -245,8 +245,9 @@ parse.PragmaDirective = function(contract, expression){ } // From solc >=0.7.4, every file should have instrumentation methods - // defined at the file level which file scoped fns can use... - if (semver.lt("0.7.3", minVersion)){ + // defined at the file level which file scoped fns can use. (Make sure we only do this + // once - flattened contracts have multiple pragma statements) + if (semver.lt("0.7.3", minVersion) && contract.finalParse && !contract.fileLevelFinished){ const start = expression.range[0]; const end = contract.instrumented.slice(start).indexOf(';') + 1; const loc = start + end; @@ -258,6 +259,7 @@ parse.PragmaDirective = function(contract, expression){ }; contract.injectionPoints[loc] = [injectionObject]; + contract.fileLevelFinished = true; } } diff --git a/test/sources/solidity/contracts/statements/multi-contract-diamond.sol b/test/sources/solidity/contracts/statements/multi-contract-diamond.sol deleted file mode 100644 index 240024a1..00000000 --- a/test/sources/solidity/contracts/statements/multi-contract-diamond.sol +++ /dev/null @@ -1,35 +0,0 @@ -// SPDX-License-Identifier: MIT - -pragma solidity >=0.8.0 <0.9.0; - -contract A { - uint valA; - - function setA() public { - valA = 1; - } -} - -contract B is A { - uint valB; - - function setB() public { - valB = 1; - } -} - -contract C is A { - uint valC; - - function setC() public { - valC = 1; - } -} - -contract D is B, C { - uint valD; - - function setD() public { - valD = 1; - } -} diff --git a/test/sources/solidity/contracts/statements/multi-contract-flattened.sol b/test/sources/solidity/contracts/statements/multi-contract-flattened.sol new file mode 100644 index 00000000..6a4d6f46 --- /dev/null +++ b/test/sources/solidity/contracts/statements/multi-contract-flattened.sol @@ -0,0 +1,476 @@ +// Sources flattened with hardhat v2.20.0 https://hardhat.org +// File @openzeppelin/contracts/utils/math/Math.sol@v4.9.5 + +// Original license: SPDX_License_Identifier: MIT +// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol) + +pragma solidity ^0.8.0; + +/** + * @dev Standard math utilities missing in the Solidity language. + */ +library Math { + enum Rounding { + Down, // Toward negative infinity + Up, // Toward infinity + Zero // Toward zero + } + + /** + * @dev Returns the largest of two numbers. + */ + function max(uint256 a, uint256 b) internal pure returns (uint256) { + return a > b ? a : b; + } + + /** + * @dev Returns the smallest of two numbers. + */ + function min(uint256 a, uint256 b) internal pure returns (uint256) { + return a < b ? a : b; + } + + /** + * @dev Returns the average of two numbers. The result is rounded towards + * zero. + */ + function average(uint256 a, uint256 b) internal pure returns (uint256) { + // (a + b) / 2 can overflow. + return (a & b) + (a ^ b) / 2; + } + + /** + * @dev Returns the ceiling of the division of two numbers. + * + * This differs from standard division with `/` in that it rounds up instead + * of rounding down. + */ + function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { + // (a + b - 1) / b can overflow on addition, so we distribute. + return a == 0 ? 0 : (a - 1) / b + 1; + } + + /** + * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 + * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) + * with further edits by Uniswap Labs also under MIT license. + */ + function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { + unchecked { + // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use + // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 + // variables such that product = prod1 * 2^256 + prod0. + uint256 prod0; // Least significant 256 bits of the product + uint256 prod1; // Most significant 256 bits of the product + assembly { + let mm := mulmod(x, y, not(0)) + prod0 := mul(x, y) + prod1 := sub(sub(mm, prod0), lt(mm, prod0)) + } + + // Handle non-overflow cases, 256 by 256 division. + if (prod1 == 0) { + // Solidity will revert if denominator == 0, unlike the div opcode on its own. + // The surrounding unchecked block does not change this fact. + // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. + return prod0 / denominator; + } + + // Make sure the result is less than 2^256. Also prevents denominator == 0. + require(denominator > prod1, "Math: mulDiv overflow"); + + /////////////////////////////////////////////// + // 512 by 256 division. + /////////////////////////////////////////////// + + // Make division exact by subtracting the remainder from [prod1 prod0]. + uint256 remainder; + assembly { + // Compute remainder using mulmod. + remainder := mulmod(x, y, denominator) + + // Subtract 256 bit number from 512 bit number. + prod1 := sub(prod1, gt(remainder, prod0)) + prod0 := sub(prod0, remainder) + } + + // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. + // See https://cs.stackexchange.com/q/138556/92363. + + // Does not overflow because the denominator cannot be zero at this stage in the function. + uint256 twos = denominator & (~denominator + 1); + assembly { + // Divide denominator by twos. + denominator := div(denominator, twos) + + // Divide [prod1 prod0] by twos. + prod0 := div(prod0, twos) + + // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. + twos := add(div(sub(0, twos), twos), 1) + } + + // Shift in bits from prod1 into prod0. + prod0 |= prod1 * twos; + + // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such + // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for + // four bits. That is, denominator * inv = 1 mod 2^4. + uint256 inverse = (3 * denominator) ^ 2; + + // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works + // in modular arithmetic, doubling the correct bits in each step. + inverse *= 2 - denominator * inverse; // inverse mod 2^8 + inverse *= 2 - denominator * inverse; // inverse mod 2^16 + inverse *= 2 - denominator * inverse; // inverse mod 2^32 + inverse *= 2 - denominator * inverse; // inverse mod 2^64 + inverse *= 2 - denominator * inverse; // inverse mod 2^128 + inverse *= 2 - denominator * inverse; // inverse mod 2^256 + + // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. + // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is + // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 + // is no longer required. + result = prod0 * inverse; + return result; + } + } + + /** + * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. + */ + function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { + uint256 result = mulDiv(x, y, denominator); + if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { + result += 1; + } + return result; + } + + /** + * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. + * + * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). + */ + function sqrt(uint256 a) internal pure returns (uint256) { + if (a == 0) { + return 0; + } + + // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. + // + // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have + // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. + // + // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` + // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` + // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` + // + // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. + uint256 result = 1 << (log2(a) >> 1); + + // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, + // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at + // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision + // into the expected uint128 result. + unchecked { + result = (result + a / result) >> 1; + result = (result + a / result) >> 1; + result = (result + a / result) >> 1; + result = (result + a / result) >> 1; + result = (result + a / result) >> 1; + result = (result + a / result) >> 1; + result = (result + a / result) >> 1; + return min(result, a / result); + } + } + + /** + * @notice Calculates sqrt(a), following the selected rounding direction. + */ + function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { + unchecked { + uint256 result = sqrt(a); + return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); + } + } + + /** + * @dev Return the log in base 2, rounded down, of a positive value. + * Returns 0 if given 0. + */ + function log2(uint256 value) internal pure returns (uint256) { + uint256 result = 0; + unchecked { + if (value >> 128 > 0) { + value >>= 128; + result += 128; + } + if (value >> 64 > 0) { + value >>= 64; + result += 64; + } + if (value >> 32 > 0) { + value >>= 32; + result += 32; + } + if (value >> 16 > 0) { + value >>= 16; + result += 16; + } + if (value >> 8 > 0) { + value >>= 8; + result += 8; + } + if (value >> 4 > 0) { + value >>= 4; + result += 4; + } + if (value >> 2 > 0) { + value >>= 2; + result += 2; + } + if (value >> 1 > 0) { + result += 1; + } + } + return result; + } + + /** + * @dev Return the log in base 2, following the selected rounding direction, of a positive value. + * Returns 0 if given 0. + */ + function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { + unchecked { + uint256 result = log2(value); + return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); + } + } + + /** + * @dev Return the log in base 10, rounded down, of a positive value. + * Returns 0 if given 0. + */ + function log10(uint256 value) internal pure returns (uint256) { + uint256 result = 0; + unchecked { + if (value >= 10 ** 64) { + value /= 10 ** 64; + result += 64; + } + if (value >= 10 ** 32) { + value /= 10 ** 32; + result += 32; + } + if (value >= 10 ** 16) { + value /= 10 ** 16; + result += 16; + } + if (value >= 10 ** 8) { + value /= 10 ** 8; + result += 8; + } + if (value >= 10 ** 4) { + value /= 10 ** 4; + result += 4; + } + if (value >= 10 ** 2) { + value /= 10 ** 2; + result += 2; + } + if (value >= 10 ** 1) { + result += 1; + } + } + return result; + } + + /** + * @dev Return the log in base 10, following the selected rounding direction, of a positive value. + * Returns 0 if given 0. + */ + function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { + unchecked { + uint256 result = log10(value); + return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0); + } + } + + /** + * @dev Return the log in base 256, rounded down, of a positive value. + * Returns 0 if given 0. + * + * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. + */ + function log256(uint256 value) internal pure returns (uint256) { + uint256 result = 0; + unchecked { + if (value >> 128 > 0) { + value >>= 128; + result += 16; + } + if (value >> 64 > 0) { + value >>= 64; + result += 8; + } + if (value >> 32 > 0) { + value >>= 32; + result += 4; + } + if (value >> 16 > 0) { + value >>= 16; + result += 2; + } + if (value >> 8 > 0) { + result += 1; + } + } + return result; + } + + /** + * @dev Return the log in base 256, following the selected rounding direction, of a positive value. + * Returns 0 if given 0. + */ + function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { + unchecked { + uint256 result = log256(value); + return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0); + } + } +} + + +// File @openzeppelin/contracts/utils/math/SignedMath.sol@v4.9.5 + +// Original license: SPDX_License_Identifier: MIT +// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol) + +pragma solidity ^0.8.0; + +/** + * @dev Standard signed math utilities missing in the Solidity language. + */ +library SignedMath { + /** + * @dev Returns the largest of two signed numbers. + */ + function max(int256 a, int256 b) internal pure returns (int256) { + return a > b ? a : b; + } + + /** + * @dev Returns the smallest of two signed numbers. + */ + function min(int256 a, int256 b) internal pure returns (int256) { + return a < b ? a : b; + } + + /** + * @dev Returns the average of two signed numbers without overflow. + * The result is rounded towards zero. + */ + function average(int256 a, int256 b) internal pure returns (int256) { + // Formula from the book "Hacker's Delight" + int256 x = (a & b) + ((a ^ b) >> 1); + return x + (int256(uint256(x) >> 255) & (a ^ b)); + } + + /** + * @dev Returns the absolute unsigned value of a signed value. + */ + function abs(int256 n) internal pure returns (uint256) { + unchecked { + // must be unchecked in order to support `n = type(int256).min` + return uint256(n >= 0 ? n : -n); + } + } +} + + +// File @openzeppelin/contracts/utils/Strings.sol@v4.9.5 + +// Original license: SPDX_License_Identifier: MIT +// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol) + +pragma solidity ^0.8.0; + + +/** + * @dev String operations. + */ +library Strings { + bytes16 private constant _SYMBOLS = "0123456789abcdef"; + uint8 private constant _ADDRESS_LENGTH = 20; + + /** + * @dev Converts a `uint256` to its ASCII `string` decimal representation. + */ + function toString(uint256 value) internal pure returns (string memory) { + unchecked { + uint256 length = Math.log10(value) + 1; + string memory buffer = new string(length); + uint256 ptr; + /// @solidity memory-safe-assembly + assembly { + ptr := add(buffer, add(32, length)) + } + while (true) { + ptr--; + /// @solidity memory-safe-assembly + assembly { + mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) + } + value /= 10; + if (value == 0) break; + } + return buffer; + } + } + + /** + * @dev Converts a `int256` to its ASCII `string` decimal representation. + */ + function toString(int256 value) internal pure returns (string memory) { + return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value)))); + } + + /** + * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. + */ + function toHexString(uint256 value) internal pure returns (string memory) { + unchecked { + return toHexString(value, Math.log256(value) + 1); + } + } + + /** + * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. + */ + function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { + bytes memory buffer = new bytes(2 * length + 2); + buffer[0] = "0"; + buffer[1] = "x"; + for (uint256 i = 2 * length + 1; i > 1; --i) { + buffer[i] = _SYMBOLS[value & 0xf]; + value >>= 4; + } + require(value == 0, "Strings: hex length insufficient"); + return string(buffer); + } + + /** + * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. + */ + function toHexString(address addr) internal pure returns (string memory) { + return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); + } + + /** + * @dev Returns true if the two strings are equal. + */ + function equal(string memory a, string memory b) internal pure returns (bool) { + return keccak256(bytes(a)) == keccak256(bytes(b)); + } +} diff --git a/test/units/statements.js b/test/units/statements.js index 678b22d0..51202507 100644 --- a/test/units/statements.js +++ b/test/units/statements.js @@ -65,8 +65,8 @@ describe('generic statements', () => { util.report(info.solcOutput.errors); }) - it('should instrument a multi-contract file with diamond inheritance (#769)', () => { - const info = util.instrumentAndCompile('statements/multi-contract-diamond'); + it('should instrument a multi-contract flattened file (#769)', () => { + const info = util.instrumentAndCompile('statements/multi-contract-flattened'); util.report(info.solcOutput.errors); });