-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path07_deepMN_part2.Rmd
331 lines (275 loc) · 14.4 KB
/
07_deepMN_part2.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
---
title: "Calculate metrics and probability curve axes from DeepMN with bias-corrected bootstrapping"
author:
- Shubhayu Bhattacharyay
- Ari Ercole
date: "`r format(Sys.time(), '%d %B %Y')`"
output:
html_document:
toc: yes
df_print: paged
html_notebook:
toc: yes
---
<style type="text/css">
.main-container {
max-width: 1800px;
margin-left: auto;
margin-right: auto;
}
</style>
## I. Initialization
### Import necessary libraries
```{r message=FALSE, warning=FALSE}
# Libraries
library(tidyverse)
library(caret)
```
### Load repeated cross validation splits
```{r message=FALSE, warning=FALSE}
testing.folds <- readRDS('../testing_folds.rds')
```
## II. Combine (pool) evaluation metrics across multiple imputations for bootstrapping statistical analysis
### Bootstrap to calculate DeepMN metrics
```{r eval=FALSE, message=FALSE, warning=FALSE}
# Load compiled DeepMN results
deepMN.results.compiled <- read.csv('../repeated_cv/compiled_predictions/deepMN.csv') %>%
rename(true.labels = true_labels,
pred.labels = pred_labels) %>%
mutate(true.labels = factor(true.labels),
pred.labels = factor(pred.labels))
# Load banned tuning indices from BBCD-CV
deepMN.banned.tuning.indices <- read.csv('../repeated_cv/deepMN_banned_tuning_indices.csv')
# Determine number of banned classes per tuning index and filter out completely removed indices
totally.banned.indices = as.data.frame(table(deepMN.banned.tuning.indices$tune_idx)) %>%
rename(tune_idx = Var1) %>%
filter(Freq == 8)
# Remove totally banned indices from compiled prediction set
deepMN.results.compiled <- deepMN.results.compiled %>%
filter(!(tune_idx %in% totally.banned.indices$tune_idx))
# Identify list of unique viable tuning indices
viable.tuning.indices <- unique(deepMN.results.compiled$tune_idx)
# Load bootstrapping IDs
bootstrap.id.list <- readRDS('../repeated_cv/bootstrap_IDs.rds')
# Calculate bootstrapped classification metrics and compile in dataframe
compiled.bs.metrics <- as.data.frame(matrix(ncol = 5, nrow = 0))
counter <- 0
for (curr.bootstrap.ids in bootstrap.id.list){
counter <- counter + 1
# Filter out in-sample values for current sample and remove totally banned indices
in.sample.results <- deepMN.results.compiled %>%
filter(entity_id %in% curr.bootstrap.ids)
# Create dataframe of compiled metrics (per viable tuning index) to determine optimal tuning index in current bootstrap set:
curr.in.sample.bs.metrics <- as.data.frame(matrix(ncol = 4, nrow = 0))
for (curr.tune_idx in viable.tuning.indices){
curr.tune.cm <-
confusionMatrix(in.sample.results$pred.labels[in.sample.results$tune_idx == curr.tune_idx],
in.sample.results$true.labels[in.sample.results$tune_idx == curr.tune_idx])
curr.Accuracy <- curr.tune.cm$overall['Accuracy']
curr.Kappa <- curr.tune.cm$overall['Kappa']
curr.Sensitivity <- c(curr.tune.cm$byClass[,'Sensitivity'],mean(curr.tune.cm$byClass[,'Sensitivity']))
names(curr.Sensitivity)[length(curr.Sensitivity)] <- 'macro-averaged'
curr.Specificity <- c(curr.tune.cm$byClass[,'Specificity'],mean(curr.tune.cm$byClass[,'Specificity']))
names(curr.Specificity)[length(curr.Specificity)] <- 'macro-averaged'
curr.F1 <- curr.tune.cm$byClass[,'F1']
curr.F1[is.na(curr.F1)] <- 0
curr.F1 <- c(curr.F1,mean(curr.F1))
names(curr.F1)[length(curr.F1)] <- 'macro-averaged'
curr.tune.metrics <- data.frame(cbind(curr.Sensitivity,curr.Specificity,curr.F1)) %>%
mutate(class = row.names(.)) %>%
pivot_longer(cols = -class, names_prefix = 'curr.', names_to = 'metric')
curr.tune.metrics <- rbind(curr.tune.metrics,
data.frame(class = 'overall',metric='Accuracy',value = curr.Accuracy),
data.frame(class = 'overall',metric='Kappa',value = curr.Kappa))
curr.tune.metrics$tune_idx <- curr.tune_idx
curr.in.sample.bs.metrics <- rbind(curr.in.sample.bs.metrics, curr.tune.metrics)
}
curr.bs.opt.tune.idx <- curr.in.sample.bs.metrics %>%
group_by(metric, class) %>%
summarise(opt.value = max(value),
tune_idx = tune_idx[which.max(value)])
# Viable optimal tuning indices
curr.opt.viable.tuning.indices <- unique(curr.bs.opt.tune.idx$tune_idx)
# Filter out out-sample values for current sample and optimal SMOTE
out.sample.results <- deepMN.results.compiled %>%
filter(!(entity_id %in% curr.bootstrap.ids)) %>%
filter(tune_idx %in% curr.opt.viable.tuning.indices)
# Iterate through viable topimal tuning indices and calculate approprate metrics (L_b) in current bootstrap out-sample set
curr.out.sample.bs.metrics <- as.data.frame(matrix(ncol = 4, nrow = 0))
for (curr.tune_idx in curr.opt.viable.tuning.indices){
curr.tune.cm <-
confusionMatrix(out.sample.results$pred.labels[out.sample.results$tune_idx == curr.tune_idx],
out.sample.results$true.labels[out.sample.results$tune_idx == curr.tune_idx])
curr.Accuracy <- curr.tune.cm$overall['Accuracy']
curr.Kappa <- curr.tune.cm$overall['Kappa']
curr.Sensitivity <- c(curr.tune.cm$byClass[,'Sensitivity'],mean(curr.tune.cm$byClass[,'Sensitivity']))
names(curr.Sensitivity)[length(curr.Sensitivity)] <- 'macro-averaged'
curr.Specificity <- c(curr.tune.cm$byClass[,'Specificity'],mean(curr.tune.cm$byClass[,'Specificity']))
names(curr.Specificity)[length(curr.Specificity)] <- 'macro-averaged'
curr.F1 <- curr.tune.cm$byClass[,'F1']
curr.F1[is.na(curr.F1)] <- 0
curr.F1 <- c(curr.F1,mean(curr.F1))
names(curr.F1)[length(curr.F1)] <- 'macro-averaged'
curr.tune.metrics <- data.frame(cbind(curr.Sensitivity,curr.Specificity,curr.F1)) %>%
mutate(class = row.names(.)) %>%
pivot_longer(cols = -class, names_prefix = 'curr.', names_to = 'metric')
curr.tune.metrics <- rbind(curr.tune.metrics,
data.frame(class = 'overall',metric='Accuracy',value = curr.Accuracy),
data.frame(class = 'overall',metric='Kappa',value = curr.Kappa))
curr.tune.metrics$tune_idx <- curr.tune_idx
combos.to.keep <- curr.bs.opt.tune.idx[curr.bs.opt.tune.idx$tune_idx == curr.tune_idx,c('metric','class')]
curr.out.sample.bs.metrics <- rbind(curr.out.sample.bs.metrics, dplyr::left_join(combos.to.keep, curr.tune.metrics, by = c('metric','class')))
}
curr.out.sample.bs.metrics$bs.idx <- counter
compiled.bs.metrics <- rbind(compiled.bs.metrics,curr.out.sample.bs.metrics)
if (counter %% 50 == 0){
print(paste(counter/10,'% completed for bootstrapped metrics'))
}
}
# Create directory to store compiled metrics
dir.create('../metrics',showWarnings = FALSE)
# Save compiled bootstrapped classification metrics
write.csv(compiled.bs.metrics,'../metrics/deepMN_compiled_metrics.csv',row.names = FALSE)
# Summarize classification metrics
summarized.bs.metrics <- compiled.bs.metrics %>%
group_by(metric,class) %>%
summarise(metric.value = mean(value),
lower.ci.value = quantile(value,.025),
upper.ci.value = quantile(value,.975),
)
```
### Bootstrap to calculate DeepMN AUCs and axes
```{r eval=FALSE, message=FALSE, warning=FALSE}
# Load compiled DeepMN results
deepMN.results.compiled <- read.csv('../repeated_cv/compiled_predictions/deepMN.csv') %>%
rename(true.labels = true_labels,
pred.labels = pred_labels) %>%
mutate(true.labels = factor(true.labels),
pred.labels = factor(pred.labels))
# Load banned tuning indices from BBCD-CV
deepMN.banned.tuning.indices <- read.csv('../repeated_cv/deepMN_banned_tuning_indices.csv')
# Determine number of banned classes per tuning index and filter out completely removed indices
totally.banned.indices = as.data.frame(table(deepMN.banned.tuning.indices$tune_idx)) %>%
rename(tune_idx = Var1) %>%
filter(Freq == 8)
# Remove totally banned indices from compiled prediction set
deepMN.results.compiled <- deepMN.results.compiled %>%
filter(!(tune_idx %in% totally.banned.indices$tune_idx))
# Identify list of unique viable tuning indices
viable.tuning.indices <- unique(deepMN.results.compiled$tune_idx)
# Load bootstrapping IDs
bootstrap.id.list <- readRDS('../repeated_cv/bootstrap_IDs.rds')
# Create dataframe of all possible combinations of viable tuning index and class
viable.tuning.combos <- expand.grid(viable.tuning.indices,c('1','3','4','5','6','7','8','macro-averaged')) %>%
rename(tune_idx = Var1,
class = Var2)
# Remove all rows in `viable.tuning.combos` that correspond to rows in the dataframe of banned combinations
viable.tuning.combos <- dplyr::anti_join(viable.tuning.combos,deepMN.banned.tuning.indices,by = c('tune_idx','class'))
# Load function to calculate AUCs
source('./functions/singleclass_AUC.R')
# Calculate bootstrapped classification metrics and compile in dataframe
compiled.bs.aucs <- as.data.frame(matrix(ncol = 5, nrow = 0))
compiled.bs.axes <- as.data.frame(matrix(ncol = 5, nrow = 0))
counter <- 0
for (curr.bootstrap.ids in bootstrap.id.list){
counter <- counter + 1
# Filter out in-sample values for current sample
in.sample.results <- deepMN.results.compiled %>%
filter(entity_id %in% curr.bootstrap.ids)
in.sample.aucs <- as.data.frame(matrix(ncol=4,nrow=0))
for (curr.viable.combo.row in 1:nrow(viable.tuning.combos)){
curr.viable.tune_idx <- viable.tuning.combos$tune_idx[curr.viable.combo.row]
curr.viable.class <- viable.tuning.combos$class[curr.viable.combo.row]
# First check if current `curr.viable.combo.row` is unique for its class. If so, we can skip its evaluation to save time
if (sum(viable.tuning.combos$class == curr.viable.class) == 1){
temp.df.for.append <- data.frame(class = curr.viable.class,
tune_idx = curr.viable.tune_idx,
type = c('auroc','auprc'),
value = NA)
in.sample.aucs <- rbind(in.sample.aucs, temp.df.for.append)
next
} else {
temp.df.for.append <- singleclass.AUC(in.sample.results[in.sample.results$tune_idx == curr.viable.tune_idx,],
specific.class = as.character(curr.viable.class),
axes = FALSE) %>%
mutate(tune_idx = curr.viable.tune_idx)
in.sample.aucs <- rbind(in.sample.aucs, temp.df.for.append)
}
}
# Replace NaNs with arbitrarily max number to pass maximum check
in.sample.aucs$value[is.na(in.sample.aucs$value)] <- 1
# Find optimal tuning configuration for each class-specific and macro-averaged AUC values
curr.bs.aucs <- in.sample.aucs %>%
group_by(type, class) %>%
summarise(tune_idx = tune_idx[which.max(value)])
# Viable optimal tuning indices
curr.opt.viable.tuning.indices <- unique(curr.bs.aucs$tune_idx)
# Filter out out-sample values for current sample and optimal SMOTE
out.sample.results <- deepMN.results.compiled %>%
filter(!(entity_id %in% curr.bootstrap.ids)) %>%
filter(tune_idx %in% curr.opt.viable.tuning.indices)
# Iterate through `curr.opt.viable.tuning.indices` to calculate AUCs and ROC/PRC axes
curr.curve.axes <- as.data.frame(matrix(ncol = 4, nrow = 0))
curr.bs.aucs$value <- NA
for (curr.tune_idx in curr.opt.viable.tuning.indices){
curr.tune.curr.bs.aucs <- curr.bs.aucs %>% filter(tune_idx == curr.tune_idx)
curr.classes <- unique(curr.tune.curr.bs.aucs$class)
for (spec.class in curr.classes){
curr.types <- curr.tune.curr.bs.aucs$type[curr.tune.curr.bs.aucs$class == spec.class]
if (spec.class == 'macro-averaged'){
curr.class.aucs <- singleclass.AUC(out.sample.results[out.sample.results$tune_idx == curr.tune_idx,],
types = curr.types,
specific.class = as.character(spec.class),
axes = FALSE)
for (spec.type in curr.types){
curr.bs.idx <- curr.bs.aucs$class == spec.class & curr.bs.aucs$type == spec.type
curr.bs.aucs$value[curr.bs.idx] <- curr.class.aucs$value[curr.class.aucs$type == spec.type]
}
} else {
curr.output <- singleclass.AUC(out.sample.results[out.sample.results$tune_idx == curr.tune_idx,],
types = curr.types,
specific.class = as.character(spec.class),
axes = TRUE)
curr.class.aucs <- curr.output[[1]]
curr.class.curve.axes <- curr.output[[2]]
curr.curve.axes <- rbind(curr.curve.axes,curr.class.curve.axes)
for (spec.type in curr.types){
curr.bs.idx <- curr.bs.aucs$class == spec.class & curr.bs.aucs$type == spec.type
curr.bs.aucs$value[curr.bs.idx] <- curr.class.aucs$value[curr.class.aucs$type == spec.type]
}
}
}
}
curr.bs.aucs$bootstrap.idx = counter
curr.curve.axes$bootstrap.idx = counter
# Create directory to save current bootstrap AUCs
dir.create(file.path('../metrics/bootstrap_auc',sprintf('B%04d',counter)),recursive = TRUE,showWarnings = FALSE)
# Save current bootstrap AUCs and curve axes in new directory
write.csv(curr.bs.aucs,file.path('../metrics/bootstrap_auc',sprintf('B%04d',counter),'deepMN_aucs.csv'),row.names = FALSE)
write.csv(curr.curve.axes,file.path('../metrics/bootstrap_auc',sprintf('B%04d',counter),'deepMN_roc_prc_axes.csv'),row.names = FALSE)
compiled.bs.aucs <- rbind(compiled.bs.aucs,curr.bs.aucs)
compiled.bs.axes <- rbind(compiled.bs.axes,curr.curve.axes)
if (counter %% 10 == 0){
print(paste(counter/10,'% completed for bootstrapped ROCs and PRCs'))
}
}
# Save compiled bootstrapped AUCs and curves
write.csv(compiled.bs.aucs,'../metrics/deepMN_compiled_aucs.csv',row.names = FALSE)
write.csv(compiled.bs.axes,'../metrics/deepMN_compiled_roc_prc_axes.csv',row.names = FALSE)
# Summarize classification aucs
summarized.bs.aucs <- compiled.bs.aucs %>%
group_by(type,class) %>%
summarise(metric.value = mean(value),
lower.ci.value = quantile(value,.025),
upper.ci.value = quantile(value,.975),
)
# Calculate mean and confidence intervals for the ROC and PR axes
deepMN.plot.roc.pcr.axes <- compiled.bs.axes %>%
group_by(class, type, x) %>%
summarise(mean.y = mean(y,na.rm = TRUE),
lower.ci.y = quantile(y,.025,na.rm = TRUE),
upper.ci.y = quantile(y,.975,na.rm = TRUE))
write.csv(deepMN.plot.roc.pcr.axes,
'../metrics/deepMN_compiled_plot_roc_prc_axes.csv',
row.names = FALSE)
```