diff --git a/lightautoml/automl/base.py b/lightautoml/automl/base.py index c503e6e3..8bce8682 100644 --- a/lightautoml/automl/base.py +++ b/lightautoml/automl/base.py @@ -195,7 +195,9 @@ def fit_predict( self.classes_ = roles["target"] elif self.reader.task.name == "reg": self.classes_ = [roles["target"]] - else: + elif self.reader.task.name == "multilabel": + self.classes_ = roles["target"] + else: # multiclass self.classes_ = ( sorted(self.reader.class_mapping, key=self.reader.class_mapping.get, reverse=False) if self.reader.class_mapping diff --git a/lightautoml/automl/blend.py b/lightautoml/automl/blend.py index 87ad9a59..f88f2f18 100644 --- a/lightautoml/automl/blend.py +++ b/lightautoml/automl/blend.py @@ -42,7 +42,7 @@ def outp_dim(self) -> int: # noqa: D102 return self._outp_dim def fit_predict( - self, predictions: Sequence[LAMLDataset], pipes: Sequence[MLPipeline], class_mapping: dict + self, predictions: Sequence[LAMLDataset], pipes: Sequence[MLPipeline], targets_mapping: dict ) -> Tuple[LAMLDataset, Sequence[MLPipeline]]: """Wraps custom ``._fit_predict`` methods of blenders. @@ -63,7 +63,7 @@ def fit_predict( self._bypass = True return predictions[0], pipes - return self._fit_predict(predictions, pipes, class_mapping) + return self._fit_predict(predictions, pipes, targets_mapping) def _fit_predict( self, predictions: Sequence[LAMLDataset], pipes: Sequence[MLPipeline] @@ -134,7 +134,7 @@ def split_models(self, predictions: Sequence[LAMLDataset]) -> Tuple[Sequence[LAM return splitted_preds, model_idx, pipe_idx - def _set_metadata(self, predictions: Sequence[LAMLDataset], pipes: Sequence[MLPipeline], class_mapping: dict): + def _set_metadata(self, predictions: Sequence[LAMLDataset], pipes: Sequence[MLPipeline], targets_mapping: dict): pred0 = predictions[0] pipe0 = pipes[0] @@ -143,7 +143,7 @@ def _set_metadata(self, predictions: Sequence[LAMLDataset], pipes: Sequence[MLPi self._outp_prob = pred0.task.name in ["binary", "multiclass"] self._score = predictions[0].task.get_dataset_metric() - self._class_mapping = class_mapping + self._targets_mapping = targets_mapping def score(self, dataset: LAMLDataset) -> float: """Score metric for blender. @@ -323,7 +323,7 @@ def _get_weighted_pred(self, splitted_preds: Sequence[NumpyDataset], wts: Option outp = splitted_preds[0].empty() outp.set_data( weighted_pred, - self._class_mapping if self._class_mapping else list(range(weighted_pred.shape[1])), + self._targets_mapping if self._targets_mapping else list(range(weighted_pred.shape[1])), NumericRole(np.float32, prob=self._outp_prob), ) @@ -438,7 +438,7 @@ def _prune_pipe( return new_pipes, wts def _fit_predict( - self, predictions: Sequence[NumpyDataset], pipes: Sequence[MLPipeline], class_mapping: dict + self, predictions: Sequence[NumpyDataset], pipes: Sequence[MLPipeline], targets_mapping: dict ) -> Tuple[NumpyDataset, Sequence[MLPipeline]]: """Perform coordinate descent. @@ -453,7 +453,7 @@ def _fit_predict( Dataset and MLPipeline. """ - self._set_metadata(predictions, pipes, class_mapping) + self._set_metadata(predictions, pipes, targets_mapping) splitted_preds, _, pipe_idx = cast(List[NumpyDataset], self.split_models(predictions)) wts = self._optimize(splitted_preds) diff --git a/scripts/experiments/run.py b/scripts/experiments/run.py index 6aff5db8..f618f38c 100644 --- a/scripts/experiments/run.py +++ b/scripts/experiments/run.py @@ -19,6 +19,7 @@ def main( # noqa D103 dataset_project: str = None, dataset_partial_name: str = None, n_datasets: int = -1, + save_model: bool = False, ): if dataset_name is not None: dataset_list = [dataset_name] @@ -66,7 +67,7 @@ def main( # noqa D103 tags = f"--tags {' '.join(tags)}" if len(tags) else "" os.system( - f'clearml-task --project {project} --name {curr_task_name} --script scripts/experiments/run_tabular.py --queue {queue} {tags} --docker {image} --docker_args "--cpus={cpu_limit} --memory={memory_limit}g" --args dataset={dataset_name}' + f'clearml-task --project {project} --name {curr_task_name} --script scripts/experiments/run_tabular.py --queue {queue} {tags} --docker {image} --docker_args "--cpus={cpu_limit} --memory={memory_limit}g" --args dataset={dataset_name} save_model={save_model}' ) @@ -84,6 +85,7 @@ def main( # noqa D103 parser.add_argument("--image", type=str, help="docker image", default="for_clearml:latest") parser.add_argument("--n_datasets", type=int, help="number of datasets", default=-1) parser.add_argument("--min_num_obs", type=int, help="min number of samples", default=None) + parser.add_argument("--save_model", action="store_true") args = parser.parse_args() main( @@ -99,4 +101,5 @@ def main( # noqa D103 image=args.image, n_datasets=args.n_datasets, min_num_obs=args.min_num_obs, + save_model=args.save_model, ) diff --git a/scripts/experiments/run_tabular.py b/scripts/experiments/run_tabular.py index eaa59aa3..11ccfe12 100644 --- a/scripts/experiments/run_tabular.py +++ b/scripts/experiments/run_tabular.py @@ -22,13 +22,13 @@ RANDOM_STATE = 1234 -def map_to_corect_order_of_classes(values, classes_): # noqa D103 - class_mapping = {n: x for (x, n) in enumerate(classes_)} +def map_to_corect_order_of_classes(values, targets_order): # noqa D103 + class_mapping = {n: x for (x, n) in enumerate(targets_order)} mapped = list(map(class_mapping.get, values)) return mapped -def main(dataset_name: str, cpu_limit: int, memory_limit: int): # noqa D103 +def main(dataset_name: str, cpu_limit: int, memory_limit: int, save_model: bool): # noqa D103 cml_task = clearml.Task.get_task(clearml.config.get_remote_task_id()) logger = cml_task.get_logger() @@ -48,7 +48,7 @@ def main(dataset_name: str, cpu_limit: int, memory_limit: int): # noqa D103 task=task, cpu_limit=cpu_limit, memory_limit=memory_limit, - timeout=10 * 60 * 60, + timeout=15 * 60, general_params={ # "use_algos": [["mlp"]] }, # ['nn', 'mlp', 'dense', 'denselight', 'resnet', 'snn', 'node', 'autoint', 'fttransformer'] or custom torch model @@ -64,10 +64,25 @@ def main(dataset_name: str, cpu_limit: int, memory_limit: int): # noqa D103 cml_task.connect(automl) - target_name = test.columns[-1] + if task_type == "multilabel": + target_name = [x for x in test.columns if x.startswith("target")] + else: + target_name = test.columns[-1] + + kwargs = {} + if save_model: + kwargs["path_to_save"] = "model" with Timer() as timer_training: - oof_predictions = automl.fit_predict(train, roles={"target": target_name}, verbose=10) + oof_predictions = automl.fit_predict(train, roles={"target": target_name}, verbose=10, **kwargs) + + # add and upload local file artifact + cml_task.upload_artifact( + name="model.joblib", + artifact_object=os.path.join( + "model.joblib", + ), + ) with Timer() as timer_predict: test_predictions = automl.predict(test) @@ -84,17 +99,25 @@ def main(dataset_name: str, cpu_limit: int, memory_limit: int): # noqa D103 except: # Some datasets can have dtype=float of target, # so we must map this target for correct log_loss calculating (if we didn't caclulate it in the try block) - # and this mapping must be in the correct order so we extract automl.classes_ and map values - y_true = map_to_corect_order_of_classes(values=train[target_name].values[not_nan], classes_=automl.classes_) + # and this mapping must be in the correct order so we extract automl.targets_ and map values + y_true = map_to_corect_order_of_classes( + values=train[target_name].values[not_nan], targets_order=oof_predictions.features + ) metric_oof = log_loss(y_true, oof_predictions.data[not_nan, :]) - y_true = map_to_corect_order_of_classes(values=test[target_name], classes_=automl.classes_) + y_true = map_to_corect_order_of_classes(values=test[target_name], targets_order=automl.targets_) metric_ho = log_loss(y_true, test_predictions.data) elif task_type == "reg": metric_oof = task.metric_func(train[target_name].values, oof_predictions.data[:, 0]) metric_ho = task.metric_func(test[target_name].values, test_predictions.data[:, 0]) + elif task_type == "multilabel": + metric_oof = task.metric_func(train[target_name].values, oof_predictions.data) + metric_ho = task.metric_func(test[target_name].values, test_predictions.data) + else: + raise ValueError("Bad task type.") + print(f"Score for out-of-fold predictions: {metric_oof}") print(f"Score for hold-out: {metric_ho}") print(f"Train duration: {timer_training.duration}") @@ -114,6 +137,9 @@ def main(dataset_name: str, cpu_limit: int, memory_limit: int): # noqa D103 parser.add_argument("--dataset", type=str, help="dataset name or id", default="sampled_app_train") parser.add_argument("--cpu_limit", type=int, help="", default=8) parser.add_argument("--memory_limit", type=int, help="", default=16) + parser.add_argument("--save_model", action="store_true") args = parser.parse_args() - main(dataset_name=args.dataset, cpu_limit=args.cpu_limit, memory_limit=args.memory_limit) + main( + dataset_name=args.dataset, cpu_limit=args.cpu_limit, memory_limit=args.memory_limit, save_model=args.save_model + )