forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
jit.cpp
133 lines (104 loc) · 4.19 KB
/
jit.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
#include <gtest/gtest.h>
#include <torch/jit.h>
#include <torch/script.h>
#include <torch/types.h>
#include <string>
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(TorchScriptTest, CanCompileMultipleFunctions) {
auto module = torch::jit::compile(R"JIT(
def test_mul(a, b):
return a * b
def test_relu(a, b):
return torch.relu(a + b)
def test_while(a, i):
while bool(i < 10):
a += a
i += 1
return a
def test_len(a : List[int]):
return len(a)
)JIT");
auto a = torch::ones(1);
auto b = torch::ones(1);
ASSERT_EQ(1, module->run_method("test_mul", a, b).toTensor().item<int64_t>());
ASSERT_EQ(2, module->run_method("test_relu", a, b).toTensor().item<int64_t>());
ASSERT_TRUE(
0x200 == module->run_method("test_while", a, b).toTensor().item<int64_t>());
at::IValue list = c10::List<int64_t>({3, 4});
ASSERT_EQ(2, module->run_method("test_len", list).toInt());
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(TorchScriptTest, TestNestedIValueModuleArgMatching) {
auto module = torch::jit::compile(R"JIT(
def nested_loop(a: List[List[Tensor]], b: int):
return torch.tensor(1.0) + b
)JIT");
auto b = 3;
torch::List<torch::Tensor> list({torch::rand({4, 4})});
torch::List<torch::List<torch::Tensor>> list_of_lists;
list_of_lists.push_back(list);
module->run_method("nested_loop", list_of_lists, b);
auto generic_list = c10::impl::GenericList(at::TensorType::get());
auto empty_generic_list = c10::impl::GenericList(at::ListType::create(at::TensorType::get()));
empty_generic_list.push_back(generic_list);
module->run_method("nested_loop", empty_generic_list, b);
auto too_many_lists = c10::impl::GenericList(at::ListType::create(at::ListType::create(at::TensorType::get())));
too_many_lists.push_back(empty_generic_list);
try {
module->run_method("nested_loop", too_many_lists, b);
AT_ASSERT(false);
} catch (const c10::Error& error) {
AT_ASSERT(
std::string(error.what_without_backtrace())
.find("nested_loop() Expected a value of type 'List[List[Tensor]]'"
" for argument 'a' but instead found type "
"'List[List[List[Tensor]]]'") == 0);
};
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(TorchScriptTest, TestDictArgMatching) {
auto module = torch::jit::compile(R"JIT(
def dict_op(a: Dict[str, Tensor], b: str):
return a[b]
)JIT");
c10::Dict<std::string, at::Tensor> dict;
dict.insert("hello", torch::ones({2}));
auto output = module->run_method("dict_op", dict, std::string("hello"));
ASSERT_EQ(1, output.toTensor()[0].item<int64_t>());
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(TorchScriptTest, TestTupleArgMatching) {
auto module = torch::jit::compile(R"JIT(
def tuple_op(a: Tuple[List[int]]):
return a
)JIT");
c10::List<int64_t> int_list({1});
auto tuple_generic_list = c10::ivalue::Tuple::create({ int_list });
// doesn't fail on arg matching
module->run_method("tuple_op", tuple_generic_list);
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(TorchScriptTest, TestOptionalArgMatching) {
auto module = torch::jit::compile(R"JIT(
def optional_tuple_op(a: Optional[Tuple[int, str]]):
if a is None:
return 0
else:
return a[0]
)JIT");
auto optional_tuple = c10::ivalue::Tuple::create({2, std::string("hi")});
ASSERT_EQ(2, module->run_method("optional_tuple_op", optional_tuple).toInt());
ASSERT_EQ(
0, module->run_method("optional_tuple_op", torch::jit::IValue()).toInt());
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(TorchScriptTest, TestPickle) {
torch::IValue float_value(2.3);
// TODO: when tensors are stored in the pickle, delete this
std::vector<at::Tensor> tensor_table;
auto data = torch::jit::pickle(float_value, &tensor_table);
torch::IValue ivalue = torch::jit::unpickle(data.data(), data.size());
double diff = ivalue.toDouble() - float_value.toDouble();
double eps = 0.0001;
ASSERT_TRUE(diff < eps && diff > -eps);
}