-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgtad_train_fs.py
140 lines (115 loc) · 5.13 KB
/
gtad_train_fs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import os
import torch
import torch.nn.parallel
import torch.optim as optim
from torch import autograd
import numpy as np
from gtad_lib import opts
from gtad_lib.models import GTAD
from gtad_lib.dataset_fs import VideoDataSet,VideoEpisodicDataSet
from gtad_lib.loss_function import get_mask, gtad_loss_func # subgraph_loss_func, node_loss_func
################## fix everything ##################
import random
seed = 0
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
#######################################################
# keep track of statistics
class AverageMeter(object):
def __init__(self):
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.sum += val
self.count += n
def avg(self):
return self.sum/self.count
def get_mem_usage():
GB = 1024.0 ** 3
output = ["device_%d = %.03fGB" % (device, torch.cuda.max_memory_allocated(torch.device('cuda:%d' % device)) / GB) for device in range(opt['n_gpu'])]
return ' '.join(output)[:-1]
# train
def train(data_loader, model, optimizer, epoch, bm_mask):
model.train()
total_am, subgraph_am, node_am = AverageMeter(), AverageMeter(), AverageMeter()
for n_iter, (input_data, label_confidence, label_start, label_end) in enumerate(data_loader):
# forward pass
confidence_map, start, end = model(input_data.cuda())
# loss
loss = gtad_loss_func(confidence_map, start, end, label_confidence, label_start, label_end, bm_mask.cuda())
# update step
optimizer.zero_grad()
loss[0].backward()
# torch.nn.utils.clip_grad_norm_(model.parameters(), 1)
optimizer.step()
# update losses
total_am.update(loss[0].detach())
subgraph_am.update(loss[1].detach())
node_am.update(loss[2].detach())
print("[Epoch {0:03d}]\tLoss {1:.2f} = {2:.2f} + {3:.2f} (train)".format(
epoch, total_am.avg(), subgraph_am.avg(), node_am.avg()))
def test(data_loader, model, epoch, bm_mask, best_loss):
model.eval()
total_am, subgraph_am, node_am = AverageMeter(), AverageMeter(), AverageMeter()
with torch.no_grad():
for n_iter, (input_data, label_confidence, label_start, label_end) in enumerate(data_loader):
# forward pass
confidence_map, start, end = model(input_data.cuda())
# loss
# gt_iou_map = label_confidence.cuda() * bm_mask
loss = gtad_loss_func(confidence_map, start, end, label_confidence, label_start, label_end, bm_mask.cuda())
# update losses
total_am.update(loss[0].detach())
subgraph_am.update(loss[1].detach())
node_am.update(loss[2].detach())
print("[Epoch {0:03d}]\tLoss {1:.2f} = {2:.2f} + {3:.2f} (validation)".format(
epoch, total_am.avg(), subgraph_am.avg(), node_am.avg()))
state = {'epoch': epoch + 1,
'state_dict': model.state_dict()}
torch.save(state, opt["output"] + "/GTAD_checkpoint.pth.tar")
if total_am.avg() < best_loss:
best_loss = total_am.avg()
torch.save(state, opt["output"] + "/GTAD_best.pth.tar")
return best_loss
if __name__ == '__main__':
opt = opts.parse_opt()
opt = vars(opt)
if not os.path.exists(opt["output"]):
os.makedirs(opt["output"])
# model = GTAD(opt)
# a = torch.randn(1, 400, 100)
# b, c = model(a)
# print(b.shape, c.shape)
# print(b)
# print(c)
model = GTAD(opt)
valid_mode = "Standard" ## Standard or Episodic
model = torch.nn.DataParallel(model, device_ids=list(range(opt['n_gpu']))).cuda()
print('use {} gpus to train!'.format(opt['n_gpu']))
optimizer = optim.Adam(model.parameters(), lr=opt["training_lr"],
weight_decay=opt["weight_decay"])
train_loader = torch.utils.data.DataLoader(VideoDataSet(opt, subset="train"),
batch_size=opt["batch_size"], shuffle=True,
num_workers=8, pin_memory=True)
if valid_mode== "Standard":
test_loader = torch.utils.data.DataLoader(VideoDataSet(opt, subset="validation"),
batch_size=opt["batch_size"], shuffle=False,
num_workers=8, pin_memory=True)
else:
## to do : batch_size should be different hyperparam for episodic
test_loader = torch.utils.data.DataLoader(VideoEpisodicDataSet(opt, subset="validation"),
batch_size=opt["batch_size"], shuffle=False,
num_workers=8, pin_memory=True)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=opt["step_size"], gamma=opt["step_gamma"])
mask = get_mask(opt["temporal_scale"])
best_loss = 1e10
for epoch in range(opt["train_epochs"]):
with autograd.detect_anomaly():
train(train_loader, model, optimizer, epoch, mask)
best_loss = test(test_loader, model, epoch, mask, best_loss)
scheduler.step()