-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
50 lines (43 loc) · 1.73 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import bs4 as bs
import urllib.request
import re
import nltk
entry = input("Enter anything you want to search: ")
scraped_data = urllib.request.urlopen(f'https://en.wikipedia.org/wiki/{entry}')
article = scraped_data.read()
parsed_article = bs.BeautifulSoup(article,'lxml')
paragraphs = parsed_article.find_all('p')
article_text = ""
for p in paragraphs:
article_text += p.text
# Removing Square Brackets and Extra Spaces
article_text = re.sub(r'\[[0-9]*\]', ' ', article_text)
article_text = re.sub(r'\s+', ' ', article_text)
# Removing special characters and digits
formatted_article_text = re.sub('[^a-zA-Z]', ' ', article_text )
formatted_article_text = re.sub(r'\s+', ' ', formatted_article_text)
sentence_list = nltk.sent_tokenize(article_text)
stopwords = nltk.corpus.stopwords.words('english')
word_frequencies = {}
for word in nltk.word_tokenize(formatted_article_text):
if word not in stopwords:
if word not in word_frequencies.keys():
word_frequencies[word] = 1
else:
word_frequencies[word] += 1
maximum_frequncy = max(word_frequencies.values())
for word in word_frequencies.keys():
word_frequencies[word] = (word_frequencies[word]/maximum_frequncy)
sentence_scores = {}
for sent in sentence_list:
for word in nltk.word_tokenize(sent.lower()):
if word in word_frequencies.keys():
if len(sent.split(' ')) < 30:
if sent not in sentence_scores.keys():
sentence_scores[sent] = word_frequencies[word]
else:
sentence_scores[sent] += word_frequencies[word]
import heapq
summary_sentences = heapq.nlargest(7, sentence_scores, key=sentence_scores.get)
summary = ' '.join(summary_sentences)
print(summary)