-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbst.py
484 lines (397 loc) · 14.4 KB
/
bst.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
from __future__ import annotations
from dataclasses import dataclass
from python.trees.tree_traversal import TraversalCategory
from python.utils.benchmark import benchmark
from tree_traversal import TreeTraversal
from tree_node import BSTNode
@dataclass
class BinarySearchTree(TreeTraversal):
root: BSTNode | None = None
@staticmethod
def find_max(root: BSTNode) -> BSTNode:
while root.right:
root = root.right
return root
@staticmethod
def find_min(root: BSTNode) -> BSTNode:
while root.left:
root = root.left
return root
def height(self, node: BSTNode | None) -> int:
"""Find the height of the tree by passing root or any other node in the tree."""
if not node:
return -1
return 1 + max(self.height(node.left), self.height(node.right))
@staticmethod
def diameter(root: BSTNode | None) -> int:
"""Find the diameter of the tree.
The max of 3 scenarios:
1. The left subtree diameter
2. The right subtree diameter
3. The diameter of the path through the root
"""
def calc_max(node):
if node is None:
return 0, 0
l_diameter, l_path = calc_max(node.left)
r_diameter, r_path = calc_max(node.right)
diameter = max(l_diameter, r_diameter, l_path + r_path)
path = 1 + max(l_path, r_path)
return diameter, path
return calc_max(root)[0]
@staticmethod
def max_width(root: BSTNode | None):
"""Calculate width of a binary tree.
This approach uses level order traversal and return maximum length of
levels in a tree.
:return: width is the maximum number of nodes at any level in a binary tree.
"""
curr = [root]
next_level = []
max_width = len(curr)
while curr:
node = curr.pop()
assert node is not None
if node.left:
next_level.append(node.left)
if node.right:
next_level.append(node.right)
if curr is None:
if len(next_level) > max_width:
max_width = len(next_level)
curr, next_level = next_level, curr
return max_width
@staticmethod
def is_bst(root:BSTNode | None) -> bool:
"""Approach 1: Recursive Traversal with Valid Range
- DFS recursive, top down (preorder).
- Time complexity: O(N) since we visit each node exactly once.
- Space complexity: O(N) since we keep up to the entire tree.
"""
def validate(node, low=-float('inf'), high=float('inf')):
if node is None:
return True
if node.val <= low or node.val >= high:
return False
return (validate(node.left, low, node.val) and
validate(node.right, node.val, high))
return validate(root)
@staticmethod
def is_bst_iter(root: BSTNode | None):
"""Approach 2: Iterative Traversal with Valid Range
- DFS iterative (in-order traversal result in ordered list, top down)
(preorder).
- Time complexity: O(N) since we visit each node exactly once.
- Space complexity: O(N) since we keep up to the entire tree.
"""
if root is None:
return True
stack: list[tuple[BSTNode | None, float, float]] = [(root, -float('inf'), float('inf'))]
while stack:
root, lower, upper = stack.pop()
if root is None:
continue
val = root.val
if val <= lower or val >= upper:
return False
# important note - right child is pushed first so that left child is processed first (LIFO order)
stack.append((root.right, val, upper))
stack.append((root.left, lower, val))
return True
@staticmethod
def is_bst_iter_inorder(root: BSTNode | None):
"""Approach 4: Iterative Inorder Traversal
- Time complexity: O(N) since we visit each node exactly once.
- Space complexity: O(N) to keep stack.
"""
stack, prev = [], -float('inf')
while stack or root:
while root:
stack.append(root)
root = root.left
root = stack.pop()
assert root is not None
# If next element in inorder traversal is smaller than the previous one than not a BST.
if root.val <= prev:
return False
prev = root.val
root = root.right
return True
@staticmethod
def is_bst_r_inorder(root: BSTNode | None) -> bool:
"""Approach 3: Recursive Inorder Traversal
- Time complexity: O(N) since we visit each node exactly once.
- Space complexity: O(N) to keep stack
"""
def inorder(node):
nonlocal prev
if not node:
return True
if not inorder(node.left):
return False
if node.val <= prev:
return False
prev = node.val
return inorder(node.right)
prev = -float('inf')
return inorder(root)
def split_bst(self, root: BSTNode | None, val: int):
if root is None:
return [None, None]
if root.val > val:
left, right = self.split_bst(root.left, val)
root.left = right
return [left, root]
else:
left, right = self.split_bst(root.right, val)
root.right = left
return [root, right]
def flatten(self, root: BSTNode | None):
"""Flatten a binary tree to a linked list.
The head of the output linked list is the root of the tree node,
followed by a flattened left subtree, which is followed by a flattened
right subtree.
Time: O(n), Space: O(1)
"""
while root:
if root.left:
pre = self.find_max(root.left)
pre.right = root.right
root.right = root.left
root.left = None
root = root.right
@staticmethod
def search(root: BSTNode | None, val: int):
while root is not None and root.val != val:
root = root.left if val < root.val else root.right
return root
def r_search(self, root: BSTNode | None, val: int) -> BSTNode | None:
if root is None or val == root.val:
return root
elif val < root.val:
return self.r_search(root.left, val)
else:
return self.r_search(root.right, val)
def insert(self, val: int):
node = BSTNode(val)
if self.root is None:
self.root = node
else:
curr, parent = self.root, None
while curr:
parent = curr
if val <= curr.val:
curr = curr.left
if curr is None:
parent.left = node
else:
curr = curr.right
if curr is None:
parent.right = node
def r_insert(self, root: BSTNode | None, val: int):
if not root:
return BSTNode(val)
if val <= root.val:
root.left = self.r_insert(root.left, val)
else:
root.right = self.r_insert(root.right, val)
return root
def inorder_successor(self, root: BSTNode | None, p: BSTNode):
"""Iterative - no stack"""
if p.right:
return self.find_min(p.right)
succ = None
while root:
if p.val < root.val:
succ = root
root = root.left
else:
root = root.right
return succ
def inorder_successor2(self, root: BSTNode | None | None, p: BSTNode):
"""Recursive
Do a binary search down the tree, and if the current node is greater
than the target, remember the current node. Binary Search will
eventually converge to the immediate successor.
"""
if p.right:
return self.find_min(p.right)
def inorder(node):
if node is None:
return
if p.val < node.val:
succ = node
inorder(node.left)
else:
inorder(node.right)
succ = None
inorder(root)
return succ
def inorder_successor3(self, root: BSTNode | None, p: BSTNode):
"""Iterative: stack"""
stack, pre_val = [], None
if p.right:
return self.find_min(p.right)
while stack or root:
while root:
stack.append(root)
if root.val <= p.val:
break
root = root.left
root = stack.pop()
if pre_val is not None and pre_val == p.val:
return root
if root is not None:
pre_val = root.val
root = root.right
return None
def inorder_predecessor(self, root: BSTNode | None, p: BSTNode):
if p.left:
return self.find_max(p.left)
pre = None
while root:
if p.val <= root.val:
root = root.left
else:
pre = root
root = root.right
return pre
def remove(self, root: BSTNode | None, val: int):
if not root:
return None
if root.val == val:
if not root.right:
return root.left
if not root.left:
return root.right
root.val = self.find_min(root.right).val
root.right = self.remove(root.right, root.val)
elif root.val > val:
root.left = self.remove(root.left, val)
else:
root.right = self.remove(root.right, val)
return root
if __name__ == '__main__':
tree = BinarySearchTree()
tree.insert(5)
tree.insert(2)
tree.insert(7)
tree.insert(9)
tree.insert(1)
tree.insert(8)
tree.insert(3)
tree.r_insert(tree.root, 13)
tree.r_insert(tree.root, 6)
"""Creates the tree
5
/ \
2 7
/ \ / \
1 3 6 9
/ \
8 13
"""
root_1 = tree.search(tree.root, 1)
root_2 = tree.search(tree.root, 2)
root_3 = tree.search(tree.root, 3)
root_5 = tree.search(tree.root, 5)
root_9 = tree.search(tree.root, 9)
root_13 = tree.search(tree.root, 13)
assert tree.root and root_1 and root_2 and root_3 and root_5 and root_9 and root_13
assert tree.height(tree.root) == 3
assert tree.diameter(tree.root) == 5
assert tree.find_min(tree.root) == root_1
assert tree.find_max(tree.root) == root_13
assert root_9.val == 9
assert root_9.num_children() == 2
assert tree.height(root_9) == 1
assert root_9.height() == 1
assert root_5.val == 5
assert root_5.num_children() == 2
assert tree.height(root_5) == 3
assert root_5.height() == 3
assert root_2.val == 2
assert root_2.num_children() == 2
assert tree.height(root_2) == 1
assert root_2.height() == 1
assert tree.traversal(tree.root, TraversalCategory.BFS) == [5, 2, 7, 1, 3, 6, 9, 8, 13] # BFS
DFS_RESULTS = {
'inorder': [1, 2, 3, 5, 6, 7, 8, 9, 13],
'preorder': [5, 2, 1, 3, 7, 6, 9, 8, 13],
'postorder': [1, 3, 2, 6, 8, 13, 9, 7, 5]
}
for traversal, res in DFS_RESULTS.items():
assert tree.traversal(tree.root, TraversalCategory.DFS, traversal, 'implicit') == res # Recursive
assert tree.traversal(tree.root, TraversalCategory.DFS, traversal, 'explicit') == res # Iterative with stack
assert tree.traversal(tree.root, TraversalCategory.DFS, traversal, 'none') == res # Iterative Morris
for i in range(1, 14):
found = tree.search(tree.root, i)
print(f'{i}: {found}')
# 1: 1
# 2: 2
# 3: 3
# 4: None
# 5: 5
# 6: 6
# 7: 7
# 8: 8
# 9: 9
# 10: None
# 11: None
# 12: None
# 13: 13
tree.remove(tree.root, 9)
for i in range(1, 14):
found = tree.r_search(tree.root, i)
print(f'{i}: {found}')
# 1: 1
# 2: 2
# 3: 3
# 4: None
# 5: 5
# 6: 6
# 7: 7
# 8: 8
# 9: None
# 10: None
# 11: None
# 12: None
# 13: 13
# Traverses DFS preorder recursively
print('\nRecursive DFS: valid BST? ', tree.is_bst(tree.root)) # True
# Traverses DFS preorder iteratively w/ stack
print('\nIterative Stack DFS: valid BST? ', tree.is_bst_iter(tree.root)) # True
# Traverses DFS inorder iteratively w/ stack
print('\nIterative Stack DFS: valid BST? ', tree.is_bst_iter_inorder(tree.root)) # True
# Traverses DFS inorder iteratively w/ stack
print('\nIterative Stack DFS: valid BST? ', tree.is_bst_r_inorder(tree.root)) # True
root_7 = tree.search(tree.root, 7)
root_8 = tree.search(tree.root, 8)
root_13 = tree.search(tree.root, 13)
assert root_7 and root_8 and root_13
assert tree.inorder_successor(tree.root, root_7) == root_8
assert tree.inorder_successor(tree.root, root_13) == None
assert tree.inorder_successor2(tree.root, root_7) == root_8
assert tree.inorder_successor2(tree.root, root_13) == None
assert tree.inorder_successor3(tree.root, root_7) == root_8
assert tree.inorder_successor3(tree.root, root_13) == None
assert tree.inorder_predecessor(tree.root, root_3) == root_2
assert tree.inorder_predecessor(tree.root, root_1) == None
benchmark(
(tree.inorder_successor, tree.inorder_successor2, tree.inorder_successor3),
((tree.root, root_7),),
)
tree.insert(4)
assert tree.traversal(tree.root, TraversalCategory.BFS) == [5, 2, 7, 1, 3, 6, 13, 4, 8]
left_split, right_split = tree.split_bst(tree.root, 2)
assert left_split and right_split
assert tree.traversal(left_split, TraversalCategory.DFS) == [2, 1]
assert tree.traversal(right_split, TraversalCategory.DFS) == [5, 3, 4, 7, 6, 13, 8]
assert tree.traversal(tree.root, TraversalCategory.BFS) == [5, 3, 7, 4, 6, 13, 8]
print('inorder traversal before flatten: ',
[_ for _ in tree.traversal(tree.root, TraversalCategory.DFS, 'inorder')])
# [3, 4, 5, 6, 7, 8, 13]
tree.flatten(tree.root)
print('inorder traversal after flatten: ',
[_ for _ in tree.traversal(tree.root, TraversalCategory.DFS, 'inorder')])
# [5, 3, 4, 7, 6, 13, 8]