-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
579 lines (520 loc) · 26.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
'''
A script to train finite or inf-width PiMLPs on omniglot.
See the readme for example usage. Note that this will train the networks,
but there is a separate test script.
Arguments have short descriptions.
'''
import torch
import math
import os
import time
import json
import logging
import cox.store
from hashlib import sha1
from torchmeta.utils.data import BatchMetaDataLoader
from meta.maml.datasets import get_benchmark_by_name
from meta.maml.metalearners import ModelAgnosticMetaLearning
from meta.maml.metalearners import InfMAML
from inf.optim import GClipWrapper, InfCosineAnnealingLR, InfExpAnnealingLR, InfLinearLR, InfSGD, InfMultiStepLR
def main(args, store, exp_id, get_all_outer_loss=False, timeit=False):
tic = time.time()
torch.set_default_dtype(getattr(torch, args.dtype))
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
logging.getLogger('PIL').setLevel(logging.WARNING)
device = torch.device('cuda' if args.use_cuda
and torch.cuda.is_available() else 'cpu')
# random.seed is for dataset shuffling
import random; random.seed(args.seed)
torch.manual_seed(args.seed)
import numpy as np; np.random.seed(args.seed)
if timeit:
print('A', time.time() - tic)
tic = time.time()
if (args.output_folder is not None):
if not os.path.exists(args.output_folder):
os.makedirs(args.output_folder, exist_ok=True)
logging.debug('Creating folder `{0}`'.format(args.output_folder))
folder = os.path.join(args.output_folder, exp_id)
os.makedirs(folder, exist_ok=True)
logging.debug('Creating folder `{0}`'.format(folder))
args.folder = os.path.abspath(args.folder)
args.model_path = os.path.abspath(os.path.join(folder, 'model.th'))
# Save the configuration in a config.json file
with open(os.path.join(folder, 'config.json'), 'w') as f:
json.dump(vars(args), f, indent=2)
if args.verbose:
logging.info('Saving configuration file in `{0}`'.format(
os.path.abspath(os.path.join(folder, 'config.json'))))
if args.train_loss_function == 'None':
args.train_loss_function = None
else:
args.train_loss_function = getattr(torch.nn, args.train_loss_function)()
if timeit:
print('B', time.time() - tic)
tic = time.time()
benchmark = get_benchmark_by_name(args.dataset,
args.folder,
args.num_ways,
args.num_shots,
args.num_shots_test,
hidden_size=args.hidden_size,
normalize=args.normalize,
bias_alpha=args.bias_alpha,
last_bias_alpha=args.last_bias_alpha,
first_layer_alpha=args.first_layer_alpha,
depth=args.depth,
infnet_r=args.infnet_r,
readout_zero_init=args.readout_zero_init,
seed=args.seed,
orig_model=args.orig_model,
lin_model=args.lin_model,
sigma1=args.sigma1,
sigma2=args.sigma2,
sigmab=args.sigmab,
train_last_layer_only=args.train_last_layer_only,
gp1lp=args.gp1lp,
ntk1lp=args.ntk1lp,
gp=args.gp,
ntk=args.ntk,
varw=args.varw,
varb=args.varb,
last_layer_lr_mult=args.last_layer_lr_mult,
first_layer_lr_mult=args.first_layer_lr_mult,
bias_lr_mult=args.bias_lr_mult)
if timeit:
print('C', time.time() - tic)
tic = time.time()
# random.seed is for dataset shuffling
import random; random.seed(args.seed)
torch.manual_seed(args.seed)
import numpy as np; np.random.seed(args.seed)
meta_train_dataloader = BatchMetaDataLoader(benchmark.meta_train_dataset,
batch_size=args.batch_size,
shuffle=not args.no_train_shuffle,
num_workers=args.num_workers,
pin_memory=True)
if args.test_dataset_split == 'val':
valdata = benchmark.meta_val_dataset
elif args.test_dataset_split == 'test':
valdata = benchmark.meta_test_dataset
else:
raise ValueError(f'invalid test dataset split: {args.test_dataset_split}')
meta_val_dataloader = BatchMetaDataLoader(valdata,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
pin_memory=True)
if timeit:
print('D', time.time() - tic)
tic = time.time()
milestones = []
if args.lr_drop_milestones:
milestones = [int(float(e) * args.num_batches) for e in args.lr_drop_milestones.split(',')]
readout_fixed_at_zero = args.last_layer_lr_mult==0 and args.last_bias_alpha==0 and args.readout_zero_init
if readout_fixed_at_zero:
print('readout will be fixed at zero before adaptation')
if args.hidden_size < 0 and not (args.lin_model and not args.orig_model):
if args.optimizer == 'sgd':
meta_optimizer = InfSGD(benchmark.model, lr=args.meta_lr, momentum=args.meta_momentum, bias_lr_mult=args.bias_lr_mult,
last_layer_lr_mult=args.last_layer_lr_mult,
first_layer_lr_mult=args.first_layer_lr_mult,
gclip=args.grad_clip,
gclip_per_param=args.gclip_per_param)
elif args.optimizer == 'adam':
raise NotImplementedError('no infAdam yet')
sch = None
if args.scheduler == 'cosine':
sch = InfCosineAnnealingLR(meta_optimizer, args.num_epochs * args.num_batches, args.meta_lr)
elif args.scheduler == 'exp':
sch = InfExpAnnealingLR(meta_optimizer, np.log(args.lr_drop_ratio) / args.num_batches, args.meta_lr)
elif args.scheduler == 'linear':
sch = InfLinearLR(meta_optimizer, args.num_epochs * args.num_batches, args.meta_lr)
elif args.scheduler == 'multistep':
if args.verbose:
print('multistep scheduler')
print('milestones', milestones)
sch = InfMultiStepLR(meta_optimizer, milestones=milestones, gamma=args.lr_drop_ratio)
metalearner = InfMAML(benchmark.model,
meta_optimizer,
first_order=args.first_order,
num_adaptation_steps=args.num_steps,
step_size=args.step_size,
loss_function=benchmark.loss_function,
train_loss_function=args.train_loss_function,
readout_fixed_at_zero=readout_fixed_at_zero,
# grad_clip=args.grad_clip,
# gclip_per_param=args.gclip_per_param,
device=device,
no_adapt_readout=args.no_adapt_readout,
adapt_readout_only=args.adapt_readout_only,
scheduler=sch,
Gproj_inner=args.Gproj_inner,
Gproj_outer=args.Gproj_outer)
else:
if args.verbose:
print(benchmark.model)
if args.train_last_layer_only:
raise NotImplementedError("have't gone through this branch for a while; check for correctness and infnet counterpart")
if args.gp or args.ntk:
if args.optimizer == 'sgd':
meta_optimizer = torch.optim.SGD(benchmark.model.parameters(), lr=args.meta_lr, momentum=args.meta_momentum)
elif args.optimizer == 'adam':
meta_optimizer = torch.optim.Adam(benchmark.model.parameters(), lr=args.meta_lr)
else:
paramgroups = []
# first layer weights
paramgroups.append({
'params': [benchmark.model._linears[0].weight],
'lr': args.first_layer_lr_mult * args.meta_lr
})
# last layer weights
paramgroups.append({
'params': [benchmark.model._linears[-1].weight],
'lr': args.last_layer_lr_mult * args.meta_lr
})
# all other weights
paramgroups.append({
'params': [l.weight for l in benchmark.model._linears[1:-1]],
})
# biases
if benchmark.model._linears[0].bias is not None:
paramgroups.append({
'params': [l.bias for l in benchmark.model._linears],
'lr': args.bias_lr_mult * args.meta_lr
})
if args.optimizer == 'sgd':
meta_optimizer = torch.optim.SGD(paramgroups, lr=args.meta_lr, momentum=args.meta_momentum)
elif args.optimizer == 'adam':
meta_optimizer = torch.optim.Adam(paramgroups, lr=args.meta_lr)
sch = None
if args.scheduler == 'cosine':
if args.verbose:
print('cosine scheduler')
sch = torch.optim.lr_scheduler.CosineAnnealingLR(meta_optimizer, T_max=args.num_batches * args.num_epochs)
elif args.scheduler == 'multistep':
if args.verbose:
print('multistep scheduler')
print('milestones', milestones)
sch = torch.optim.lr_scheduler.MultiStepLR(meta_optimizer, milestones=milestones, gamma=args.lr_drop_ratio)
meta_optimizer = GClipWrapper(meta_optimizer, benchmark.model, args.grad_clip, args.gclip_per_param, args.last_layer_lr_mult==0)
benchmark.model.no_adapt_readout = args.no_adapt_readout
benchmark.model.adapt_readout_only = args.adapt_readout_only
if args.mu_init:
for _, lin in benchmark.model.linears.items():
lin.weight.data[:].normal_()
lin.weight.data /= lin.weight.shape[1]**0.5 / 2**0.5
if args.first_layer_init_alpha != 1:
benchmark.model.linears[1].weight.data *= args.first_layer_init_alpha
if args.second_layer_init_alpha != 1:
benchmark.model.linears[2].weight.data *= args.second_layer_init_alpha
metalearner = ModelAgnosticMetaLearning(
benchmark.model,
meta_optimizer,
first_order=args.first_order,
num_adaptation_steps=args.num_steps,
step_size=args.step_size,
loss_function=benchmark.loss_function,
train_loss_function=args.train_loss_function,
# grad_clip=args.grad_clip,
no_adapt_readout=args.no_adapt_readout,
adapt_readout_only=args.adapt_readout_only,
device=device,
scheduler=sch,
Gproj_inner=args.Gproj_inner,
Gproj_outer=args.Gproj_outer)
if args.load_model_path:
print(f'loading model {args.load_model_path}')
with open(args.load_model_path, 'rb') as f:
benchmark.model.load_state_dict(torch.load(f, map_location=device))
if timeit:
print('E', time.time() - tic)
tic = time.time()
best_value = None
if True:
short_strs = dict(
epoch='epoch',
train_mean_outer_loss='atloss',
train_median_outer_loss='mtloss',
train_accuracies_after='tacc',
val_mean_outer_loss='avloss',
val_median_outer_loss='mvloss',
val_accuracies_after='vacc',
train_time='ttime',
val_time='vtime'
)
print('\t'.join(short_strs.values()))
# Training loop
epoch_desc = 'Epoch {{0: <{0}d}}'.format(1 + int(math.log10(args.num_epochs)))
# allresults = []
for epoch in range(args.num_epochs):
if timeit:
print('F', time.time() - tic)
tic = time.time()
if not args.validate_only:
epoch_start = time.time()
train_results = metalearner.train(meta_train_dataloader,
max_batches=args.num_batches,
verbose=args.verbose,
desc='Training',
get_all_outer_loss=get_all_outer_loss,
leave=False)
epoch_end = time.time()
epoch_time = epoch_end - epoch_start
if timeit:
print('G', time.time() - tic)
tic = time.time()
# for testing purposes only
if get_all_outer_loss:
return train_results
eval_start = time.time()
results = metalearner.evaluate(meta_val_dataloader,
max_batches=args.num_test_batches,
verbose=args.verbose,
desc=epoch_desc.format(epoch + 1),
leave=args.validate_only)
eval_end = time.time()
eval_time = eval_end - eval_start
if args.validate_only:
_results = dict(
[('epoch', epoch+1)]
+ [('val_' + k, v) for k,v in results.items()]
+ [('val_time', eval_time)]
)
store['result'].append_row(_results)
else:
_results = dict(
[('epoch', epoch+1)]
+ [('train_' + k, v) for k,v in train_results.items()]
+ [('val_' + k, v) for k,v in results.items()]
+ [('train_time', epoch_time), ('val_time', eval_time)]
)
store['result'].append_row(_results)
#allresults.append(_results)
if True:
# print(*[f'{k}: {v:.4f}' for k, v in _results.items() if k != 'epoch'])
print(epoch+1, '\t', '\t'.join(
[f'{v/60.:0.2f}' if 'time' in k else f'{v:.4f}'
for k, v in _results.items() if k != 'epoch']))
# Save best model
# print('best value', best_value)
save_model = False
if 'accuracies_after' in results:
# print('acc after')
if (best_value is None) or (best_value < results['accuracies_after']):
# print(best_value, results['accuracies_after'])
best_value = results['accuracies_after']
save_model = True
elif (best_value is None) or (best_value > results['mean_outer_loss']):
# print('outer loss')
best_value = results['mean_outer_loss']
save_model = True
if save_model and (args.output_folder is not None):
# print('save model')
with open(args.model_path, 'wb') as f:
torch.save(benchmark.model.state_dict(), f)
if hasattr(benchmark.meta_train_dataset, 'close'):
benchmark.meta_train_dataset.close()
benchmark.meta_val_dataset.close()
return best_value
def parse_main(arglst=None, unittest=False, check_existing=True, get_all_outer_loss=False):
import argparse
parser = argparse.ArgumentParser('MAML')
# General
parser.add_argument('folder', type=str,
help='Path to the folder the data is downloaded to.')
parser.add_argument('--dataset', type=str,
choices=['sinusoid', 'omniglot', 'miniimagenet'], default='omniglot',
help='Name of the dataset (default: omniglot).')
parser.add_argument('--output-folder', type=str, default=None,
help='Path to the output folder to save the model.')
parser.add_argument('--load-model-path', type=str, default=None,
help='Path to the model state dict.')
parser.add_argument('--num-ways', type=int, default=5,
help='Number of classes per task (N in "N-way", default: 5).')
parser.add_argument('--num-shots', type=int, default=5,
help='Number of training example per class (k in "k-shot", default: 5).')
parser.add_argument('--num-shots-test', type=int, default=15,
help='Number of test example per class. If negative, same as the number '
'of training examples `--num-shots` (default: 15).')
# Model
parser.add_argument('--hidden-size', type=int, default=64,
help='width. If negative, then treated as infinity.'
'(default: 64).')
parser.add_argument('--depth', type=int, default=2,
help='number of hidden layers. (default: 2)')
parser.add_argument('--infnet-r', '--infnet_r', type=int, default=100,
help='rank of probability space for infnet. (default: 100)')
parser.add_argument('--no-adapt-readout', action='store_true',
help='readout layer does not get gradients during adaptation.')
parser.add_argument('--adapt-readout-only', action='store_true',
help='only the readout layer gets gradients during adaptation.')
parser.add_argument('--orig-model', action='store_true',
help='use original model instead of infnet/finnet.')
parser.add_argument('--lin-model', action='store_true',
help='use linear model instead of infnet/finnet.')
parser.add_argument('--normalize', type=str, default='None', choices=['BN', 'LN', 'None'],
help='normalization. BN | LN | None. (default: None)')
parser.add_argument('--mu-init', action='store_true',
help='mu initialization')
parser.add_argument('--bias-alpha', type=float, default=1,
help='bias is multiplied by this number during forward pass. (default: 1)')
parser.add_argument('--last-bias-alpha', type=float, default=0,
help='bias alpha for the last layer (logits), overriding --bias-alpha. (default: 0)')
parser.add_argument('--first-layer-alpha', type=float, default=1,
help='First layer preactivation is multiplied by this. (default: 1)')
parser.add_argument('--sigma1', type=float, default=1,
help='For Lin1LP, 1st layer weights are initialized as N(0, sigma1**2/width). (default: 1)')
parser.add_argument('--sigma2', type=float, default=1,
help='For Lin1LP, 2nd layer weights are initialized as N(0, sigma2**2/width) (default: 1)')
parser.add_argument('--varw', type=float, default=1,
help='For GP model, all non-readout weights are initialized as N(0, varw/fanin). (default: 1)')
parser.add_argument('--varb', type=float, default=0,
help='For GP model, all non-readout biases are initialized as N(0, varb/fanin). (default: 0)')
parser.add_argument('--train-last-layer-only', action='store_true')
parser.add_argument('--readout-zero-init', action='store_true')
parser.add_argument('--gp1lp', action='store_true',
help='train the last layer of a relu 1LP')
parser.add_argument('--ntk1lp', action='store_true',
help='train via the NTK of a relu 1LP')
parser.add_argument('--gp', action='store_true',
help='train the last layer of a relu MLP')
parser.add_argument('--ntk', action='store_true',
help='train via the NTK of a relu MLP')
parser.add_argument('--sigmab', type=float, default=1,
help='For GP1LP/NTK1LP, 1st layer biases are initialized as N(0, sigmab**2). (default: 1)')
parser.add_argument('--first-layer-init-alpha', type=float, default=1,
help='First layer preactivation is multiplied by this at initialization. (default: 1)')
parser.add_argument('--second-layer-init-alpha', type=float, default=1,
help='First layer preactivation is multiplied by this at initialization. (default: 1)')
# Optimization
parser.add_argument('--optimizer', type=str, default='sgd',
help='adam | sgd. (default: sgd)')
parser.add_argument('--scheduler', type=str, default='None', choices=('None', 'cosine', 'multistep', 'linear', 'exp'),
help='LR scheduler. (default: None)')
parser.add_argument('--first-layer-lr-mult', type=float, default=1,
help='learning rate multiplier for first layer weights')
parser.add_argument('--last-layer-lr-mult', type=float, default=1,
help='learning rate multiplier for last layer weights')
parser.add_argument('--bias-lr-mult', type=float, default=1,
help='learning rate multiplier for biases')
parser.add_argument('--gclip-per-param', action='store_true',
help='do gradient clipping for every parameter tensor individually')
parser.add_argument('--lr-drop-ratio', type=float, default=0.5,
help='if using multistep scheduler, lr is multiplied by this number at milestones')
parser.add_argument('--lr-drop-milestones', type=str, default='',
help='comma-separated list of epoch numbers. If using multistep scheduler, lr is dropped at after these epochs*num-batches steps.')
parser.add_argument('--train-loss-function', type=str, default='None', choices=('None', 'SmoothL1Loss'),
help='None | SmoothL1Loss. (default: None)')
parser.add_argument('--batch-size', type=int, default=25,
help='Number of tasks in a batch of tasks (default: 25).')
parser.add_argument('--num-steps', type=int, default=1,
help='Number of fast adaptation steps, ie. gradient descent '
'updates (default: 1).')
parser.add_argument('--num-epochs', type=int, default=50,
help='Number of epochs of meta-training (default: 50).')
parser.add_argument('--num-batches', type=int, default=100,
help='Number of batch of tasks per epoch (default: 100).')
parser.add_argument('--num-test-batches', type=int, default=100,
help='Number of batch of tasks per epoch when testing (default: 100).')
parser.add_argument('--step-size', type=float, default=0.1,
help='Size of the fast adaptation step, ie. learning rate in the '
'gradient descent update (default: 0.1).')
parser.add_argument('--first-order', action='store_true',
help='Use the first order approximation, do not use higher-order '
'derivatives during meta-optimization.')
parser.add_argument('--Gproj-outer', action='store_true',
help='Do Gproj on outer loss.')
parser.add_argument('--Gproj-inner', action='store_true',
help='Do Gproj on inner loss.')
parser.add_argument('--meta-lr', type=float, default=0.001,
help='Learning rate for the meta-optimizer (optimization of the outer '
'loss). The default optimizer is SGD (default: 1e-3).')
parser.add_argument('--meta-momentum', type=float, default=0,
help='Momentum for the meta-optimizer (optimization of the outer '
'loss). The default optimizer is SGD (default: 0).')
parser.add_argument('--grad-clip', type=float, default=-1,
help='Gradient clipping')
# Misc
parser.add_argument('--num-workers', type=int, default=1,
help='Number of workers to use for data-loading (default: 1).')
parser.add_argument('--verbose', action='store_true')
parser.add_argument('--use-cuda', action='store_true')
parser.add_argument('--overwrite-existing', action='store_true')
parser.add_argument('--no-train-shuffle', action='store_true')
parser.add_argument('--validate-only', action='store_true')
parser.add_argument('--test-dataset-split', type=str, default='val',
choices=('test', 'val'))
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--dtype', type=str, default='float64', choices=('float16', 'float32', 'float64'))
if arglst is None:
args = parser.parse_args()
else:
args = parser.parse_args(arglst)
if args.num_shots_test <= 0:
args.num_shots_test = args.num_shots
if args.normalize == 'None':
args.normalize = None
if args.scheduler == 'None':
args.scheduler = None
# if not args.float:
# torch.set_default_dtype(torch.float16)
# print('using half precision')
# else:
# print('using full precision')
# if args.verbose:
if True:
print(args)
if args.overwrite_existing:
check_existing = False
# initializing cox
args_dict = args.__dict__
exp_id = sha1(repr(sorted(frozenset(args_dict.items()))).encode('ASCII')).hexdigest()
store = cox.store.Store(args.output_folder, exp_id)
if check_existing and 'finished' in store.keys:
if args.verbose:
print('result already exists; skipping...')
exit(0)
if 'metadata' not in store.keys:
schema = cox.store.schema_from_dict(args_dict)
store.add_table('metadata', schema)
store['metadata'].append_row(args_dict)
else:
if args.verbose:
print('[Found existing metadata in store. Skipping this part.]')
if 'result' not in store.keys:
if args.validate_only:
store.add_table('result', {
'epoch': int,
'val_mean_outer_loss': float,
'val_median_outer_loss': float,
'val_accuracies_after': float,
'val_time': float,
})
else:
store.add_table('result', {
'epoch': int,
'train_mean_outer_loss': float,
'train_median_outer_loss': float,
'train_accuracies_after': float,
'val_mean_outer_loss': float,
'val_median_outer_loss': float,
'val_accuracies_after': float,
'train_time': float,
'val_time': float,
})
else:
if args.verbose:
print('[Found existing result in store. Skipping this part.]')
out = None
try:
out = main(args, store, exp_id, get_all_outer_loss=get_all_outer_loss)
except BrokenPipeError:
pass
# mark as done
store.add_table('finished', {'foo': int})
store['finished'].append_row({'foo': 0})
if unittest:
return out
if __name__ == '__main__':
parse_main()