-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransfer_imagenet.py
649 lines (560 loc) · 26.8 KB
/
transfer_imagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
'''
Train a network on imagenet for transfer learning purposes.
This file is largely the same as cifar10infmlp, with a few differences:
- it uses 250 randomly sampled classes of imagenet. This is because using all 1000 made the network too large.
- it allows for small tests of the feature kernel on cifar10.
these tests only use 3 classes of cifar10 and 1 reg value, for speed.
Good performance on 3 classes usually translates to good performance on all 10.
'''
import sys, os
# from utils.data import *
# from utils.kernels import *
# from inf.pimlp import *
# from inf.optim import InfSGD, InfMultiStepLR, MultiStepGClip
from experiments.imagenet.utils import ImageNet32, remove_extra_cls_imagenet, remove_extra_cls_cifar10, to_one_hot
import numpy as np
import argparse
import torch.nn.functional as F
from torchvision import datasets, transforms
from torch.optim import SGD
import pandas as pd
import time
import psutil
import torch
import itertools
from pilimit_lib.inf.layers import *
from pilimit_lib.inf.optim import *
from pilimit_lib.inf.utils import *
from pilimit_lib.inf.math import J1
from experiments.networks.networks import FinPiMLPSample, InfMLP
def get_feature_kernel_and_labels(net, dataloader, num_cls=10, normalize=False):
net.eval()
gs = []
labels = []
dtype = torch.get_default_dtype()
with torch.no_grad():
for data, target in dataloader:
data = data.reshape(data.shape[0], -1)
# data, target = data.to(net.device), target.to(net.device)
# if args.cuda:
# data, target = data.to("cuda"), target.to("cuda")
data = data.to(dtype)
if isinstance(net, InfMLP):
_, g, gbar = net(data, save_kernel_output=True)
if normalize:
gs.append(gbar.cpu().double())
else:
gs.append(g.cpu().double())
labels.append(to_one_hot(target, num_cls=num_cls).cpu().double())
elif isinstance(net, FinPiMLPSample):
data = data.reshape(data.shape[0], -1)
_, kernel_output = net(data, save_kernel_output=True)
# g.append(net.kernel_output.cpu().double())
gs.append(kernel_output.double())
labels.append(to_one_hot(target, num_cls=num_cls).double())
else:
raise "Undetermined model type for kernel creation."
# shape (dataset_size, r)
feats = torch.cat(gs)
del gs
# shape (dataset_size, 10)
labels = torch.cat(labels)
ker = feats @ feats.T
del feats
# del infnet
torch.cuda.empty_cache()
if isinstance(net, InfMLP):
batch_size = 1000
m = ker.shape[0]
for n in range(int(m / batch_size) + 1):
idx1 = int(n*batch_size)
idx2 = int((n+1)*batch_size)
if (idx2 > m): idx2 = m
if idx1 == idx2: break
ker[idx1:idx2, :] = 0.5 * J1(ker[idx1:idx2, :].cpu().double())
# ker = 0.5 * J1(ker.cpu().double())
# return ker.double(), labels.double()
return ker, labels
def kernel_predict(ker_inv_labels, ker_test_train):
# shape (batch, 10)
out = ker_test_train @ ker_inv_labels
prediction = torch.argmax(out, dim=1)
return out, prediction
def test_kernel_cifar10(net, train_loader, test_loader, dataset_len, num_cls=10, kernel_reg=1e-8, solve=False, inv_cuda=False, normalize=False, save_dir=None, save_name=None):
dataloader = itertools.chain(iter(train_loader), iter(test_loader))
print('making kernel')
if save_dir != None and save_name != None and os.path.isfile(os.path.join(save_dir, f'{save_name}_ker.th') and os.path.isfile(os.path.join(save_dir, f'{save_name}_labels.th'))):
print("loading existing kernel from", save_dir, "with name", save_name)
ker = torch.load(os.path.join(save_dir, f'{save_name}_ker.th'))
labels = torch.load(os.path.join(save_dir, f'{save_name}_labels.th'))
else:
if inv_cuda:
net.cuda() # net was previously moved to cpu to save space
ker, labels = get_feature_kernel_and_labels(net, dataloader, num_cls=num_cls, normalize=normalize)
if save_dir != None and save_name != None and not os.path.isfile(os.path.join(save_dir, f'{save_name}_ker.th') and not os.path.isfile(os.path.join(save_dir, f'{save_name}_labels.th'))):
print("saving kernel and labels to", save_dir, "with name", save_name)
torch.save(ker, os.path.join(save_dir, f'{save_name}_ker.th'))
torch.save(labels, os.path.join(save_dir, f'{save_name}_labels.th'))
idx = list(range(ker.shape[0]))
ker[idx, idx] += kernel_reg
N = dataset_len
if inv_cuda:
# net.cpu() # move net to cpu to save cuda space
ker = ker.cuda()
labels = labels.cuda()
if solve:
print('inverting kernel using SOLVE - cannot save inverse')
ker_inv_labels = torch.linalg.solve(ker[:N, :N], labels[:N])
else:
print('inverting kernel')
ker_inv = torch.inverse(ker[:N, :N])
if save_dir != None and save_name != None:
print("saving inv kernel to", save_dir, "with name", save_name)
torch.save(ker_inv, os.path.join(save_dir, f'{save_name}_ker_inv.th'))
ker_inv_labels = ker_inv @ labels[:N]
ker_test_train = ker[N:, :N]
print('making prediction')
out, pred = kernel_predict(ker_inv_labels, ker_test_train)
ker_acc = (torch.argmax(labels[N:], dim=1) == pred).float().mean()
print(f'kernel acc: {ker_acc}')
return ker_acc
def main(arglst=None):
parser = argparse.ArgumentParser(description='PyTorch training ensemble models',
conflict_handler='resolve')
parser.add_argument('--verbose', action='store_true',
help='verbose')
# Custom arguments
parser.add_argument('--imagenet-data', type=str, default=r'.\examples\imagenet\data',
help='location of the imagenet data corpus')
parser.add_argument('--cifar-data', type=str, default='./dataset',
help='location of the cifar data corpus')
parser.add_argument('--save-dir', type=str, default='',
help='directory to save results and checkpoints')
parser.add_argument('--save-model', action='store_true',
help='whether to save checkpoints')
parser.add_argument('--cuda', action='store_true',
help='Whether to use cuda')
parser.add_argument('--float', action='store_true',
help='Whether to use fp32')
parser.add_argument('--batch-size', type=int, default=64,
help='training bsz')
parser.add_argument('--test-batch-size', type=int, default=64,
help='test bsz')
parser.add_argument('--lr', type=float, default=2.0,
help='learning rate')
parser.add_argument('--scheduler', type=str, default='None', choices=('None', 'cosine', 'multistep'),
help='None | cosine | multistep. (default: None)')
parser.add_argument('--lr-drop-ratio', type=float, default=0.5,
help='if using multistep scheduler, lr is multiplied by this number at milestones')
parser.add_argument('--gclip-drop-ratio', type=float, default=0.5,
help='if using multistep gclip scheduler, gclip is multiplied by this number at milestones')
parser.add_argument('--lr-drop-milestones', type=str, default='',
help='comma-separated list of epoch numbers. If using multistep scheduler, lr is dropped at after these epochs*num-batches steps.')
parser.add_argument('--gclip-drop-milestones', type=str, default='',
help='comma-separated list of epoch numbers. If using multistep scheduler, gclip is dropped at after these epochs*num-batches steps.')
parser.add_argument('--no-apply-lr-mult-to-wd', action='store_true',
help="Don't apply lr mult to weight decay. "
"This should only be used for debugging purposes.")
parser.add_argument('--wd', type=float, default=1e-4,
help='weight decay')
parser.add_argument('--gclip', type=float, default=0.2,
help='gradient clipping')
parser.add_argument('--gclip-per-param', action='store_true',
help='do gradient clipping for every parameter tensor individually')
parser.add_argument('--layernorm', action='store_true',
help='layernorm')
parser.add_argument('--first-layer-lr-mult', type=float, default=0.1,
help='learning rate multiplier for first layer weights')
parser.add_argument('--last-layer-lr-mult', type=float, default=1,
help='learning rate multiplier for last layer weights')
parser.add_argument('--bias-lr-mult', type=float, default=0.5,
help='learning rate multiplier for biases')
parser.add_argument('--first-layer-alpha', type=float, default=1,
help='first layer alpha')
parser.add_argument('--bias-alpha', type=float, default=1,
help='bias alpha')
parser.add_argument('--last-layer-alpha', type=float, default=1,
help='last layer alpha')
parser.add_argument('--depth', type=int, default=2,
help='depth')
parser.add_argument('--loss', type=str, default='xent', choices=['xent', 'mse'],
help='loss func')
parser.add_argument('--r', type=int, default=400,
help='rank of Z space')
parser.add_argument('--init-from-data', action='store_true',
help='initializing infnet from data')
parser.add_argument('--init-A-B-direct', action='store_true',
help='initializing infnet using gradient descent on A and B directly')
parser.add_argument('--gaussian-init', action='store_true',
help='initializing finnet with gaussians')
parser.add_argument('--cycarr', action='store_true',
help='Whether to use CycArr; otherwise DynArr')
parser.add_argument('--human', action='store_true',
help='Whether to print huamn-friendly output')
parser.add_argument('--width', type=int, default=None,
help='width of the network; default is Inf')
parser.add_argument('--epochs', type=int, default=24,
help='number of training epochs; default 25')
parser.add_argument('--quiet', action='store_true',
help='squash all prints')
parser.add_argument('--seed', type=int, default=1,
help='random seed')
parser.add_argument('--transfer', action='store_true',
help='perform transfer learning')
parser.add_argument('--solve-kernel', action='store_true',
help='use torch solve instead of inverse')
parser.add_argument('--transfer-milestones', type=str, default='',
help='comma-separated list of epoch numbers. Transfer kernel performance is evaluated at these steps.')
if arglst is None:
args = parser.parse_args()
else:
args = parser.parse_args(arglst)
if args.scheduler == 'None':
args.scheduler = None
if not args.float:
torch.set_default_dtype(torch.float16)
print('using half precision')
else:
print('using full precision')
torch.manual_seed(args.seed)
use_cuda = args.cuda
batch_size = args.batch_size
test_batch_size = args.test_batch_size
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize([0.49137255, 0.48235294, 0.44666667], [0.24705882, 0.24352941, 0.26156863])])
transform_imgnet = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
trainset = ImageNet32(args.imagenet_data, transform=transform_imgnet)
# keep_cls = []
# while len(keep_cls) < 250:
# n = random.randint(0,1000)
# if not (n in keep_cls): keep_cls.append(n)
# Some random classes to keep (all classes is too many)
keep_cls = [294, 828, 241, 320, 210, 561, 67, 706, 956, 996, 490, 166, 287, 337, 726, 305, 688, 314, 195, 107, 433, 802, 717, 868, 697, 335, 127, 359, 101, 236, 558, 120, 249, 982, 888, 987, 944, 885, 547, 588, 498, 20, 778, 74, 658, 489, 428, 821, 151, 955, 776, 979, 389, 256, 126, 77, 27, 580, 750, 557, 758, 829, 275, 649, 11, 850, 784, 894, 153, 651, 769, 51, 5, 252, 650, 156, 771, 701, 161, 831, 723, 233, 484, 974, 554, 447, 246, 176, 28, 946, 272, 783, 160, 603, 104, 510, 69, 13, 366, 924, 369, 152, 612, 158, 324, 203, 845, 388, 667, 38, 75, 782, 482, 730, 684, 132, 253, 220, 448, 313, 623, 360, 570, 886, 640, 440, 700, 240, 643, 131, 963, 116, 283, 239, 830, 197, 841, 933, 459, 398, 408, 105, 984, 574, 259, 437, 362, 507, 391, 922, 58, 983, 596, 288, 642, 869, 568, 450, 88, 442, 480, 670, 826, 225, 560, 215, 403, 426, 772, 672, 976, 932, 330, 853, 25, 164, 686, 137, 421, 235, 50, 668, 273, 501, 609, 49, 64, 361, 801, 78, 791, 96, 304, 261, 102, 654, 962, 266, 798, 226, 998, 443, 222, 781, 870, 780, 427, 710, 889, 368, 31, 599, 297, 915, 377, 214, 415, 600, 890, 355, 977, 319, 282, 971, 943, 436, 497, 24, 586, 202, 787, 444, 634, 815, 861, 289, 945, 518, 907, 988, 46, 595, 880, 941, 449, 953, 786, 262, 939, 390]
labels_to_keep = len(keep_cls)
print("Keeping only labels:", keep_cls)
trainset = remove_extra_cls_imagenet(trainset, keep_cls)
train_loader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
shuffle=True, num_workers=8)
trainset_transfer = datasets.CIFAR10(root=args.cifar_data, train=True,
download=True, transform=transform)
# optionally, use 3 classes of cifar10 for speed
# just makes training faster, to get an idea of perf without taking so much time
# note you must also adjust num_cls argument below
# trainset_transfer = remove_extra_cls_cifar10(trainset_transfer, [0,5,6])
train_loader_transfer = torch.utils.data.DataLoader(trainset_transfer, batch_size=32,
shuffle=True, num_workers=8)
testset = ImageNet32(args.imagenet_data, train=False, transform=transform_imgnet)
testset = remove_extra_cls_imagenet(testset, keep_cls)
test_loader = torch.utils.data.DataLoader(testset, batch_size=test_batch_size,
shuffle=False, num_workers=8)
# '''
testset_transfer = datasets.CIFAR10(root=args.cifar_data, train=False,
download=True, transform=transform)
# testset_transfer = remove_extra_cls_cifar10(testset_transfer, [0,5,6])
test_loader_transfer = torch.utils.data.DataLoader(testset_transfer, batch_size=test_batch_size,
shuffle=False, num_workers=8)
def get_loss(output, target, reduction='mean'):
if args.loss == 'xent':
loss = F.cross_entropy(output, target, reduction=reduction)
elif args.loss == 'mse':
oh_target = target.new_zeros(target.shape[0], 10).type(torch.get_default_dtype())
oh_target.scatter_(1, target.unsqueeze(-1), 1)
oh_target -= 0.1
loss = F.mse_loss(output, oh_target, reduction=reduction)
return loss
def train_nn(model, device, train_loader, optimizer, epoch,
log_interval=100, gclip_sch=False, max_batch_idx=None,
lr_gain=0, scheduler=None, transfer=False):
model.train()
train_loss = 0
losses = []
correct = 0
nbatches = len(train_loader)
tic = time.time()
for batch_idx, (data, target) in enumerate(train_loader):
if max_batch_idx is not None and batch_idx > max_batch_idx:
break
data, target = data.to(device).type(torch.get_default_dtype()), target.to(device)
data = data.reshape(data.shape[0], -1)
optimizer.zero_grad()
output = model(data)
if isinstance(model, InfMLP):
loss = get_loss(output, target)
losses.append(loss.item())
loss.backward()
if gclip_sch and gclip_sch.gclip > 0:
store_pi_grad_norm_(model.modules())
if args.gclip_per_param:
for param in model.parameters():
clip_grad_norm_(param, gclip)
else:
clip_grad_norm_(model.parameters(), gclip)
else:
loss = get_loss(output, target)
losses.append(loss.item())
loss.backward()
if gclip_sch and gclip_sch.gclip > 0:
if args.gclip_per_param:
for param in model.parameters():
torch.nn.utils.clip_grad_norm_(param, gclip_sch.gclip)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), gclip_sch.gclip)
optimizer.step()
if lr_gain > 0:
optimizer.param_groups[0]['lr'] += lr_gain / nbatches
train_loss += get_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
if scheduler is not None:
scheduler.step()
if gclip_sch:
gclip_sch.step()
if args.human and batch_idx % log_interval == 0:
toc = time.time()
elapsed = toc - tic
process = psutil.Process(os.getpid())
cpu_memory = process.memory_info().rss
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tTime: {:.2f}, cuda memory {:.8f}, memory {:.4f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item(), elapsed, torch.cuda.max_memory_reserved()/ 1e9, cpu_memory / 1e9 ))
tic = toc
train_loss /= len(train_loader.dataset)
train_acc = correct / len(train_loader.dataset)
if args.human:
print('\nTrain set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format(
train_loss, correct, len(train_loader.dataset),
100. * correct / len(train_loader.dataset)))
return losses, train_acc
def test_nn(model, device, test_loader, transfer=False):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device).type(torch.get_default_dtype()), target.to(device)
data = data.reshape(data.shape[0], -1)
output = model(data)
test_loss += get_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
if args.human:
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
return test_loss, correct / len(test_loader.dataset)
lr = args.lr
wd = args.wd
gclip = args.gclip
width = args.width
# depth
L = args.depth
# rank of Z space
r = args.r
din = 32**2 * 3
dout = int(labels_to_keep)
infnet = InfMLP(din, dout, r, L, device=device,
first_layer_alpha=args.first_layer_alpha,
last_layer_alpha=args.last_layer_alpha,
bias_alpha=args.bias_alpha,
return_hidden=True,
layernorm=args.layernorm)
width = args.width
mynet = None
if args.width is None:
# note we collect parameters to use in optimizer for both inf and finite networks.
paramgroups = []
# first layer weights
paramgroups.append({
'params': [infnet.layers[0].A],
'lr': args.first_layer_lr_mult * lr,
'weight_decay': wd / args.first_layer_lr_mult if args.no_apply_lr_mult_to_wd else wd
})
# biases
if infnet.layers[0].bias is not None:
paramgroups.append({
'params': [l.bias for l in infnet.layers],
'lr': args.bias_lr_mult * lr,
'weight_decay': wd / args.bias_lr_mult if args.no_apply_lr_mult_to_wd else wd
})
# all other weights
paramgroups.append({
'params': [l.Amult for l in infnet.layers[1:-1]],
})
paramgroups.append({
# 'params': [l.Amult for l in infnet.layers[-1:-1]],
'params': [infnet.layers[-1].Amult],
'lr': args.last_layer_lr_mult * lr,
'weight_decay': wd / args.last_layer_lr_mult if args.no_apply_lr_mult_to_wd else wd
})
paramgroups.append({
'params': [l.A for l in infnet.layers[1:]],
})
paramgroups.append({
'params': [l.B for l in infnet.layers[1:]],
})
optimizer = PiSGD(paramgroups, lr, weight_decay=wd)
mynet = infnet
else:
mynet = FinPiMLPSample(infnet, args.width)
if args.cuda:
mynet = mynet.cuda()
if args.gaussian_init:
for lin in mynet.layers:
lin.weight.data[:].normal_()
lin.weight.data /= lin.weight.shape[1]**0.5 / 2**0.5
if not args.float:
# torch.set_default_dtype(torch.float16)
mynet = mynet.half()
paramgroups = []
# first layer weights
paramgroups.append({
'params': [mynet.layers[0].weight],
'lr': args.first_layer_lr_mult * lr,
'weight_decay': wd / args.first_layer_lr_mult if args.no_apply_lr_mult_to_wd else wd
})
# last layer weights
paramgroups.append({
'params': [mynet.layers[-1].weight],
'lr': args.last_layer_lr_mult * lr,
'weight_decay': wd / args.last_layer_lr_mult if args.no_apply_lr_mult_to_wd else wd
})
# all other weights
paramgroups.append({
'params': [l.weight for l in mynet.layers[1:-1]],
})
# biases
if mynet.layers[0].bias is not None:
paramgroups.append({
'params': [l.bias for l in mynet.layers],
'lr': args.bias_lr_mult * lr
})
optimizer = PiSGD(paramgroups, lr, weight_decay=wd)
milestones = []
if args.lr_drop_milestones:
milestones = [int(float(e) * len(train_loader)) for e in args.lr_drop_milestones.split(',')]
gclip_sch = None
gclip_milestones = []
if args.gclip_drop_milestones:
gclip_milestones = [int(float(e) * len(train_loader)) for e in args.gclip_drop_milestones.split(',')]
gclip_sch = MultiStepGClip(gclip, milestones=milestones, gamma=args.lr_drop_ratio)
if args.verbose:
print('gclip milestones', gclip_milestones)
sch = None
if args.scheduler == 'cosine':
if args.verbose:
print('cosine scheduler')
sch = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=len(train_loader) * len(train_loader))
elif args.scheduler == 'multistep':
if args.verbose:
print('multistep scheduler')
print('milestones', milestones)
sch = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=milestones, gamma=args.lr_drop_ratio)
train_losses = []
train_accs = []
test_losses = []
test_accs = []
log_df = []
transfer_df = []
# light kernel testing during training
# .001 usually gets good results
# kernel_regs = [10**(-n) for n in range(1,7)]
kernel_regs = [0.001]
if args.transfer_milestones:
transfer_milestones = [int(e) for e in args.transfer_milestones.split(',')]
if args.save_dir:
# print(f'results saved to {args.save_dir}')
print(f"logs will be saved to {os.path.join(args.save_dir, 'log.df')}")
if args.save_model:
print(f"checkpoints saved to {os.path.join(args.save_dir, 'checkpoints')}")
# save initialization
model_path = os.path.join(args.save_dir, 'checkpoints')
os.makedirs(model_path, exist_ok=True)
model_file = os.path.join(model_path, f'epoch0.th')
torch.save(mynet.state_dict(), model_file)
if args.transfer and 0 in transfer_milestones:
print("Evaluating transferred learning pre-training (no finetuning)")
for kernel_reg in kernel_regs:
print("Using ridge value", kernel_reg)
kernel_acc = test_kernel_cifar10(mynet, train_loader_transfer, test_loader_transfer, len(trainset_transfer), num_cls=10, kernel_reg=kernel_reg, solve=args.solve_kernel, normalize=False)
transfer_df.append(
dict(
epoch=0,
kernel_acc=kernel_acc,
kernel_reg=kernel_reg,
**vars(args)
))
for epoch in range(1, args.epochs+1):
epoch_start = time.time()
losses, train_acc = train_nn(mynet, device, train_loader, optimizer, epoch, gclip_sch=gclip_sch, scheduler=sch)
epoch_end = time.time()
epoch_time = epoch_end - epoch_start
train_losses.append(losses)
train_accs.append(train_acc)
test_loss, test_acc = test_nn(mynet, device, test_loader)
test_losses.append(test_loss)
test_accs.append(test_acc)
if args.save_model: # and test_acc == min(test_accs)
model_path = os.path.join(args.save_dir, 'checkpoints')
os.makedirs(model_path, exist_ok=True)
model_file = os.path.join(model_path, f'epoch{epoch}.th')
torch.save(mynet.state_dict(), model_file)
log_df.append(
dict(
epoch=epoch,
train_loss=np.mean(train_losses[-1]),
test_loss=test_losses[-1],
train_acc=train_acc,
test_acc=test_accs[-1],
epoch_time=epoch_time,
**vars(args)
))
if not args.human and not args.quiet:
if epoch == 1:
header = f'epoch\ttr loss\tts loss\ttr acc\tts acc\ttime'
print(header)
stats = f'{epoch}\t{np.mean(train_losses[-1]):.3f}\t{test_losses[-1]:.3f}\t{train_acc}\t{test_accs[-1]}\t{epoch_time/60.:0.2f}'
print(stats)
if args.transfer and epoch in transfer_milestones:
print("Evaluating transferred learning mid-training (no finetuning)")
try:
for kernel_reg in kernel_regs:
print("Using ridge value", kernel_reg)
kernel_acc = test_kernel_cifar10(mynet, train_loader_transfer, test_loader_transfer, len(trainset_transfer), num_cls=10, kernel_reg=kernel_reg, solve=args.solve_kernel)
transfer_df.append(
dict(
epoch=epoch,
kernel_acc=kernel_acc,
kernel_reg=kernel_reg,
**vars(args)
))
except Exception as e:
print("EXCEPTION CAUGHT - RESUMING TRAINING")
print(e)
if args.save_dir:
pd.DataFrame(log_df).to_pickle(os.path.join(args.save_dir, 'log.df'))
print(f'log dataframe saved at {args.save_dir}')
if args.transfer:
print("Evaluating transferred learning")
for kernel_reg in kernel_regs:
print("Using ridge value", kernel_reg)
kernel_acc = test_kernel_cifar10(mynet, train_loader_transfer, test_loader_transfer, len(trainset_transfer), num_cls=10, kernel_reg=kernel_reg, solve=args.solve_kernel)
transfer_df.append(
dict(
epoch=epoch,
kernel_acc=kernel_acc,
kernel_reg=kernel_reg,
**vars(args)
))
if args.save_dir:
pd.DataFrame(transfer_df).to_pickle(os.path.join(args.save_dir, 'transfer_log.df'))
print(f'log dataframe saved at {args.save_dir}')
return min(test_accs)
if __name__ == '__main__':
main()