-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtestSalience.py
517 lines (366 loc) · 16.6 KB
/
testSalience.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
import pickle, gzip, glob, sys, keras, os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # gets rid of AVX message
import random as rn
import numpy as np
import tensorflow as tf
os.environ['PYTHONHASHSEED'] = '0'
np.random.seed(37)
rn.seed(1254)
tf.set_random_seed(89)
from keras import optimizers
from keras import backend as K
from keras.models import load_model
from keras.layers import *
from keras.models import Sequential
from keras.losses import weighted_categorical_crossentropy
from keras.callbacks import CSVLogger, ModelCheckpoint
from keras.regularizers import *
from keras.utils.generic_utils import get_custom_objects
from keras.layers.advanced_activations import LeakyReLU, ELU
sys.path.insert(0, r'.\libraries')
from kerasLayers import *
from kerasExtras import *
elu = ELU(1)
elu.__name__ = "ELU"
import time
from keras import Model
import matplotlib.pyplot as plt
from scipy.ndimage.filters import gaussian_filter
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import seaborn as sns
from blobifier import Blobifier
from sequential import SequentialClusterer
input_length = None
# binary standard
line_length = 25
num_samples = 7500
num_samples_valid = 1600
train_name = r".\libraries\datasets\kagglewindows\windows_exe_dll_kaggle_nopad_pooled.pklz"
valid_name = r".\libraries\datasets\kagglewindows\windows_exe_dll_kaggle_validation_nopad_pooled.pklz"
steps_per_epoch = num_samples/batch_size
valid_steps = num_samples_valid/batch_size # should be this
model = load_model(r".\networks\dist binary final nets\pruned from 5\KaggleConv-22.hdf5",
custom_objects={'DecayingConvLSTM2D':MinConvRNN,
'window_size': window_size ,
'ELU': elu,
}
)
# mode = "kaggle"
mode = "binary"
if mode == "binary":
lossFunc = 'binary_crossentropy'
generatorFunc = loadDataGeneratorBinary
elif mode == "kaggle":
lossFunc = 'categorical_crossentropy'
generatorFunc = loadDataGenerator
def compileModel(model):
optimizer = "rmsprop"
model.compile(optimizer=optimizer,
loss=lossFunc,
metrics=['accuracy'])
def salienceTest(model, confMatrixFile):
if mode == "binary" or mode == "kaggle":
train_gen = generatorFunc(train_name, num_samples)
valid_gen = generatorFunc(valid_name, num_samples_valid)
else:
raise ValueError("mode must be kaggle or binary")
compileModel(model)
print(model.summary())
answers = []
preds = []
total_correct = 0
total_run = 0
correctCountClasses = [0]*9
incorrectCountClasses = [0]*9
times = []
confMatrix = np.zeros((9,9))
# remainingAmounts = []
totalBytes = 0
totalNNZ = 0
grad = K.gradients(model.layers[-1].input, model.layers[1].output)[0]
sess = K.get_session()
mal_x = []
ben_x = []
blobifyX = []
blobifyY = []
scatterLabels = []
new_mal_x = []
new_ben_x = []
blobifier = Blobifier()
for x in range(0, int(valid_steps)):
train_x, train_y = next(valid_gen)
# for x in range(0, int(steps_per_epoch)):
# train_x, train_y = next(train_gen)
length = train_x.shape[1]
answer = train_y.tolist()[0]
answers.append(answer)
out = sess.run(grad, feed_dict={model.input: train_x})
out = out[0] # comes in array of length 1
out = out.reshape((int(out.shape[0]*out.shape[1]), out.shape[2], out.shape[3]))
# filter input based on gradient value
new_train_x = np.copy(train_x[0])
new_train_x[np.abs(np.max(out, axis=2)) < 1e-16] = 0 # works great
'''
# different filtering attempts
# new_train_x[np.abs(np.max(out, axis=2)) > 1e-16] = 0 # works TERRIBLY for proof!
# new_train_x[np.abs(np.max(out, axis=2)) < 1e-4] = 0 # works fine
# new_train_x[np.max(np.abs(out), axis=2) < 1e-4] = 0 # works fine
# did not work
# m = np.max(np.abs(out), axis=2)
# new_train_x[m < (np.mean(m) - .5*np.std(m))] = 0
# attempt - this doesn't work
# blurred = gaussian_filter(new_train_x, sigma=1)
# new_train_x_blurred = np.copy(train_x[0])
# new_train_x_blurred[np.abs(blurred) < 15] = 0
# new_train_x = new_train_x_blurred
'''
# keep filtered w/o blobs removed
not_removed = new_train_x
# remove low gradient areas
if np.sum(new_train_x) > 0:
new_train_x = blobifier.blobify(new_train_x, int(answer))
# Plot images
# fig = plt.figure()
# show different saliency maps
# ax1 = fig.add_subplot(1,4,1)
# ax1.imshow(train_x[0], cmap='gray')
# plt.axis('off')
# ax2 = fig.add_subplot(1,4, 2)
# ax2.imshow(np.mean(out, axis=2), cmap='gray')
# plt.axis('off')
# ax3 = fig.add_subplot(1,4, 3)
# ax3.imshow(np.max(out, axis=2), cmap='gray')
# plt.axis('off')
# ax4 = fig.add_subplot(1,4, 4)
# ax4.imshow(np.min(out, axis=2), cmap='gray')
# plt.axis('off')
# filtering example
# ax1 = fig.add_subplot(1,4,1)
# ax1.imshow(train_x[0], cmap='gray')
# plt.axis('off')
# ax3 = fig.add_subplot(1,4, 2)
# ax3.imshow(np.max(out, axis=2), cmap='gray')
# plt.axis('off')
# ax1 = fig.add_subplot(1,4,3)
# ax1.imshow(not_removed, cmap='gray')
# plt.axis('off')
# ax1 = fig.add_subplot(1,4,4)
# ax1.imshow(new_train_x, cmap='gray')
# plt.axis('off')
# plt.show()
# make prediction on filtered version
start = time.time()
pred = model.predict(np.asarray([new_train_x.tolist()])).tolist()[0]
# pred = model.predict(train_x).tolist()[0]
amt = time.time() - start
times.append(amt)
preds.append(pred)
totalNNZ += np.count_nonzero(new_train_x)
totalBytes += train_x.size
if int(answer):
mal_x.append(train_x)
new_mal_x.append(new_train_x)
else:
ben_x.append(train_x)
new_ben_x.append(new_train_x)
if mode == "binary":
pred = round(pred[0])
ansClass = int(answer)
if pred == ansClass:
total_correct += 1
correctCountClasses[ansClass] += 1
else:
incorrectCountClasses[ansClass] += 1
# print(pred == ansClass, np.count_nonzero(new_train_x) / new_train_x.size)
confMatrix[ansClass][pred] += 1
total_run += 1
if x % 50 == 0: print("interval", x, "correct so far", total_correct, "% of total bytes left", totalNNZ/totalBytes)
elif mode == "kaggle":
# ansClass = numpy.argmax(train_y,1)[0]
ansClass = answer.index(max(answer))
predClass = pred.index(max(pred))
if predClass == ansClass:
total_correct += 1
correctCountClasses[ansClass] += 1
else:
incorrectCountClasses[ansClass] += 1
confMatrix[ansClass][predClass] += 1
total_run += 1
if x % 500 == 0: print("interval", x, "correct so far", total_correct)
print("correct:", total_correct, "out of", total_run)
print("correct per class :", correctCountClasses)
print("incorrect per class:", incorrectCountClasses)
print("mean time to predict", np.mean(times))
print(confMatrix)
if confMatrixFile:
np.savetxt(confMatrixFile, confMatrix, delimiter=",")
# plot length of file vs amount removed, per class
# plt.scatter(blobifier.blobifyX, blobifier.blobifyY, c=blobifier.blobifyC)
# plt.show()
# blobs are separated into lists - malware blobs and benign blobs
# can use them however you want
print("number of malware blobs:", len(blobifier.malwareBlobs)) #6019, 5982, 5957
print("number of benign blobs:", len(blobifier.benignBlobs)) #10512, 10580
# show individual blobs
for blob in blobifier.malwareBlobs:
fig = plt.figure()
ax1 = fig.add_subplot(1,4,1)
ax1.imshow(blob, cmap='gray')
plt.axis('off')
plt.show()
# blobifier.malwareBlobs = blobifier.malwareBlobs[:300] # for testing! makes things much faster for clustering, analysis. FOR DEBUG ONLY
# cluster blobs if desired
# clusterer = SequentialClusterer()
# clusterer.addCandidates(blobifier.malwareBlobs)
# clusterer.addCandidates(blobifier.benignBlobs)
# clusterer.cluster()
# distance analysis if desired
# distanceAnalysis(blobifier, mal_x, ben_x)
def distanceAnalysis(blobifier, mal_x, ben_x):
# do the distance analysis in part 5 of paper
# somewhat sketchy, but seems significant
# To see if this works at all..
# blobifier.malwareBlobs = new_mal_x[:100]
# blobifier.benignBlobs = new_ben_x[:100]
# mal_x = mal_x[:100]
# ben_x = ben_x[:100]
for n in range(0, len(blobifier.malwareBlobs)):
# correlation
# blobifier.malwareBlobs[n] = np.array(blobifier.malwareBlobs[n]).flatten()
# tf dif
blobifier.malwareBlobs[n] = np.array(blobifier.malwareBlobs[n]).flatten()
blobifier.malwareBlobs[n] = " ".join([str(item) for item in blobifier.malwareBlobs[n]])
# substrings
# flat = np.array(blobifier.malwareBlobs[n]).flatten()
# blobifier.malwareBlobs[n] = np.trim_zeros(flat).tolist()
# for n grams manually
# blobifier.malwareBlobs[n] = [str(int(item)) for item in blobifier.malwareBlobs[n]]
for n in range(0, len(blobifier.benignBlobs)):
# correlation
# blobifier.benignBlobs[n] = np.array(blobifier.benignBlobs[n]).flatten()
# tf dif
blobifier.benignBlobs[n] = np.array(blobifier.benignBlobs[n]).flatten()
blobifier.benignBlobs[n] = " ".join([str(item) for item in blobifier.benignBlobs[n]])
# substrings
# flat = np.array(blobifier.benignBlobs[n]).flatten()
# blobifier.benignBlobs[n] = np.trim_zeros(flat).tolist()
# for n grams manually
# blobifier.benignBlobs[n] = [str(int(item)) for item in blobifier.benignBlobs[n]]
print("beginning test")
# transform regular files like above
for n in range(0, len(mal_x)):
# tf dif
mal_x[n] = np.array(mal_x[n]).flatten()
mal_x[n] = " ".join([str(item) for item in mal_x[n]])
for n in range(0, len(ben_x)):
ben_x[n] = np.array(ben_x[n]).flatten()
ben_x[n] = " ".join([str(item) for item in ben_x[n]])
lowerN = 1
upperN = 1
print("performing tfidf")
tfidf = TfidfVectorizer(ngram_range=(lowerN,upperN)).fit_transform(blobifier.malwareBlobs)
similarity_matrix = tfidf * tfidf.T
indices = np.triu_indices(similarity_matrix.shape[0], k=1)
similarities = similarity_matrix[indices].flatten()
print("Blobbed malware to malware")
print("mean", np.mean(similarities), "max", np.max(similarities), "min", np.min(similarities), "std", np.std(similarities))
benignTFIDF = TfidfVectorizer(ngram_range=(lowerN,upperN)).fit(blobifier.malwareBlobs)
benignTFIDF = benignTFIDF.transform(blobifier.benignBlobs)
crossSimilarities = tfidf * benignTFIDF.T
crossSimilarities = crossSimilarities.A.flatten()
print("Blobbed malware to benign")
print("mean", np.mean(crossSimilarities), "max", np.max(crossSimilarities), "min", np.min(crossSimilarities), "std", np.std(crossSimilarities))
benign_similarity_matrix = benignTFIDF * benignTFIDF.T
indices = np.triu_indices(benign_similarity_matrix.shape[0], k=1)
benign_similarities = benign_similarity_matrix[indices].flatten()
print("Blobbed benign to benign")
print("mean", np.mean(benign_similarities), "max", np.max(benign_similarities), "min", np.min(benign_similarities), "std", np.std(benign_similarities))
postMalMalSim = similarities
postMalBenSim = crossSimilarities
postBenBenSim = benign_similarities
print()
print()
tfidf = TfidfVectorizer(ngram_range=(lowerN,upperN)).fit_transform(mal_x)
similarity_matrix = tfidf * tfidf.T
indices = np.triu_indices(similarity_matrix.shape[0], k=1)
similarities = similarity_matrix[indices].flatten()
print("Normal malware to malware")
print("mean", np.mean(similarities), "max", np.max(similarities), "min", np.min(similarities), "std", np.std(similarities))
benignTFIDF = TfidfVectorizer(ngram_range=(lowerN,upperN)).fit(mal_x)
benignTFIDF = benignTFIDF.transform(ben_x)
crossSimilarities = tfidf * benignTFIDF.T
crossSimilarities = crossSimilarities.A.flatten()
print("Normal malware to benign")
print("mean", np.mean(crossSimilarities), "max", np.max(crossSimilarities), "min", np.min(crossSimilarities), "std", np.std(crossSimilarities))
benign_similarity_matrix = benignTFIDF * benignTFIDF.T
indices = np.triu_indices(benign_similarity_matrix.shape[0], k=1)
benign_similarities = benign_similarity_matrix[indices].flatten()
print("Normal benign to benign")
print("mean", np.mean(benign_similarities), "max", np.max(benign_similarities), "min", np.min(benign_similarities), "std", np.std(benign_similarities))
preMalMalSim = similarities
preMalBenSim = crossSimilarities
preBenBenSim = benign_similarities
print()
print()
print("Statistics test")
# from scipy.stats import ttest_ind
# print("Malware to Malware", ttest_ind(postMalMalSim.T, preMalMalSim.T, equal_var=False))
# print("Malware to Benign", ttest_ind(postMalBenSim.T, preMalBenSim.T, equal_var=False))
# print("Benign to Benign", ttest_ind(postBenBenSim.T, preBenBenSim.T, equal_var=False))
from scipy import stats
print("Malware to Malware", stats.ttest_rel(postMalMalSim.T, preMalMalSim.T))
print("Malware to Benign", stats.ttest_rel(postMalBenSim.T, preMalBenSim.T))
print("Benign to Benign", stats.ttest_rel(postBenBenSim.T, preBenBenSim.T))
print("Malware to Malware kruskal", stats.kruskal(postMalMalSim.T, preMalMalSim.T))
print("Malware to Benign kruskal", stats.kruskal(postMalBenSim.T, preMalBenSim.T))
print("Benign to Benign kruskal", stats.kruskal(postBenBenSim.T, preBenBenSim.T))
# https://stackoverflow.com/questions/44862712/td-idf-find-cosine-similarity-between-new-document-and-dataset
# https://stackoverflow.com/questions/6255835/cosine-similarity-and-tf-idf?rq=1
# https://github.com/scipy/scipy/issues/7759
# https://www.itl.nist.gov/div898/handbook/prc/section4/prc41.htm
sns.distplot(preMalBenSim)
plt.show()
sns.distplot(postMalBenSim)
plt.show()
sns.distplot(preBenBenSim)
plt.show()
sns.distplot(postBenBenSim)
plt.show()
sns.distplot(postMalMalSim)
plt.show()
sns.distplot(preMalMalSim)
plt.show()
# '''
def blobToImage(blob):
tokens = blob.split(" ")
# for token in tokens:
# print(token)
# print(token[:-2])
# comes as 237.0, cut off .-0
tokens = [int(token[:-2]) for token in tokens]
arr = np.array(tokens)
arr = arr.reshape((int(arr.shape[0]/25), 25))
return arr
def lookAtClusters():
# clusterFile = r".\clusters_sequential.pklz"
clusterFile = r".\clusters_sequential_BENIGN.pklz"
readMe = gzip.open(clusterFile, "r")
clusters = pickle.load(readMe)
print(len(clusters))
# print(clusters[0][0])
for cluster in clusters:
rn.shuffle(cluster)
firstFew = cluster[:20]
fig = plt.figure()
for n, blob in enumerate(firstFew):
ax1 = fig.add_subplot(4,5,n+1)
ax1.imshow(blobToImage(blob), cmap='gray')
plt.axis('off')
plt.show()
if __name__ == "__main__":
print("--------------------Performing Salience Test--------------------")
salienceTest(model, "")
# print("--------------------Looking At Clusters--------------------")
# lookAtClusters()
print("--------------------Testing Over--------------------")