-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_reverse_img_ddp.py
413 lines (361 loc) · 19.6 KB
/
train_reverse_img_ddp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
# From https://colab.research.google.com/drive/1LouqFBIC7pnubCOl5fhnFd33-oVJao2J?usp=sharing#scrollTo=yn1KM6WQ_7Em
import torch
import numpy as np
from flows import RectifiedFlow
import torch.nn as nn
import tensorboardX
import os
from models import UNetEncoder
from guided_diffusion.unet import UNetModel
import torchvision.datasets as dsets
from torchvision import transforms
from torchvision.utils import save_image, make_grid
from utils import straightness, get_kl
from dataset import CelebAHQImgDataset
import argparse
from tqdm import tqdm
import json
from EMA import EMA
from network_edm import SongUNet
# DDP
import torch.multiprocessing as mp
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed import init_process_group, destroy_process_group
torch.manual_seed(0)
def ddp_setup(rank, world_size):
"""
Args:
rank: Unique identifier of each process
world_size: Total number of processes
"""
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "12356"
# Windows
# init_process_group(backend="gloo", rank=rank, world_size=world_size)
# Linux
init_process_group(backend="nccl", rank=rank, world_size=world_size)
def get_args():
parser = argparse.ArgumentParser(description='Configs')
parser.add_argument('--gpu', type=str, help='gpu num')
parser.add_argument('--dataset', type=str, help='cifar10 / mnist / celebahq')
parser.add_argument('--dir', type=str, help='Saving directory name')
parser.add_argument('--weight_cur', type=float, default = 0, help='Curvature regularization weight')
parser.add_argument('--iterations', type=int, default = 1000000, help='Number of iterations')
parser.add_argument('--batchsize', type=int, default = 4, help='Batch size')
parser.add_argument('--learning_rate', type=float, default = 3e-5, help='Learning rate')
parser.add_argument('--independent', action = 'store_true', help='Independent assumption, q(x,z) = p(x)p(z)')
parser.add_argument('--resume', type=str, default = None, help='Training state path')
parser.add_argument('--N', type=int, default = 20, help='Number of sampling steps')
parser.add_argument('--num_samples', type=int, default = 64, help='Number of samples to generate')
parser.add_argument('--no_ema', action='store_true', help='use EMA or not')
parser.add_argument('--ema_after_steps', type=int, default = 1, help='Apply EMA after steps')
parser.add_argument('--optimizer', type=str, default = 'adamw', help='adam / adamw')
parser.add_argument('--warmup_steps', type=int, default = 0, help='Learning rate warmup')
parser.add_argument('--weight_prior', type=float, default = 10, help='Prior loss weight')
parser.add_argument('--config_en', type=str, default = None, help='Encoder config path, must be .json file')
parser.add_argument('--config_de', type=str, default = None, help='Decoder config path, must be .json file')
arg = parser.parse_args()
assert arg.dataset in ['cifar10', 'mnist', 'celebahq', 'celebahq256', 'ffhq', 'afhq']
arg.use_ema = not arg.no_ema
return arg
def train_rectified_flow(rank, rectified_flow, forward_model, optimizer, data_loader, iterations, device, start_iter, warmup_steps, dir, learning_rate, independent,
ema_after_steps, use_ema, samples_test, sampling_steps, world_size, weight_prior):
if rank == 0:
writer = tensorboardX.SummaryWriter(log_dir=dir)
samples_test = samples_test.to(device)
# use tqdm if rank == 0
tqdm_ = tqdm if rank == 0 else lambda x: x
for i in tqdm_(range(start_iter, iterations+1)):
optimizer.zero_grad()
if use_ema and i > ema_after_steps:
optimizer.ema_start()
# Learning rate warmup
if i < warmup_steps:
for param_group in optimizer.param_groups:
param_group['lr'] = learning_rate * np.minimum(i / warmup_steps, 1)
try:
x, _ = train_iter.next()
except:
train_iter = iter(data_loader)
x, _ = train_iter.next()
x = x.to(device)
if independent:
z = torch.randn_like(x)
loss_prior = 0
else:
z, mu, logvar = forward_model(x, torch.ones((x.shape[0]), device=device))
loss_prior = get_kl(mu, logvar)
z_t, t, target = rectified_flow.get_train_tuple(z0=x, z1=z)
# Learn reverse model
pred = rectified_flow.model(z_t, t.squeeze())
loss_fm = torch.mean((target - pred)**2)
loss_fm = loss_fm.mean()
loss = loss_fm + weight_prior * loss_prior
loss.backward()
optimizer.step()
# Gather loss from all processes using torch.distributed.all_gather
if i % 100 == 0 and rank == 0:
print(f"Iteration {i}: loss {loss.item()}, loss_fm {loss_fm.item()}")
writer.add_scalar("loss", loss.item(), i)
writer.add_scalar("loss_fm", loss_fm.item(), i)
writer.add_scalar("loss_prior", loss_prior, i)
writer.add_scalar("lr", optimizer.param_groups[0]['lr'], i)
# Log to .txt file
with open(os.path.join(dir, 'log.txt'), 'a') as f:
f.write(f"Iteration {i}: loss {loss:.8f}, loss_fm {loss_fm:.8f}, loss_prior {loss_prior:.8f}, lr {optimizer.param_groups[0]['lr']:.4f} \n")
if i % 1000 == 1 and rank == 0:
rectified_flow.model.eval()
if use_ema:
optimizer.swap_parameters_with_ema(store_params_in_ema=True)
with torch.no_grad():
if independent:
z = torch.randn_like(x[:4])
else:
z, _, _ = forward_model(samples_test[:4], torch.ones((4), device=device))
traj_reverse, traj_reverse_x0 = rectified_flow.sample_ode_generative(z1=z, N=sampling_steps)
z = torch.randn_like(x)[:4]
traj_uncond, traj_uncond_x0 = rectified_flow.sample_ode_generative(z1=z, N=sampling_steps)
traj_uncond_N4, traj_uncond_x0_N4 = rectified_flow.sample_ode_generative(z1=z, N=4)
traj_forward = rectified_flow.sample_ode(z0=samples_test, N=sampling_steps)
uncond_straightness = straightness(traj_uncond)
reverse_straightness = straightness(traj_reverse)
print(f"Uncond straightness: {uncond_straightness.item()}, reverse straightness: {reverse_straightness.item()}")
writer.add_scalar("uncond_straightness", uncond_straightness.item(), i)
writer.add_scalar("reverse_straightness", reverse_straightness.item(), i)
traj_reverse = torch.cat(traj_reverse, dim=0)
traj_reverse_x0 = torch.cat(traj_reverse_x0, dim=0)
traj_forward = torch.cat(traj_forward, dim=0)
traj_uncond = torch.cat(traj_uncond, dim=0)
traj_uncond_x0 = torch.cat(traj_uncond_x0, dim=0)
traj_uncond_N4 = torch.cat(traj_uncond_N4, dim=0)
traj_uncond_x0_N4 = torch.cat(traj_uncond_x0_N4, dim=0)
save_image(traj_reverse*0.5 + 0.5, os.path.join(dir, f"traj_reverse_{i}.jpg"), nrow=4)
save_image(traj_reverse_x0*0.5 + 0.5, os.path.join(dir, f"traj_reverse_x0_{i}.jpg"), nrow=4)
save_image(traj_forward*0.5 + 0.5, os.path.join(dir, f"traj_forward_{i}.jpg"), nrow=4)
save_image(traj_uncond*0.5 + 0.5, os.path.join(dir, f"traj_uncond_{i}.jpg"), nrow=4)
save_image(traj_uncond_x0*0.5 + 0.5, os.path.join(dir, f"traj_uncond_x0_{i}.jpg"), nrow=4)
save_image(traj_uncond_N4*0.5 + 0.5, os.path.join(dir, f"traj_uncond_N4_{i}.jpg"), nrow=4)
save_image(traj_uncond_x0_N4*0.5 + 0.5, os.path.join(dir, f"traj_uncond_x0_N4_{i}.jpg"), nrow=4)
if use_ema:
optimizer.swap_parameters_with_ema(store_params_in_ema=True)
rectified_flow.model.train()
if i % 50000 == 0 and rank == 0:
if use_ema:
optimizer.swap_parameters_with_ema(store_params_in_ema=True)
torch.save(rectified_flow.model.module.state_dict(), os.path.join(dir, f"flow_model_{i}_ema.pth"))
if forward_model is not None:
torch.save(forward_model.module.state_dict(), os.path.join(dir, f"forward_model_{i}_ema.pth"))
optimizer.swap_parameters_with_ema(store_params_in_ema=True)
else:
torch.save(rectified_flow.model.module.state_dict(), os.path.join(dir, f"flow_model_{i}.pth"))
if forward_model is not None:
torch.save(forward_model.module.state_dict(), os.path.join(dir, f"forward_model_{i}.pth"))
# Save training state
d = {}
d['optimizer_state_dict'] = optimizer.state_dict()
d['model_state_dict'] = rectified_flow.model.module.state_dict()
if forward_model is not None:
d['forward_model_state_dict'] = forward_model.module.state_dict()
d['iter'] = i
# save
torch.save(d, os.path.join(dir, f"training_state_{i}.pth"))
if i % 5000 == 0 and rank == 0 and i > 0:
# Save the latest training state
d = {}
d['optimizer_state_dict'] = optimizer.state_dict()
d['model_state_dict'] = rectified_flow.model.module.state_dict()
if forward_model is not None:
d['forward_model_state_dict'] = forward_model.module.state_dict()
d['iter'] = i
# save
torch.save(d, os.path.join(dir, f"training_state_latest.pth"))
return rectified_flow
def get_loader(dataset, batchsize, world_size, rank):
# Currently, the paths are hardcoded
if dataset == 'mnist':
res = 28
input_nc = 1
transform = transforms.Compose([transforms.Resize((res, res)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])])
dataset_train = dsets.MNIST(root='../data/mnist/mnist_train',
train=True,
transform=transform,
download=True)
dataset_test = dsets.MNIST(root='../data/mnist/mnist_test',
train=False,
transform=transform,
download=True)
elif dataset == 'celebahq':
input_nc = 3
res = 64
transform = transforms.Compose([transforms.Resize((res, res)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])])
dataset_train = CelebAHQImgDataset(res, im_dir = '../data/CelebAMask-HQ/CelebA-HQ-img-train-64', transform = transform)
dataset_test = CelebAHQImgDataset(res, im_dir = '../data/CelebAMask-HQ/CelebA-HQ-img-test-64', transform = transform)
elif dataset == 'celebahq256':
input_nc = 3
res = 256
transform = transforms.Compose([transforms.Resize((res, res)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])])
dataset_train = CelebAHQImgDataset(res, im_dir = '/mnt/hdd-nfs/sangyun/celebahq256', transform = transform)
dataset_test = CelebAHQImgDataset(res, im_dir = '/mnt/hdd-nfs/sangyun/celebahq256-test', transform = transform)
elif dataset == 'ffhq':
input_nc = 3
res = 64
transform = transforms.Compose([transforms.Resize((res, res)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])])
dataset_train = CelebAHQImgDataset(res, im_dir = '/mnt/hdd-nfs/sangyun/FFHQ_64', transform = transform)
dataset_test = CelebAHQImgDataset(res, im_dir = '/mnt/hdd-nfs/sangyun/FFHQ_64_test', transform = transform)
elif dataset == 'afhq':
input_nc = 3
res = 64
transform = transforms.Compose([transforms.Resize((res, res)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])])
dataset_train = CelebAHQImgDataset(res, im_dir = '/mnt/hdd-nfs/sangyun/afhq-v2-64', transform = transform)
dataset_test = CelebAHQImgDataset(res, im_dir = '/mnt/hdd-nfs/sangyun/afhq-v2-64-test', transform = transform)
elif dataset == 'cifar10':
input_nc = 3
res = 32
transform = transforms.Compose([transforms.Resize((res, res)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])])
dataset_train = dsets.CIFAR10(root='../data/cifar10/cifar10_train',
train=True,
transform=transform,
download=True)
dataset_test = dsets.CIFAR10(root='../data/cifar10/cifar10_test',
train=False,
transform=transform,
download=True)
else:
raise NotImplementedError
data_loader = torch.utils.data.DataLoader(dataset=dataset_train,
batch_size=batchsize,
shuffle=False,
drop_last=True,
num_workers=4,
sampler = DistributedSampler(dataset_train, num_replicas=world_size, rank=rank))
data_loader_test = torch.utils.data.DataLoader(dataset=dataset_test,
batch_size=batchsize,
shuffle=False,
drop_last=True)
samples_test = next(iter(data_loader_test))[0][:4]
return data_loader, samples_test, res, input_nc
def parse_config(config_path):
with open(config_path, 'r') as f:
config = json.load(f)
return config
def main(rank: int, world_size: int, arg):
ddp_setup(rank, world_size)
device = torch.device(f"cuda:{rank}")
assert arg.config_de is not None
if not arg.independent:
assert arg.config_en is not None
config_en = parse_config(arg.config_en)
config_de = parse_config(arg.config_de)
data_loader, samples_test, res, input_nc = get_loader(arg.dataset, arg.batchsize, world_size, rank)
if not arg.independent:
if config_en['unet_type'] == 'adm':
model_class = UNetModel
elif config_en['unet_type'] == 'songunet':
model_class = SongUNet
# Pass the arguments in the config file to the model
encoder = model_class(**config_en)
forward_model = UNetEncoder(encoder = encoder, input_nc = input_nc)
else:
forward_model = None
if config_de['unet_type'] == 'adm':
model_class = UNetModel
elif config_de['unet_type'] == 'songunet':
model_class = SongUNet
flow_model = model_class(**config_de)
if rank == 0:
# Print the number of parameters in the model
pytorch_total_params = sum(p.numel() for p in flow_model.parameters())
# Convert to M
pytorch_total_params = pytorch_total_params / 1000000
print(f"Total number of the reverse parameters: {pytorch_total_params}M")
# Save the configuration of flow_model to a json file
config_dict = flow_model.config
config_dict['num_params'] = pytorch_total_params
with open(os.path.join(arg.dir, 'config_flow_model.json'), 'w') as f:
json.dump(config_dict, f, indent = 4)
# Forward model parameters
if not arg.independent:
pytorch_total_params = sum(p.numel() for p in forward_model.parameters())
# Convert to M
pytorch_total_params = pytorch_total_params / 1000000
print(f"Total number of the forward parameters: {pytorch_total_params}M")
# Save the configuration of encoder to a json file
config_dict = forward_model.encoder.config
config_dict['num_params'] = pytorch_total_params
with open(os.path.join(arg.dir, 'config_encoder.json'), 'w') as f:
json.dump(config_dict, f, indent = 4)
# Load training state in arg.training_state
if arg.resume is not None:
training_state = torch.load(arg.resume, map_location = 'cpu')
start_iter = training_state['iter']
flow_model.load_state_dict(training_state['model_state_dict'])
if forward_model is not None:
forward_model.load_state_dict(training_state['forward_model_state_dict'])
else:
start_iter = 0
if forward_model is not None:
forward_model = forward_model.to(device)
flow_model = flow_model.to(device)
# learnable parameters: forward model and flow model if flow model is not none
learnable_params = []
if forward_model is not None:
learnable_params += list(forward_model.parameters())
learnable_params += list(flow_model.parameters())
if arg.optimizer == 'adamw':
optimizer = torch.optim.AdamW(learnable_params, lr=arg.learning_rate, weight_decay=0.1, betas = (0.9, 0.9999))
elif arg.optimizer == 'adam':
optimizer = torch.optim.Adam(learnable_params, lr=arg.learning_rate, betas = (0.9, 0.999), eps=1e-8)
else:
raise NotImplementedError
if arg.use_ema:
optimizer = EMA(optimizer, ema_decay=0.9999)
if arg.resume is not None:
optimizer.load_state_dict(training_state['optimizer_state_dict'])
print(f"Loaded training state from {arg.resume} at iter {start_iter}")
del training_state
# DDP
flow_model = DDP(flow_model, device_ids=[rank])
if forward_model is not None:
forward_model = DDP(forward_model, device_ids=[rank])
rectified_flow = RectifiedFlow(device, flow_model, num_steps = arg.N)
train_rectified_flow(rank = rank, rectified_flow = rectified_flow, forward_model = forward_model, optimizer = optimizer,
data_loader = data_loader, iterations = arg.iterations, device = device, start_iter = start_iter,
warmup_steps = arg.warmup_steps, dir = arg.dir, learning_rate = arg.learning_rate, independent = arg.independent,
samples_test = samples_test, use_ema = arg.use_ema, ema_after_steps = arg.ema_after_steps, sampling_steps = arg.N, world_size=world_size,
weight_prior=arg.weight_prior)
destroy_process_group()
if __name__ == "__main__":
arg = get_args()
if not os.path.exists(arg.dir):
os.makedirs(arg.dir)
os.environ["CUDA_VISIBLE_DEVICES"] = arg.gpu
device_ids = arg.gpu.split(',')
device_ids = [int(i) for i in device_ids]
world_size = len(device_ids)
with open(os.path.join(arg.dir, "config.json"), "w") as json_file:
json.dump(vars(arg), json_file, indent = 4)
arg.batchsize = arg.batchsize // world_size
try:
mp.spawn(main, args=(world_size, arg), nprocs=world_size)
except KeyboardInterrupt:
print("KeyboardInterrupt")
destroy_process_group()
exit(0)