-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdistill.py
131 lines (107 loc) · 5.27 KB
/
distill.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# From https://colab.research.google.com/drive/1LouqFBIC7pnubCOl5fhnFd33-oVJao2J?usp=sharing#scrollTo=yn1KM6WQ_7Em
import torch
import numpy as np
from flows import RectifiedFlow
import torch.nn as nn
import tensorboardX
import os
from models import UNetAE
from guided_diffusion.unet import UNetModel
import torchvision.datasets as dsets
from torchvision import transforms
from torchvision.utils import save_image
from dataset import DatasetWithLatent
import argparse
from network_edm import SongUNet
parser = argparse.ArgumentParser()
parser = argparse.ArgumentParser(description='Configs')
from tqdm import tqdm
from train_reverse_img_ddp import parse_config
torch.manual_seed(0)
parser.add_argument('--gpu', type=str, help='gpu num')
parser.add_argument('--dir', type=str, help='Saving directory name')
parser.add_argument('--im_dir', type=str, help='Image dir')
parser.add_argument('--im_dir_test', type=str, help='Image test dir')
parser.add_argument('--z_dir', type=str, help='zs dir')
parser.add_argument('--z_dir_test', type=str, help='zs test dir')
parser.add_argument('--iterations', type=int, default = 100000, help='Number of iterations')
parser.add_argument('--batchsize', type=int, default = 8, help='Batch size')
parser.add_argument('--learning_rate', type=float, default = 3e-5, help='Learning rate')
parser.add_argument('--ckpt', type=str, default = None, help='Pretrained ODE checkpoint')
parser.add_argument('--input_nc', type=int, default = 3, help='Image channels')
parser.add_argument('--res', type=int, default = 64, help='Image resolution')
parser.add_argument('--config_en', type=str, default = None, help='Encoder config path, must be .json file')
parser.add_argument('--config_de', type=str, default = None, help='Decoder config path, must be .json file')
arg = parser.parse_args()
device = torch.device(f"cuda:{arg.gpu}")
def distill(flow_model, train_loader, test_loader, iterations, optimizer, data_shape, writer):
z_fixed = torch.randn(data_shape, device=device)
for i in tqdm(range(iterations+1)):
optimizer.zero_grad()
try:
x, z = train_iter.next()
except:
train_iter = iter(train_loader)
x, z = train_iter.next()
x = x.to(device)
z = z.to(device)
# Learn student model
pred_v = flow_model(z, torch.ones(z.shape[0], device=device))
pred = z - pred_v
loss = torch.mean((pred - x)**2)
loss.backward()
optimizer.step()
if i % 100 == 0:
print(f"Iteration {i}: loss {loss.item()}")
writer.add_scalar("loss", loss.item(), i)
if i % 1000 == 0:
flow_model.eval()
with torch.no_grad():
pred_v = flow_model(z_fixed, torch.ones(z.shape[0], device=device))
pred = z_fixed - pred_v
save_image(pred * 0.5 + 0.5, os.path.join(arg.dir, f"pred_{i}.jpg"))
# test
loss_test_list = []
for x_test, z_test in test_loader:
x_test = x_test.to(device)
z_test = z_test.to(device)
pred_v = flow_model(z_test, torch.ones(z_test.shape[0], device=device))
pred = z_test - pred_v
loss = torch.mean((pred - x_test)**2)
loss_test_list.append(loss.item())
writer.add_scalar("test_loss", np.mean(loss_test_list), i)
print(f"Iteration {i}: test loss {np.mean(loss_test_list)}")
flow_model.train()
if i % 10000 == 0:
torch.save(flow_model.state_dict(), os.path.join(arg.dir, f"flow_model_distilled_{i}.pth"))
def main():
writer = tensorboardX.SummaryWriter(log_dir=arg.dir)
sample_data = np.load(os.path.join(arg.z_dir, "05000.npy"))
res = sample_data.shape[1]
input_nc = sample_data.shape[0]
config_de = parse_config(arg.config_de)
if config_de['unet_type'] == 'adm':
model_class = UNetModel
elif config_de['unet_type'] == 'songunet':
model_class = SongUNet
flow_model = model_class(**config_de)
# Print the number of parameters in the model
pytorch_total_params = sum(p.numel() for p in flow_model.parameters())
# Convert to M
pytorch_total_params = pytorch_total_params / 1000000
print(f"Total number of parameters: {pytorch_total_params}M")
if arg.ckpt is not None:
flow_model.load_state_dict(torch.load(arg.ckpt))
else:
raise NotImplementedError("Teacher flow ckpt should be provided.")
flow_model = flow_model.to(device)
flow_model.load_state_dict(torch.load(arg.ckpt))
optimizer = torch.optim.Adam(flow_model.parameters(), lr=arg.learning_rate, betas = (0.9, 0.9999), eps=1e-8)
train_dataset = DatasetWithLatent(arg.im_dir, arg.z_dir, input_nc = input_nc)
test_dataset = DatasetWithLatent(arg.im_dir_test, arg.z_dir_test, input_nc = input_nc)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=arg.batchsize, shuffle=True, num_workers=6)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=arg.batchsize, shuffle=False)
data_shape = (arg.batchsize, input_nc, res, res)
distill(flow_model, train_loader, test_loader, arg.iterations, optimizer, data_shape, writer)
if __name__ == "__main__":
main()