forked from bdemeshev/coursera_metrics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwordcloud.R
executable file
·52 lines (32 loc) · 1.84 KB
/
wordcloud.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# library("tm")
library("wordcloud")
library("dplyr")
library("RColorBrewer")
#cameron <- Corpus (DirSource("~/Documents/coursera_metrics/wordcloud/"))
#inspect(cameron)
#camnew <- tm_map(cameron, stripWhitespace) %>% tm_map(tolower) %>%
# tm_map(removeWords, stopwords("russian")) %>% tm_map(stemDocument)
#cam2 <- gsub("[[:punct:]]"," ",camnew)
#wordcloud(camnew, scale=c(5,0.5), max.words=100,
# random.order=FALSE, rot.per=0.35,
# use.r.layout=FALSE, colors=brewer.pal(8, "Dark2"))
#wordcloud(camnew)
d <- data.frame(
word=c("Эконометрика","R","ВШЭ","гетероскедастичность","автокорреляция",
"робастные ошибки","P-значение", "тест", "Гаусс", "Марков",
"мультиколлинеарность","гипотеза", "стохастический", "регрессор",
"стандартное отклонение", "данные","МНК","логит",
"коэффициент детерминации","регрессия","предельные эффекты","стационарность",
"инструменты","остатки")
)
# выдумываем частоты для слов
d$freq <- sample(5:10,size = nrow(d),replace = TRUE)
d$freq[1:3] <- c(20,18,14) # первые три слова крупно
pal <- brewer.pal(9, "Set1")
pal <- c("#0000FF","#FF6600","#00CC33","#FFFF00","","","","")
pal <- c(brewer.pal(9, "Blues")[5:9], brewer.pal(9, "Oranges")[4:9],
brewer.pal(9, "Greens")[5:9],brewer.pal(9, "GnBu")[5:9],
brewer.pal(9, "Reds")[5:9], brewer.pal(9, "Purples")[5:9])
wordcloud(d$word,d$freq, scale=c(3,.1),min.freq=2,max.words=100,
random.order=T, rot.per=0.15, colors=pal)
wordcloud(d$word,d$freq, random.order=T, rot.per=.15, colors=pal)