forked from mdolab/OpenAeroStruct
-
Notifications
You must be signed in to change notification settings - Fork 1
/
run_classes.py
1256 lines (1061 loc) · 56.4 KB
/
run_classes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
The OASProblem class contains all of the methods necessary to set up and run
aerostructural optimization using OpenAeroStruct.
Check the default dictionary functions to see the default options for the
lifting surfaces and for the entire problem.
Additionally, the setup() and run() methods for each type of analysis and
optimization are defined below.
The portions of the code concerning multiple surfaces may be confusing, but if
you are only interested in using one surface, you can gloss over some of the
details there.
"""
# =============================================================================
# Standard Python modules
# =============================================================================
from __future__ import division, print_function
import sys
from time import time
import numpy as np
from collections import OrderedDict
import array
# =============================================================================
# OpenMDAO modules
# =============================================================================
from openmdao.api import IndepVarComp, Problem, Group, ScipyOptimizer, Newton, ScipyGMRES, LinearGaussSeidel, NLGaussSeidel, SqliteRecorder, profile, CaseReader, DirectSolver
from openmdao.api import view_model
from six import iteritems
# =============================================================================
# OpenAeroStruct modules
# =============================================================================
from .geometry import GeometryMesh, Bspline, gen_crm_mesh, gen_rect_mesh, MonotonicConstraint
from .transfer import TransferDisplacements, TransferLoads
from .vlm import VLMStates, VLMFunctionals, VLMGeometry
from .spatialbeam import SpatialBeamStates, SpatialBeamFunctionals, SpatialBeamSetup, radii
from .materials import MaterialsTube
from .functionals import TotalPerformance, TotalAeroPerformance, FunctionalBreguetRange, FunctionalEquilibrium
from .gs_newton import HybridGSNewton
try:
import OAS_API
fortran_flag = True
data_type = float
except:
fortran_flag = False
data_type = complex
class Error(Exception):
"""
Format the error message in a box to make it clear this
was a expliclty raised exception.
"""
def __init__(self, message):
msg = '\n+'+'-'*78+'+'+'\n' + '| OpenAeroStruct Error: '
i = 23
for word in message.split():
if len(word) + i + 1 > 78: # Finish line and start new one
msg += ' '*(78-i)+'|\n| ' + word + ' '
i = 1 + len(word)+1
else:
msg += word + ' '
i += len(word)+1
msg += ' '*(78-i) + '|\n' + '+'+'-'*78+'+'+'\n'
print(msg)
Exception.__init__(self)
class OASWarning(object):
"""
Format a warning message
"""
def __init__(self, message):
msg = '\n+'+'-'*78+'+'+'\n' + '| OpenAeroStruct Warning: '
i = 25
for word in message.split():
if len(word) + i + 1 > 78: # Finish line and start new one
msg += ' '*(78-i)+'|\n| ' + word + ' '
i = 1 + len(word)+1
else:
msg += word + ' '
i += len(word)+1
msg += ' '*(78-i) + '|\n' + '+'+'-'*78+'+'+'\n'
print(msg)
class OASProblem(object):
"""
Contain surface and problem information for aerostructural optimization.
Parameters
----------
input_dict : dictionary
The problem conditions and type of analysis desired. Note that there
are default values defined by `get_default_prob_dict` that are overwritten
based on the user-provided input_dict.
"""
def __init__(self, input_dict={}):
print('Fortran =', fortran_flag)
self.bsp_vars = ['chord_cp','thickness_cp','radius_cp','twist_cp','xshear_cp','yshear_cp','zshear_cp']
# Update prob_dict with user-provided values after getting defaults
self.prob_dict = self.get_default_prob_dict()
self.prob_dict.update(input_dict)
# Validate prob_dict variables
self.prob_dict = self.validate_input_vars(self.prob_dict)
# Set the airspeed velocity based on the supplied Mach number
# and speed of sound
self.prob_dict['v'] = self.prob_dict['M'] * self.prob_dict['a']
self.surfaces = []
# Set the setup function depending on the problem type selected by the user
if self.prob_dict['type'] == 'aero':
self.setup = self.setup_aero
if self.prob_dict['type'] == 'struct':
self.setup = self.setup_struct
if self.prob_dict['type'] == 'aerostruct':
self.setup = self.setup_aerostruct
# Set up dictionaries to hold user-supplied parameters for optimization
self.desvars = {}
self.constraints = {}
self.objective = {}
def get_var(self, name):
''' Get problem variable '''
return self.prob[name]
def set_var(self, name, val):
''' Set problem variable '''
vardict = self.validate_input_vars({name: val})
name = vardict.keys()[0]
self.prob[name] = vardict[name]
# self.prob.driver.set_desvar(var, val)
def __setitem__(self, name, val):
''' Set problem variable '''
self.prob[name] = self.set_var(name, val)
def __getitem__(self, name):
''' Get probem variable '''
return self.get_var(name)
def get_default_prob_dict(self):
"""
Obtain the default settings for the problem description. Note that
these defaults are overwritten based on user input for the problem.
Returns
-------
defaults : dict
A python dict containing the default problem-level settings.
"""
defaults = {
# Problem and solver options
'optimize' : False, # flag for analysis or optimization
'optimizer' : 'SLSQP', # default optimizer
'force_fd' : False, # if true, we FD over the whole model
'with_viscous' : False, # if true, compute viscous drag
'print_level' : 0, # int to control output during optimization
# 0 for no additional printing
# 1 for nonlinear solver printing
# 2 for nonlinear and linear solver printing
'previous_case_db' : None, # name of the .db file for warm restart
# example: 'aerostruct.db'
'record_db' : True, # True to output .db file
'profile' : False, # True to profile the problem's time costs
# view results using `view_profile prof_raw.0`
'compute_static_margin' : False, # if true, compute and print the
# static margin after the run is finished
# Flow/environment properties
'Re' : 1e6, # Reynolds number
'reynolds_length' : 1.0, # characteristic Reynolds length
'alpha' : 5., # [degrees] angle of attack
'M' : 0.84, # Mach number at cruise
'rho' : 0.38, # [kg/m^3] air density at 35,000 ft
'a' : 295.4, # [m/s] speed of sound at 35,000 ft
'g' : 9.80665, # [m/s^2] acceleration due to gravity
# Aircraft properties
'CT' : 9.80665 * 17.e-6, # [1/s] (9.80665 N/kg * 17e-6 kg/N/s)
# specific fuel consumption
'R' : 11.165e6, # [m] maximum range (B777-300)
'cg' : np.zeros((3)), # Center of gravity for the
# entire aircraft. Used in trim
# and stability calculations.
'W0' : 0.4 * 3e5, # [kg] weight of the airplane without
# the wing structure and fuel.
# The default is 40% of the MTOW of
# B777-300 is 3e5 kg.
'beta' : 1., # weighting factor for mixed objective
}
return defaults
def get_default_surf_dict(self):
"""
Obtain the default settings for the surface descriptions. Note that
these defaults are overwritten based on user input for each surface.
Each dictionary describes one surface.
Returns
-------
defaults : dict
A python dict containing the default surface-level settings.
"""
defaults = {
# Wing definition
'name' : 'wing', # name of the surface
'num_x' : 3, # number of chordwise points
'num_y' : 5, # number of spanwise points
'span_cos_spacing' : 1, # 0 for uniform spanwise panels
# 1 for cosine-spaced panels
# any value between 0 and 1 for
# a mixed spacing
'chord_cos_spacing' : 0., # 0 for uniform chordwise panels
# 1 for cosine-spaced panels
# any value between 0 and 1 for
# a mixed spacing
'wing_type' : 'rect', # initial shape of the wing
# either 'CRM' or 'rect'
# 'CRM' can have different options
# after it, such as 'CRM:alpha_2.75'
# for the CRM shape at alpha=2.75
'offset' : np.zeros((3)), # coordinates to offset
# the surface from its default location
'symmetry' : True, # if true, model one half of wing
# reflected across the plane y = 0
'S_ref_type' : 'wetted', # how we compute the wing area,
# can be 'wetted' or 'projected'
# Simple Geometric Variables
'span' : 10., # full wingspan, even for symmetric cases
'root_chord' : 1., # root chord
'dihedral' : 0., # wing dihedral angle in degrees
# positive is upward
'sweep' : 0., # wing sweep angle in degrees
# positive sweeps back
'taper' : 1., # taper ratio; 1. is uniform chord
'S_ref' : None, # [m^2] area of the lifting surface,
# optional, needed only for planform optimization
# B-spline Geometric Variables. The number of control points
# for each of these variables can be specified in surf_dict
# by adding the prefix "num" to the variable (e.g. num_twist)
'twist_cp' : None,
'chord_cp' : None,
'xshear_cp' : None,
'yshear_cp' : None,
'zshear_cp' : None,
'thickness_cp' : None,
'radius_cp' : None,
# Geometric variables. The user generally does not need
# to change these geometry variables. This is simply
# a list of possible geometry variables that is later
# filtered down based on which are active.
'geo_vars' : ['sweep', 'dihedral', 'twist_cp', 'xshear_cp', 'yshear_cp',
'zshear_cp', 'span', 'chord_cp', 'taper', 'thickness_cp', 'radius_cp'],
# Aerodynamic performance of the lifting surface at
# an angle of attack of 0 (alpha=0).
# These CL0 and CD0 values are added to the CL and CD
# obtained from aerodynamic analysis of the surface to get
# the total CL and CD.
# These CL0 and CD0 values do not vary wrt alpha.
# ** NOTE **: The CD0 value used here is _not_ the CD0 commonly used
# in aircraft design textbooks. The CD0 in OpenAeroStruct is the drag
# at alpha=0, not CL=0.
'CL0' : 0.0, # CL of the surface at alpha=0
'CD0' : 0.0, # CD of the surface at alpha=0
# Airfoil properties for viscous drag calculation
'k_lam' : 0.05, # percentage of chord with laminar
# flow, used for viscous drag
't_over_c' : 0.12, # thickness over chord ratio (NACA0012)
'c_max_t' : .303, # chordwise location of maximum (NACA0012)
# thickness
# Structural values are based on aluminum 7075
'E' : 70.e9, # [Pa] Young's modulus of the spar
'G' : 30.e9, # [Pa] shear modulus of the spar
'yield' : 500.e6 / 2.5, # [Pa] yield stress divided by 2.5 for limiting case
'mrho' : 3.e3, # [kg/m^3] material density
'fem_origin' : 0.35, # normalized chordwise location of the spar
'loads' : None, # [N] allow the user to input loads
'disp' : None, # [m] nodal displacements of the FEM model
# Constraints
'exact_failure_constraint' : False, # if false, use KS function
'monotonic_con' : None, # add monotonic constraint to the given
# distributed variable. Ex. 'chord_cp'
}
return defaults
def validate_input_vars(self, input_dict):
"""
Converts input values to appropriate variables type. Helpful when calling functions from Matlab.
"""
bsp_vars = self.bsp_vars
ary_vars = bsp_vars + ['cg']
int_vars = ['num_x', 'num_y', 'print_level'] + ['num_'+var for var in bsp_vars]
for key, val in iteritems(input_dict):
# Get var from key if prefixed with surface name
var = key.split('.')[-1]
# If variable requires an array, convert it to a Numpy ndarray
if var in ary_vars:
if isinstance(val, np.ndarray):
input_dict[key] = val.astype(data_type)
elif val is None:
input_dict[key] = None
elif isinstance(val, list) or isinstance(val, tuple) or isinstance(val, array.array):
input_dict[key] = np.array(val, dtype=data_type)
else:
input_dict[key] = np.array([val], dtype=data_type)
# TO DO: Check if length of bsp_var matches existing data, otherwise
# return an error
# If variable requires an integer, convert it to an integer type
elif var in int_vars:
if not isinstance(val, int) and (val is not None):
input_dict[key] = int(val)
return input_dict
def add_surface(self, input_dict={}):
"""
Add a surface to the problem. One surface definition is needed for
each planar lifting surface.
Parameters
----------
input_dict : dictionary
Surface definition. Note that there are default values defined by
`get_default_surface` that are overwritten based on the
user-provided input_dict.
"""
# Get defaults and update surface with the user-provided input
surf_dict = self.get_default_surf_dict()
surf_dict.update(input_dict)
# Convert variables to correct types
surf_dict = self.validate_input_vars(surf_dict)
# Check to see if the user provides the mesh points. If they do,
# get the chordwise and spanwise number of points
if 'mesh' in surf_dict.keys():
mesh = surf_dict['mesh']
num_x, num_y = mesh.shape[:2]
# If the user doesn't provide a mesh, obtain the values from surface
# to create the mesh
elif 'num_x' in surf_dict.keys():
num_x = surf_dict['num_x']
num_y = surf_dict['num_y']
span = surf_dict['span']
chord = surf_dict['root_chord']
span_cos_spacing = surf_dict['span_cos_spacing']
chord_cos_spacing = surf_dict['chord_cos_spacing']
# Check to make sure that an odd number of spanwise points (num_y) was provided
if not num_y % 2:
Error('num_y must be an odd number.')
# Generate rectangular mesh
if surf_dict['wing_type'] == 'rect':
mesh = gen_rect_mesh(num_x, num_y, span, chord,
span_cos_spacing, chord_cos_spacing)
# Generate CRM mesh. Note that this outputs twist information
# based on the data from the CRM definition paper, so we save
# this twist information to the surf_dict.
elif 'CRM' in surf_dict['wing_type']:
mesh, eta, twist = gen_crm_mesh(num_x, num_y, span, chord,
span_cos_spacing, chord_cos_spacing, surf_dict['wing_type'])
num_x, num_y = mesh.shape[:2]
surf_dict['crm_twist'] = twist
else:
Error('wing_type option not understood. Must be either a type of ' +
'"CRM" or "rect".')
# Chop the mesh in half if using symmetry during analysis.
# Note that this means that the provided mesh should be the full mesh
if surf_dict['symmetry']:
num_y = int((num_y+1)/2)
mesh = mesh[:, :num_y, :]
else:
Error("Please either provide a mesh or a valid set of parameters.")
# Compute span. We need .real to make span to avoid OpenMDAO warnings.
quarter_chord = 0.25 * mesh[-1] + 0.75 * mesh[0]
surf_dict['span'] = max(quarter_chord[:, 1]).real - min(quarter_chord[:, 1]).real
if surf_dict['symmetry']:
surf_dict['span'] *= 2.
# Apply the user-provided coordinate offset to position the mesh
mesh = mesh + surf_dict['offset']
# We need to initialize some variables to ones and some others to zeros.
# Here we define the lists for each case.
ones_list = ['chord_cp', 'thickness_cp', 'radius_cp']
zeros_list = ['twist_cp', 'xshear_cp', 'yshear_cp', 'zshear_cp']
surf_dict['bsp_vars'] = ones_list + zeros_list
# Loop through bspline variables and set the number of control points if
# the user hasn't initalized the array.
for var in surf_dict['bsp_vars']:
numkey = 'num_' + var
if surf_dict[var] is None:
if numkey not in input_dict:
surf_dict[numkey] = np.max([int((num_y - 1) / 5), min(5, num_y-1)])
else:
surf_dict[numkey] = len(surf_dict[var])
# Interpolate the twist values from the CRM wing definition to the twist
# control points
if 'CRM' in surf_dict['wing_type']:
num_twist = surf_dict['num_twist_cp']
# If the surface is symmetric, simply interpolate the initial
# twist_cp values based on the mesh data
if surf_dict['symmetry']:
twist = np.interp(np.linspace(0, 1, num_twist), eta, surf_dict['crm_twist'])
else:
# If num_twist is odd, create the twist vector and mirror it
# then stack the two together, but remove the duplicated twist
# value.
if num_twist % 2:
twist = np.interp(np.linspace(0, 1, (num_twist+1)/2), eta, surf_dict['crm_twist'])
twist = np.hstack((twist[:-1], twist[::-1]))
# If num_twist is even, mirror the twist vector and stack
# them together
else:
twist = np.interp(np.linspace(0, 1, num_twist/2), eta, surf_dict['crm_twist'])
twist = np.hstack((twist, twist[::-1]))
# Continue to use the user-defined twist_cp if inputted to the
# surface dictionary. Otherwise, use the prescribed CRM twist.
if surf_dict['twist_cp'] is None:
surf_dict['twist_cp'] = twist
# Store updated values
surf_dict['num_x'] = num_x
surf_dict['num_y'] = num_y
surf_dict['mesh'] = mesh
radius = radii(mesh, surf_dict['t_over_c'])
surf_dict['radius'] = radius
# Set initial thicknesses
surf_dict['thickness'] = radius / 10
# We now loop through the possible bspline variables and populate
# the 'initial_geo' list with the variables that the geometry
# or user provided. For example, the CRM wing defines an initial twist.
# We must treat this separately so we add a twist bspline component
# even if it is not a desvar.
surf_dict['initial_geo'] = []
for var in surf_dict['geo_vars']:
# Add the bspline variables when they're needed
if var in surf_dict['bsp_vars']:
numkey = 'num_' + var
if surf_dict[var] is None:
# Add the intialized geometry variables to either ones or zeros.
# These initial values do not perturb the mesh.
if var in ones_list:
surf_dict[var] = np.ones(surf_dict[numkey], dtype=data_type)
elif var in zeros_list:
surf_dict[var] = np.zeros(surf_dict[numkey], dtype=data_type)
else:
surf_dict['initial_geo'].append(var)
# If the user provided a scalar variable (span, sweep, taper, etc),
# then include that in the initial_geo list
elif var in input_dict.keys():
surf_dict['initial_geo'].append(var)
if 'thickness_cp' not in surf_dict['initial_geo']:
surf_dict['thickness_cp'] *= np.max(surf_dict['thickness'])
if surf_dict['loads'] is None:
# Set default loads at the tips
loads = np.zeros((surf_dict['thickness'].shape[0] + 1, 6), dtype=data_type)
loads[0, 2] = 1e4
if not surf_dict['symmetry']:
loads[-1, 2] = 1e4
surf_dict['loads'] = loads
if surf_dict['disp'] is None:
# Set default disp if not provided
surf_dict['disp'] = np.zeros((surf_dict['num_y'], 6), dtype=data_type)
# Throw a warning if the user provides two surfaces with the same name
name = surf_dict['name']
for surface in self.surfaces:
if name == surface['name']:
OASWarning("Two surfaces have the same name.")
# Append '_' to each repeated surface name
if not name:
surf_dict['name'] = name
else:
surf_dict['name'] = name + '_'
# Add the individual surface description to the surface list
self.surfaces.append(surf_dict)
def setup_prob(self):
"""
Short method to select the optimizer. Uses pyOptSparse if available,
or Scipy's SLSQP otherwise.
"""
try: # Use pyOptSparse optimizer if installed
from openmdao.api import pyOptSparseDriver
self.prob.driver = pyOptSparseDriver()
if self.prob_dict['optimizer'] == 'SNOPT':
self.prob.driver.options['optimizer'] = "SNOPT"
self.prob.driver.opt_settings = {'Major optimality tolerance': 1.0e-8,
'Major feasibility tolerance': 1.0e-8,
'Major iterations limit':400,
'Minor iterations limit':2000,
'Iterations limit':1000
}
elif self.prob_dict['optimizer'] == 'ALPSO':
self.prob.driver.options['optimizer'] = 'ALPSO'
self.prob.driver.opt_settings = {'SwarmSize': 40,
'maxOuterIter': 200,
'maxInnerIter': 6,
'rtol': 1e-5,
'atol': 1e-5,
'dtol': 1e-5,
'printOuterIters': 1
}
elif self.prob_dict['optimizer'] == 'NOMAD':
self.prob.driver.options['optimizer'] = 'NOMAD'
self.prob.driver.opt_settings = {'maxiter':1000,
'minmeshsize':1e-12,
'minpollsize':1e-12,
'displaydegree':0,
'printfile':1
}
elif self.prob_dict['optimizer'] == 'SLSQP':
self.prob.driver.options['optimizer'] = 'SLSQP'
self.prob.driver.opt_settings = {'ACC' : 1e-10
}
except: # Use Scipy SLSQP optimizer if pyOptSparse not installed
self.prob.driver = ScipyOptimizer()
self.prob.driver.options['optimizer'] = 'SLSQP'
self.prob.driver.options['disp'] = True
self.prob.driver.options['tol'] = 1.0e-10
# Actually call the OpenMDAO functions to add the design variables,
# constraints, and objective.
for desvar_name, desvar_data in iteritems(self.desvars):
self.prob.driver.add_desvar(desvar_name, **desvar_data)
for con_name, con_data in iteritems(self.constraints):
self.prob.driver.add_constraint(con_name, **con_data)
for obj_name, obj_data in iteritems(self.objective):
self.prob.driver.add_objective(obj_name, **obj_data)
# Use finite differences over the entire model if user selected it
if self.prob_dict['force_fd']:
self.prob.root.deriv_options['type'] = 'fd'
# Record optimization history to a database.
# Data saved here can be examined using `plot_all.py` or `OptView.py`
if self.prob_dict['record_db']:
recorder = SqliteRecorder(self.prob_dict['prob_name']+".db")
recorder.options['record_params'] = True
recorder.options['record_derivs'] = True
self.prob.driver.add_recorder(recorder)
# Profile (time) the problem
if self.prob_dict['profile']:
profile.setup(self.prob)
profile.start()
# Set up the problem
self.prob.setup()
# Use warm start from previous db file if desired.
# Note that we only have access to the unknowns, not the gradient history.
if self.prob_dict['previous_case_db'] is not None:
# Open the previous case and start from the last iteration.
# Change the -1 value in get_case() if you want to select a different iteration.
cr = CaseReader(self.prob_dict['previous_case_db'])
case = cr.get_case(-1)
# Loop through the unknowns and set them for this problem.
for param_name, param_data in iteritems(case.unknowns):
self.prob[param_name] = param_data
def add_desvar(self, *args, **kwargs):
"""
Store the design variables and later add them to the OpenMDAO problem.
"""
self.desvars[str(*args)] = dict(**kwargs)
def add_constraint(self, *args, **kwargs):
"""
Store the constraints and later add them to the OpenMDAO problem.
"""
self.constraints[str(*args)] = dict(**kwargs)
def add_objective(self, *args, **kwargs):
"""
Store the objectives and later add them to the OpenMDAO problem.
"""
self.objective[str(*args)] = dict(**kwargs)
def run(self, **kwargs):
"""
Method to actually run analysis or optimization. Also saves history in
a .db file and creates an N2 diagram to view the problem hierarchy.
Can use keyword arguments or dictionary to set design variables at runtime.
When calling run() from Matlab, set matlab=True to configure output
dictionary for Matlab struct conversion
"""
# Check if we want Matlab struct style output dictionary, remove from kwargs
matlab_config = kwargs.pop('matlab',False)
# Change design variables if user supplies them from remaining keyword
# entries or dictionary, validate input
# kwargs = self.validate_input_vars(kwargs)
geo_vars = ['wing.A','wing.Iy','wing.Iz','wing.J','fuelburn']
for name, val in iteritems(kwargs):
# print('var=',var,' val=',val)
self.set_var(name, val)
# self.prob[var] = val
# Have more verbose output about optimization convergence
if self.prob_dict['print_level']:
self.prob.print_all_convergence()
# Save an N2 diagram for the problem
if self.prob_dict['record_db']:
view_model(self.prob, outfile=self.prob_dict['prob_name']+".html", show_browser=False)
# If `optimize` == True in prob_dict, perform optimization. Otherwise,
# simply pass the problem since analysis has already been run.
if not self.prob_dict['optimize']:
# Run a single analysis loop. This shouldn't actually be
# necessary, but sometimes the .db file is not complete unless we do this.
self.prob.run_once()
else:
# Perform optimization
self.prob.run()
# If the problem type is aero or aerostruct, we can compute the static margin.
# This is a naive tempoerary implementation that currently finite differences
# over the entire model to obtain the static margin.
if self.prob_dict['compute_static_margin'] and 'aero' in self.prob_dict['type']:
# Turn off problem recording (so nothing for these computations
# appears in the .db file) and get the current CL and CM.
self.prob.driver.recorders._recorders = []
CL = self.prob['wing_perf.CL']
CM = self.prob['CM'][1]
step = 1e-5
# Perturb alpha and run an analysis loop to obtain the new CL and CM.
self.prob['alpha'] += step
self.prob.run_once()
CL_new = self.prob['wing_perf.CL']
CM_new = self.prob['CM'][1]
# Un-perturb alpha and run a single analysis loop to get the problem
# back to where it was before we finite differenced.
self.prob['alpha'] -= step
self.prob.run_once()
# Compute, print, and save the static margin in metadata.
static_margin = -(CM_new - CM) / (CL_new - CL)
print("Static margin is:", static_margin)
self.prob.root.add_metadata('static_margin', static_margin)
# Uncomment this to check the partial derivatives of each component
# self.prob.check_partial_derivatives(compact_print=True)
# Return dictionary of output values for easy access
if matlab_config:
output = {} # Return standard dict for Matlab output
else:
output = OrderedDict()
# Note: could also check in self.root._unknowns_dict and self.root._params_dict
# in OpenMDAO Group() object
# Add design variables to output dict
for name in self.prob.driver._desvars:
output[name] = self.get_var(name)
# Get overall output variables and constraints, return None if not there
overall_vars = ['fuelburn','CD','CL','L_equals_W','CM','v','rho','cg',
'weighted_obj','total_weight']
for item in overall_vars:
try:
output[item] = self.get_var(item)
except:
pass
var_map = OrderedDict()
# get lifting surface specific variables and constraints, return None if not there
var_map.update({
'mesh' : '<name>.mesh',
'thickness' : '<name>.thickness',
'twist' : '<name>.twist',
'chord' : '<name>.chord'
})
if self.prob_dict["type"] == 'struct':
var_map.update({
'structural_weight' : '<name>.structural_weight',
'CD' : '<name>.CD',
'CL' : '<name>.CL',
'failure' : '<name>.failure',
'vonmises' : '<name>.vonmises',
'thickness_intersects' : '<name>.thickness_intersects',
'cg' : '<name>.cg_location',
})
elif self.prob_dict["type"] in ['aerostruct','aero']:
var_map.update({
'structural_weight' : '<name>_perf.structural_weight',
'CD' : '<name>_perf.CD',
'CL' : '<name>_perf.CL',
'failure' : '<name>_perf.failure',
'vonmises' : '<name>_perf.vonmises',
'thickness_intersects' : '<name>_perf.thickness_intersects',
'cg' : '<name>_perf.cg_location',
})
# lifting surface coupling variables
var_map.update({
'loads' : 'coupled.<name>.loads',
'def_mesh' : 'coupled.<name>.def_mesh'
})
for surf in self.surfaces:
surf_name = surf["name"][:-1]
for key, val in iteritems(var_map):
try:
var_value = self.prob[val.replace('<name>',surf_name)]
output.update({surf_name+'.'+key : var_value})
except:
pass
# Change output dictionary keys to repalce '.' with '_' so that they
# will work in Matlab struct object
if matlab_config:
output_keys = list(output.keys())
for key in output_keys:
newkey = key.replace('.','_')
val = output.pop(key)
output[newkey] = val
return output
def setup_struct(self):
"""
Specific method to add the necessary components to the problem for a
structural problem.
"""
# Set the problem name if the user doesn't
if 'prob_name' not in self.prob_dict.keys():
self.prob_dict['prob_name'] = 'struct'
# Create the base root-level group
root = Group()
# Create the problem and assign the root group
self.prob = Problem()
self.prob.root = root
# Loop over each surface in the surfaces list
for surface in self.surfaces:
# Get the surface name and create a group to contain components
# only for this surface.
# This group's name is whatever the surface's name is.
# The default is 'wing'.
name = surface['name']
tmp_group = Group()
# Strip the surface names from the desvars list and save this
# modified list as self.desvars
desvar_names = []
for desvar in self.desvars.keys():
# Check to make sure that the surface's name is in the design
# variable and only add the desvar to the list if it corresponds
# to this surface.
if name[:-1] in desvar:
desvar_names.append(''.join(desvar.split('.')[1:]))
# Add independent variables that do not belong to a specific component.
# Note that these are the only ones necessary for structual-only
# analysis and optimization.
# Here we check and only add the variables that are desvars or a
# special var, radius, which is necessary to compute weight.
indep_vars = [('loads', surface['loads'])]
for var in surface['geo_vars']:
if var in desvar_names or 'thickness' in var or var in surface['initial_geo']:
indep_vars.append((var, surface[var]))
# Add structural components to the surface-specific group
tmp_group.add('indep_vars',
IndepVarComp(indep_vars),
promotes=['*'])
tmp_group.add('mesh',
GeometryMesh(surface, self.desvars),
promotes=['*'])
tmp_group.add('tube',
MaterialsTube(surface),
promotes=['*'])
tmp_group.add('struct_setup',
SpatialBeamSetup(surface),
promotes=['*'])
tmp_group.add('struct_states',
SpatialBeamStates(surface),
promotes=['*'])
tmp_group.add('struct_funcs',
SpatialBeamFunctionals(surface),
promotes=['*'])
# Add bspline components for active bspline geometric variables.
# We only add the component if the corresponding variable is a desvar
# or special (radius).
for var in surface['bsp_vars']:
if var in desvar_names or var in surface['initial_geo'] or 'thickness' in var:
n_pts = surface['num_y']
if var in ['thickness_cp', 'radius_cp']:
n_pts -= 1
trunc_var = var.split('_')[0]
tmp_group.add(trunc_var + '_bsp',
Bspline(var, trunc_var, surface['num_'+var], n_pts),
promotes=['*'])
# Add tmp_group to the problem with the name of the surface.
# The default is 'wing'.
root.add(name[:-1], tmp_group, promotes=[])
root.add_metadata(surface['name'] + 'yield_stress', surface['yield'])
root.add_metadata(surface['name'] + 'fem_origin', surface['fem_origin'])
# Actually set up the problem
self.setup_prob()
def setup_aero(self):
"""
Specific method to add the necessary components to the problem for an
aerodynamic problem.
"""
# Set the problem name if the user doesn't
if 'prob_name' not in self.prob_dict.keys():
self.prob_dict['prob_name'] = 'aero'
# Create the base root-level group
root = Group()
# Create the problem and assign the root group
self.prob = Problem()
self.prob.root = root
# Loop over each surface in the surfaces list
for surface in self.surfaces:
# Get the surface name and create a group to contain components
# only for this surface
name = surface['name']
tmp_group = Group()
# Strip the surface names from the desvars list and save this
# modified list as self.desvars
desvar_names = []
for desvar in self.desvars.keys():
# Check to make sure that the surface's name is in the design
# variable and only add the desvar to the list if it corresponds
# to this surface.
if name[:-1] in desvar:
desvar_names.append(''.join(desvar.split('.')[1:]))
# Add independent variables that do not belong to a specific component
indep_vars = [('disp', surface['disp'])]
for var in surface['geo_vars']:
if var in desvar_names or var in surface['initial_geo']:
indep_vars.append((var, surface[var]))
# Add aero components to the surface-specific group
tmp_group.add('indep_vars',
IndepVarComp(indep_vars),
promotes=['*'])
tmp_group.add('mesh',
GeometryMesh(surface, self.desvars),
promotes=['*'])
tmp_group.add('def_mesh',
TransferDisplacements(surface),
promotes=['*'])
tmp_group.add('vlmgeom',
VLMGeometry(surface),
promotes=['*'])
# Add bspline components for active bspline geometric variables.
# We only add the component if the corresponding variable is a desvar.
for var in surface['bsp_vars']:
if var in desvar_names or var in surface['initial_geo']:
n_pts = surface['num_y']
if var in ['thickness_cp', 'radius_cp']:
n_pts -= 1
trunc_var = var.split('_')[0]
tmp_group.add(trunc_var + '_bsp',
Bspline(var, trunc_var, surface['num_'+var], n_pts),
promotes=['*'])
# Add monotonic constraints for selected variables
if surface['monotonic_con'] is not None:
if type(surface['monotonic_con']) is not list:
surface['monotonic_con'] = [surface['monotonic_con']]
for var in surface['monotonic_con']:
tmp_group.add('monotonic_' + var,
MonotonicConstraint(var, surface), promotes=['*'])
# Add tmp_group to the problem as the name of the surface.
# Note that is a group and performance group for each
# individual surface.
name_orig = name.strip('_')
root.add(name_orig, tmp_group, promotes=[])
root.add(name_orig+'_perf', VLMFunctionals(surface, self.prob_dict),
promotes=["v", "alpha", "M", "re", "rho"])
# Add problem information as an independent variables component
if self.prob_dict['Re'] == 0:
Error('Reynolds number must be greater than zero for viscous drag ' +
'calculation. If only inviscid drag is desired, set with_viscous ' +
'flag to False.')
prob_vars = [('v', self.prob_dict['v']),
('alpha', self.prob_dict['alpha']),
('M', self.prob_dict['M']),
('re', self.prob_dict['Re']/self.prob_dict['reynolds_length']),
('rho', self.prob_dict['rho']),
('cg', self.prob_dict['cg'])]
root.add('prob_vars',
IndepVarComp(prob_vars),
promotes=['*'])
# Add a single 'aero_states' component that solves for the circulations
# and forces from all the surfaces.
# While other components only depends on a single surface,
# this component requires information from all surfaces because
# each surface interacts with the others.
root.add('aero_states',
VLMStates(self.surfaces),
promotes=['circulations', 'v', 'alpha', 'rho'])
# Explicitly connect parameters from each surface's group and the common
# 'aero_states' group.
# This is necessary because the VLMStates component requires information
# from each surface, but this information is stored within each
# surface's group.
for surface in self.surfaces:
name = surface['name']
# Perform the connections with the modified names within the
# 'aero_states' group.
root.connect(name[:-1] + '.def_mesh', 'aero_states.' + name + 'def_mesh')
root.connect(name[:-1] + '.b_pts', 'aero_states.' + name + 'b_pts')
root.connect(name[:-1] + '.c_pts', 'aero_states.' + name + 'c_pts')
root.connect(name[:-1] + '.normals', 'aero_states.' + name + 'normals')
# Connect the results from 'aero_states' to the performance groups
root.connect('aero_states.' + name + 'sec_forces', name + 'perf' + '.sec_forces')