-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathChargingStation.py
621 lines (410 loc) · 22.6 KB
/
ChargingStation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
from definitions import *
from Calculations import *
# -------------------------------------------------------------------------------------
# PRINT POINTS OF RECHARGE WHEN 100 RIDERS RIDE FROM A->B AND THEN B->A
# -------------------------------------------------------------------------------------
result = Calculate_Points_Of_Recharge()
# -------------------------------------------------------------------------------------
# GENERIC LOGIC TO FILTER STATIONS TO LOCATE BETWEEN 50 - 100
# -------------------------------------------------------------------------------------
list_with_verified_distances = Generate_Verified_Combinations(50, 100)
# -------------------------------------------------------------------------------------
# FILTER OUT STRANDED RIDERS FROM THE VERIFIED SET
# -------------------------------------------------------------------------------------
# Dataset of topography
# [[elevation0, distance0],[elevation1, distance1],[elevation2, distance2]...]
topography_dataset_distance = [0,12.5,100,112.5,177] # km
topography_dataset_elevation = [1302,1932,514,1234,309] # meters
topography_dataset_distance = [round(distance) for distance in topography_dataset_distance]
# Create a list of lists where each sublist corresponds to the elements at the same index
topography_dataset = [[distance, elevation] for distance, elevation in zip(topography_dataset_distance, topography_dataset_elevation)]
print("TOPOGRAPHY DATASET : ", topography_dataset)
print("-------------------------------------------------------------------\n")
print("-------------------------------------------------------------------")
print("*******************************************************************")
# -----------------------------------
# Simulation Constants
# -----------------------------------
if (simulation_status == 1):
# initial_SoC = 60
# station = [20, 101]
station_list = [50, 101], [54, 110]
# list_with_verified_distances = list_with_verified_distances[0:50]
print(initial_values)
# -----------------------------------
# # for every pair of Charging Station
for station in list_with_verified_distances:
# for station in station_list:
print("\n")
print("----------------------------------------------------------------------------------------------------------------------")
print("STATION : ", station)
ending_soc_cumulation = 0
anxietyLevelFrequency = [0, 0, 0, 0, 0, 0, 0, 0, 0]
charge_count = 0
stranded_rider_count = 0
unhandled_cases = 0
# for every random SoC
for initial_SoC in initial_values[0]:
print("*****************")
print("INITIAL SOC : ", initial_SoC)
present_SoC = initial_SoC
total_distance_travelled = 0
stranded_rider_breakout_flag = 0
# for every section of the topography
for i in range(len(topography_dataset) - 1):
distance_travelled_in_each_section = 0
# print("-------------------------------------------------------------------")
# print("Section's Starting Point(km) and Elevation(m) : ", topography_dataset[i][0], topography_dataset[i][1])
# print("Section's Ending Point(km) and Elevation(m) : ", topography_dataset[i+1][0], topography_dataset[i+1][1])
# print("-------------------------------------------------------------------")
# Identify if elevation profile is uphill or downhill
if (topography_dataset[i][1] < topography_dataset[i+1][1]):
section_elevation_profile = UPHILL
SoC_degradation_factor = uphill_degradation_factor
elif (topography_dataset[i][1] > topography_dataset[i+1][1]):
section_elevation_profile = DOWNHILL
SoC_degradation_factor = downhill_degradation_factor
elif (topography_dataset[i][1] == topography_dataset[i+1][1]):
section_elevation_profile = PLAIN
SoC_degradation_factor = plain_terrain_degradation_factor
# Distance of the route section
section_distance = topography_dataset[i+1][0] - topography_dataset[i][0]
# print("Section_distance : ", section_distance)
# print("Elevation difference : ", topography_dataset[i+1][1] - topography_dataset[i][1])
# print("SoC_degradation_factor : ", SoC_degradation_factor, "UPHILL" if(SoC_degradation_factor == uphill_degradation_factor) else "DOWNHILL" if(SoC_degradation_factor == downhill_degradation_factor) else "PLAIN")
# print("-------------------------------------------------------------------")
# When the rider hasn't reached the section_destination
while (distance_travelled_in_each_section < section_distance):
if ((total_distance_travelled in station) and (present_SoC <= threshold_SoC_where_charging_starts) and (present_SoC >= stranded_threshold_SoC)):
# Vehicle charged to 100%
print("-------------------------")
print(f"<< Recharged at distance {total_distance_travelled} km with SoC {present_SoC}!! >>")
print("-------------------------")
# Calculate Anxiety Level
print(present_SoC)
# anxietyLevelFrequency = Calculate_Anxiety_Level(present_SoC)
if (present_SoC > 45 and present_SoC <= 50):
anxietyLevelFrequency[0] += 1
elif (present_SoC > 40 and present_SoC <= 45):
anxietyLevelFrequency[1] += 1
elif (present_SoC > 35 and present_SoC <= 40):
anxietyLevelFrequency[2] += 1
elif (present_SoC > 30 and present_SoC <= 35):
anxietyLevelFrequency[3] += 1
elif (present_SoC > 25 and present_SoC <= 30):
anxietyLevelFrequency[4] += 1
elif (present_SoC > 20 and present_SoC <= 25):
anxietyLevelFrequency[5] += 1
elif (present_SoC > 15 and present_SoC <= 20):
anxietyLevelFrequency[6] += 1
elif (present_SoC > 10 and present_SoC <= 15):
anxietyLevelFrequency[7] += 1
elif (present_SoC >= 5 and present_SoC <= 10):
anxietyLevelFrequency[8] += 1
print(anxietyLevelFrequency)
present_SoC = 100
charge_count += 1
elif (present_SoC < stranded_threshold_SoC):
# User is stranded here
stranded_rider_count += 1
print("-------------------------")
print(f"<< User stranded at distance {total_distance_travelled} km with SoC {present_SoC}!! >>")
print("-------------------------")
stranded_rider_breakout_flag = 1
overall_stranded_rider += 1
break
else:
unhandled_cases += 1
present_SoC += SoC_degradation_factor
distance_travelled_in_each_section += 1
total_distance_travelled += 1
# print("---------------")
# print("AT SOC : ", present_SoC)
# print("TOTAL DISTANCE : ", total_distance_travelled)
# print("DISTANCE IN THE SECTION : ", distance_travelled_in_each_section)
if (stranded_rider_breakout_flag):
break
# present_SoC at every end of the section
# print("Ending SoC at the end of the section : ", present_SoC)
# ending_SoC at the end of one way trip
if (stranded_rider_breakout_flag == 0):
ending_soc_cumulation += present_SoC
print("Final ending SoC at the end of the whole trip : ", present_SoC)
print("Anxiety levels in a list : ", anxietyLevelFrequency)
print("CHARGE COUNT : ", charge_count)
print("STRANDED RIDER COUNT : ", stranded_rider_count)
print("*****************")
print("\n")
i = 1
summ = 0
for _value in anxietyLevelFrequency:
summ = summ + _value * i
i += 1
if (charge_count != 0):
average_anxiety_level = summ / charge_count
average_ending_soc = ending_soc_cumulation / charge_count
print("CHARGE COUNT : ", charge_count)
print("STRANDED RIDER COUNT : ", stranded_rider_count)
# print("UNHANDLED CASES : ", unhandled_cases)
# print("TOTAL CASES : ", charge_count + stranded_rider_count + unhandled_cases)
print("Average Anxiety Level : ", average_anxiety_level)
print("Average Ending SoC : ", average_ending_soc)
# Anxiety Average dictionary:
Anxiety_Avg_dict.update({
tuple(station) : [average_anxiety_level, average_ending_soc]
})
else:
print("Average Anxiety Level : ALL USERS STRANDED")
print(Anxiety_Avg_dict)
# -------------------------------------------------------------------------------------
# TOP 10 SETS OF THREE WITH LEAST AVERAGE ANXIETY LEVELS
# -------------------------------------------------------------------------------------
print("AnxietyLevelFrequency ", anxietyLevelFrequency)
data = Anxiety_Avg_dict
anxLevelList = []
sortedDict = {}
minKey = 0
for i in range(10):
minAnxTemp = 200
for key, val in data.items():
# print(key,val)
if val[0] < minAnxTemp:
minAnxTemp = val[0]
minKey = key
minVal = val
del data[(minKey)]
minVal[0] = round(minVal[0], 2)
minVal[1] = round(minVal[1], 2)
sortedDict.update({minKey: minVal})
print("Sorted Top 10: ")
print(sortedDict)
print("TOTAL STRANDED RIDERS : ", overall_stranded_rider)
overall_data = []
for value1, value2 in sortedDict.items():
current_temp_list = []
for i in range(len(value1)):
print(value1[i])
current_temp_list.append(value1[i])
current_temp_list.append(value2[0])
current_temp_list.append(value2[1])
overall_data.append(current_temp_list)
print(overall_data)
# open the file in the write mode
f = open('ChargingStation_csv/test__output.csv', 'w')
# create the csv writer
writer = csv.writer(f)
# write a row to the csv file
writer.writerows(overall_data)
# close the file
f.close()
print("\n")
print(overall_data)
# if (present_SoC > leastSoC_before_getting_stranded and present_SoC <= distance_where_charging_starts):
# for i in range(number_of_charging_stations):
# if (checkpointIndex == i):
# checkpointBased_Charging_Number_Count[i] += 1
# if (present_SoC > 45 and present_SoC <= 50):
# anxietyLevelFrequency[0] += 1
# elif (present_SoC > 40 and present_SoC <= 45):
# anxietyLevelFrequency[1] += 1
# elif (present_SoC > 35 and present_SoC <= 40):
# anxietyLevelFrequency[2] += 1
# elif (present_SoC > 30 and present_SoC <= 35):
# anxietyLevelFrequency[3] += 1
# elif (present_SoC > 25 and present_SoC <= 30):
# anxietyLevelFrequency[4] += 1
# elif (present_SoC > 20 and present_SoC <= 25):
# anxietyLevelFrequency[5] += 1
# elif (present_SoC > 15 and present_SoC <= 20):
# anxietyLevelFrequency[6] += 1
# elif (present_SoC > 10 and present_SoC <= 15):
# anxietyLevelFrequency[7] += 1
# elif (present_SoC > 5 and present_SoC <= 10):
# anxietyLevelFrequency[8] += 1
# present_SoC = full_charge_value
# elif (present_SoC <= leastSoC_before_getting_stranded):
# total_strandedRiderCount += 1
# for i in range(number_of_charging_stations):
# if (checkpointIndex == i):
# checkpointBased_strandedRiderCount[i] += 1
# discard_set = 1
# break
# distance_travelled += 1
# present_SoC -= 1
# if (discard_set == 1):
# break
# ending_SoC_list.append(present_SoC)
# for elevation_variation_distance, topography_dataset_elevation in topography_dataset:
# print(elevation_variation_distance, topography_dataset_elevation)
# # # -------------------------------------------------------------------------------------
# # # FILTER OUT STRANDED RIDERS FROM THE VERIFIED SET
# # # -------------------------------------------------------------------------------------
# result_setofThree = {}
# Anxiety_Avg_dict = {}
# counter = 0
# # list_with_verified_distances = [[25, 6, 114, 158]]
# # 25 64 114 158
# for _set_of_three in list_with_verified_distances:
# discarded_list_count = 0
# anxietyLevelFrequency = [0, 0, 0, 0, 0, 0, 0, 0, 0]
# total_strandedRiderCount = 0
# ending_SoC_list = []
# total_number_of_charges = 0
# discard_set = 0
# checkpointBased_Charging_Number_Count = []
# for i in range(number_of_charging_stations):
# checkpointBased_Charging_Number_Count.append(0)
# checkpointBased_strandedRiderCount = []
# for i in range(number_of_charging_stations):
# checkpointBased_strandedRiderCount.append(0)
# chargingStationCheckpoints = _set_of_three
# counter = 0
# for initial_SoC in initial_values:
# distance_travelled = 0
# counter += 1
# for trip_number in total_number_of_trips:
# if(trip_number % 2 == 0):
# present_SoC = initial_SoC
# # When the rider hasn't reached the destination
# while (distance_travelled < total_distance_in_one_trip):
# if (distance_travelled in chargingStationCheckpoints):
# checkpointIndex = chargingStationCheckpoints.index(distance_travelled)
# if (present_SoC > leastSoC_before_getting_stranded and present_SoC <= distance_where_charging_starts):
# for i in range(number_of_charging_stations):
# if (checkpointIndex == i):
# checkpointBased_Charging_Number_Count[i] += 1
# if (present_SoC > 45 and present_SoC <= 50):
# anxietyLevelFrequency[0] += 1
# elif (present_SoC > 40 and present_SoC <= 45):
# anxietyLevelFrequency[1] += 1
# elif (present_SoC > 35 and present_SoC <= 40):
# anxietyLevelFrequency[2] += 1
# elif (present_SoC > 30 and present_SoC <= 35):
# anxietyLevelFrequency[3] += 1
# elif (present_SoC > 25 and present_SoC <= 30):
# anxietyLevelFrequency[4] += 1
# elif (present_SoC > 20 and present_SoC <= 25):
# anxietyLevelFrequency[5] += 1
# elif (present_SoC > 15 and present_SoC <= 20):
# anxietyLevelFrequency[6] += 1
# elif (present_SoC > 10 and present_SoC <= 15):
# anxietyLevelFrequency[7] += 1
# elif (present_SoC > 5 and present_SoC <= 10):
# anxietyLevelFrequency[8] += 1
# present_SoC = full_charge_value
# elif (present_SoC <= leastSoC_before_getting_stranded):
# total_strandedRiderCount += 1
# for i in range(number_of_charging_stations):
# if (checkpointIndex == i):
# checkpointBased_strandedRiderCount[i] += 1
# discard_set = 1
# break
# distance_travelled += 1
# present_SoC -= 1
# if (discard_set == 1):
# break
# ending_SoC_list.append(present_SoC)
# elif(trip_number % 2 == 1):
# present_SoC = initial_SoC
# distance_travelled = total_distance_in_one_trip
# # When the rider hasn't reached the destination
# while (distance_travelled <= total_distance_in_one_trip and distance_travelled > 0):
# if (distance_travelled in chargingStationCheckpoints):
# checkpointIndex = chargingStationCheckpoints.index(distance_travelled)
# if (present_SoC > leastSoC_before_getting_stranded and present_SoC <= 50):
# for i in range(number_of_charging_stations):
# if (checkpointIndex == i):
# checkpointBased_Charging_Number_Count[i] += 1
# if (present_SoC > 45 and present_SoC <= 50):
# anxietyLevelFrequency[0] += 1
# elif (present_SoC > 40 and present_SoC <= 45):
# anxietyLevelFrequency[1] += 1
# elif (present_SoC > 35 and present_SoC <= 40):
# anxietyLevelFrequency[2] += 1
# elif (present_SoC > 30 and present_SoC <= 35):
# anxietyLevelFrequency[3] += 1
# elif (present_SoC > 25 and present_SoC <= 30):
# anxietyLevelFrequency[4] += 1
# elif (present_SoC > 20 and present_SoC <= 25):
# anxietyLevelFrequency[5] += 1
# elif (present_SoC > 15 and present_SoC <= 20):
# anxietyLevelFrequency[6] += 1
# elif (present_SoC > 10 and present_SoC <= 15):
# anxietyLevelFrequency[7] += 1
# elif (present_SoC > 5 and present_SoC <= 10):
# anxietyLevelFrequency[8] += 1
# present_SoC = full_charge_value
# elif (present_SoC <= leastSoC_before_getting_stranded):
# total_strandedRiderCount += 1
# for i in range(number_of_charging_stations):
# if (checkpointIndex == i):
# checkpointBased_strandedRiderCount[i] += 1
# break
# distance_travelled -= 1
# present_SoC -= 1
# ending_SoC_list.append(present_SoC)
# if (discard_set == 1):
# break
# for i in range(number_of_charging_stations):
# total_number_of_charges = total_number_of_charges + checkpointBased_Charging_Number_Count[i]
# for i in range(number_of_charging_stations):
# if (checkpointBased_Charging_Number_Count[i] == 0):
# discarded_list_count += 1
# # if (total_strandedRiderCount == 0 and discarded_list_count == 0):
# if (discarded_list_count == 0):
# averageEndingSoC = sum(ending_SoC_list) / len(ending_SoC_list)
# i = 1
# summ = 0
# for _value in anxietyLevelFrequency:
# summ = summ + _value*i
# i += 1
# # Anxiety Average dictionary:
# Anxiety_Avg_dict.update({
# tuple(_set_of_three) : [(summ / total_number_of_charges), averageEndingSoC]
# })
# print("List before filtration : ", len(list_with_verified_distances))
# print("List after filtration : ", len(Anxiety_Avg_dict))
# # print("List after filtration : ", (Anxiety_Avg_dict))
# # # # -------------------------------------------------------------------------------------
# # # # TOP 10 SETS OF THREE WITH LEAST AVERAGE ANXIETY LEVELS
# # # # -------------------------------------------------------------------------------------
# print("AnxietyLevelFrequency ", anxietyLevelFrequency)
# data = Anxiety_Avg_dict
# anxLevelList = []
# sortedDict = {}
# minKey = 0
# for i in range(10):
# minAnxTemp = 200
# for key, val in data.items():
# # print(key,val)
# if val[0] < minAnxTemp:
# minAnxTemp = val[0]
# minKey = key
# minVal = val
# del data[(minKey)]
# minVal[0] = round(minVal[0], 2)
# minVal[1] = round(minVal[1], 2)
# sortedDict.update({minKey: minVal})
# print("Sorted Top 10: ")
# print(sortedDict)
# overall_data = []
# for value1, value2 in sortedDict.items():
# current_temp_list = []
# for i in range(len(value1)):
# print(value1[i])
# current_temp_list.append(value1[i])
# current_temp_list.append(value2[0])
# current_temp_list.append(value2[1])
# overall_data.append(current_temp_list)
# print(overall_data)
# # open the file in the write mode
# f = open('ChargingStation_csv/test_output.csv', 'w')
# # create the csv writer
# writer = csv.writer(f)
# # write a row to the csv file
# writer.writerows(overall_data)
# # close the file
# f.close()
# print("\n")
# print(overall_data)
# checkpointIndex = station.index(distance_travelled)