
1

Sam Ross

BEng (Hons) Final Year Project Report

Smart Wireless Sensor

April 2023

2

Abstract

This project aims to research, design, and develop an embedded smart wireless sensor solution that

can augment individual three-phase system Digital Fault Recorders (DFRs) to solve their main two

problems – the DFR recordings and other useful near-real-time measurements/metrics cannot be

accessed/retrieved remotely and secondly, it may be electrically impossible to install DFRs in certain

substation scenarios due to their hardwiring requirements and size constraints.

The ESP32-DevKitC-32UE MCU was concluded as the optimal prototyping platform for the project. A

range of other components were acquired, including two ADS1015 ADCs for taking voltage readings,

a MicroSD card breakout for storing the useful live measurements, a GPS breakout for interrupt

timer disciplining and a secondary ESP32 for handling external communications. Two signal

conditioning circuits were then designed and engineered to attenuate the secondary-side voltage

(VT) and current (CT) signals down to 1VRMS, which were then fed into the two ADCs. The 1200sps

readings taken by the ADCs are then run through various validated algorithms to calculate the 12

final useful live measurements. These 12 near-real-time measurements are then displayed on the

secondary ESP32 Wi-Fi Access Point & Station Web Servers, along with being sent through a backend

pipeline to a cloud-hosted React JS website and stored in cloud data storage. The true frequency and

VRMS algorithms were validated through a simulation in MATLAB and found to be over 33 times

more accurate than originally required (+-0.3mHz and +-0.3mV, respectively).

3

Table of Contents

Smart Wireless Sensor .. 1

Abstract ... 2

Specification .. 7

Project objectives .. 7

Acknowledgements ... 8

Declaration of originality .. 8

List of Figures .. 9

Introduction .. 13

Introduction Overview .. 13

Background ... 13

What are electrical faults on power lines and what causes them? .. 13

Why are electrical faults undesirable?.. 13

How are faults detected and dealt with in power systems? .. 14

Modern industry DFR systems .. 14

Flaws of both DFR systems ... 14

Smart Wireless Sensor solution to solve DFR problems ... 15

Smart Wireless Sensor COTS Platform solution .. 16

6 functionalities required of the final COTS Platform Circuit, as shown in Figure 1......................... 16

Signal Conditioning ... 17

Choosing the optimal COTS platform ... 20

The best-suited single-board computer (SBC) option... 20

The best-suited microcontroller option .. 20

Best MCU vs best SBC – (ESP32 vs Raspberry Pi Zero 2 W) .. 21

ESP32 Devkit model choice ... 21

Choice of breakout boards .. 23

8-Channel Analogue to Digital Converter Breakout ... 23

MicroSD Card Breakout ... 23

GPS Breakout .. 23

Plan of action for development .. 24

ESP32 Development .. 25

ESP32 + ADC Breakout .. 25

ESP32 + MicroSD Card Breakout ... 26

ESP32 + ADC Breakout + MicroSD Card Breakout... 27

4

Circuit Diagram ... 29

ADC Sampling Rate Problem ... 30

Future work to be completed in semester 2 .. 31

Semester 2 .. 33

ESP32 + GPS Breakout ... 33

GPS breakout for ADC timing disciplining ... 34

ADS1015 for 1200sps readings ... 35

ESP32 Input Analog Signal .. 37

True Frequency ... 38

VRMS Algorithm .. 42

Circular Buffer Size .. 44

Frequency and VRMS in action ... 45

Frequency and VRMS Algorithms Validation in MATLAB ... 46

MATLAB Sine Wave Population .. 47

Midpoint ... 51

Oral Presentation and Demo .. 52

Two ADS1015 ADCs ... 54

External Communications – Introducing a slave ESP32 .. 55

MicroSD Card writing from the slave ESP32 ... 61

External Communications Overview ... 61

External Communications First Half – Simultaneous Access Point and Station Wi-Fi Web Servers . 62

External Communications Second Half – Cloud website and storage flow 66

React JS Website .. 68

Google Cloud Platform Bucket Storage ... 70

MicroSD Card Smart Folder Structure and File Names ... 70

GPS breakout for ADC timing disciplining - Solution .. 74

Signal Conditioning Circuit Problem Fix .. 75

Signal Conditioning Physical Circuit .. 79

Voltage Scaling .. 82

Current .. 83

Current Scaling .. 88

Power and Energy Consumption .. 89

Battery-powered Solution... 90

Fault Detection Measurement .. 92

Final Circuit ... 93

Semester 1 Progress Gantt Chart .. 94

5

Semester 2 Predicted Progress Gantt Chart ... 95

Semester 2 Recorded Progress Gantt Chart ... 96

Management – Reflection and Analysis Against Plan ... 97

Individual tasks analysis .. 97

Redundant tasks and uncompleted tasks ... 99

Summary/Overview of the Smart Wireless Sensor Management .. 100

Possible Future Work .. 100

Contribution – Comparison against specification ... 102

Specification Objectives .. 102

Required Specification Objectives Table ... 102

Bonus Objectives Tables (Not required by BEng specification) .. 103

Discussion.. 105

Conclusion ... 106

Appendices .. 108

Appendix 1: 4-channel ADC measurements storing to MicroSD Card C++ program written in

semester 1... 108

Appendix 2: Arduino MCU Comparison Table .. 111

Appendix 3: Raspberry Pi SBC Comparison Table ... 112

Appendix 4: Other Platforms Specifications ... 113

Teensy 4.1 Development Board [29] .. 113

ESP8266 (ESP32) [30] .. 113

ESP32 [31] ... 113

BeagleBone AI [32] .. 113

Appendix 5: Espressif ESP32-DevKitC Specifications [33] ... 114

Appendix 6: Adafruit ADS1115 ADC Breakout Specifications [34] ... 115

Appendix 7: Adafruit MicroSD Card Breakout Board+ Specifications [35] 116

Appendix 8: U-Blox Neo-6m GPS Breakout Board Specifications [36] ... 117

Appendix 9: Final ESP32 Master C++ Code for ADC Readings, GPS, etc. .. 118

Appendix 10: Final ESP32 Slave C++ Code for storing to MicroSD card, hosting station and AP web

server, sending data to Spring Boot application pipeline for cloud website and storage, etc. 125

Appendix 11: MATLAB simulation to validate the true frequency and vrms algorithms that are run

on the master ESP32 ... 132

Appendix 12: Backend Spring Boot Java Application .. 134

SensorController.java file .. 134

SensorData.java file .. 136

Appendix 13: React JS Website Application .. 137

6

index.js – The main ReactJS JavaScript file ... 137

index.html ... 143

index.css .. 144

References .. 146

7

Specification

The ongoing operation of interconnected power systems is established by real-time measurement of
network parameters, typically line voltage and current, frequency, power, protection battery voltage
and current and digital contacts, and other quantities including cable temperatures. Measurements
are typically derived from sensors, for example voltage and current transformers (VT and CT),
embedded on the network normally on the secondary side (protection level) of transmission or
distribution transformers. Traditionally embedded sensors are hard-wired and coupled to protection
and fault-monitoring instrumentation using copper and twisted-pair wiring. Innovation in sensor
technologies has explored alternative methods of coupling, including optical-fibres and wireless
sensors.

This project will investigate wireless sensing and develop a hardware and software approach to
measure low-voltage and current quantities by way of a proof-of-concept solution. The project will
require use of traditional VT and CT sensors coupled by wireless transmission (Bluetooth/Wi-Fi) to a
receiver (e.g. a PC or mobile phone) to send measurements in near-real-time for display and storage.
The solution will be used to evaluate the potential for wireless sensing as a basis for smart metering
(and billing) for single and potentially three-phase systems. Project outcomes may form a basis for
determining energy consumption or assessing quality of supply. The solution may be implemented
on a COTS (commercial-off-the-shelf) small-footprint platform (e.g. Raspberry Pi/Arduino/Teensy/Pi
Zero) or suitable alternative platform. Operating scenarios will typically include: remote
measurement of voltage, current, harmonics, transients, noise, and incomplete data. The project will
require excellent knowledge of C/C++ programming, analogue/digital hardware, basic digital signal
processing, wireless communications and power engineering.

Project objectives

Objectives

1. Investigate power system measurement and wireless sensing
2. Design a near-real-time solution in hardware and software to measure low

voltage/current signals
3. Develop appropriate hardware/host software for wireless PC/laptop/GUI control and

interfacing
4. Write C/C++ software to implement the solution for near-real-time measurement
5. Write C/C++ software to implement near-real-time determination of other quantities

(e.g. power/energy)
6. Evaluate and test the smart sensors with different operating scenarios

Bonus MEng Extension
1. Develop appropriate hardware and software for bi-directional sensor measurement

interfacing
2. Develop a broad range of operating scenarios with different voltage/current attributes for

smart metering
3. Implement and evaluate final solution with simulated/measured/laboratory signals

8

Acknowledgements

I would like to express my special thanks of gratitude to Dr. Littler for his able guidance and support

in completing this project.

I would also like to extend my gratitude to Tony Boyle for his help with securing the required

components for this project.

Declaration of originality

I declare that this report is my original work except where stated.

Sam Ross

01/04/2023

9

List of Figures

Figure 1 - Block diagram to represent the requirements of the COTS solution that will facilitate the

power supply quality monitoring and external communications ... 16

Figure 2 - Signal conditioning gain equation .. 17

Figure 3 - Schematic diagram of the inverting op-amp attenuation circuit. .. 17

Figure 4 - Voltage divider equation for calculating op-amp r1 value ... 18

Figure 5 - Grapher image of the transient waveform produced by the schematic diagram in Figure 4.

This grapher image compares the maximum Vout value to the maximum Vin value. 19

Figure 6 - Grapher image of the transient waveform produced by the schematic diagram in Figure 4.

This grapher image compares the maximum Vout value to the minimum Vout value. 19

Figure 7 - Bill of Materials order that was sent on 28th November 2022 ... 23

Figure 8 - Updated block diagram of the COTS platform and breakout boards, along with each

breakout’s communication format ... 24

Figure 9 - Flow diagram order for development of ESP32 platform and breakouts 24

Figure 10 - Screenshot of the Arduino IDE Serial Monitor tool, displaying the ADC measurements for

the 4 channels ... 25

Figure 11 - Snippet of the program code to demonstrate how the writing and appending of text files

on the MicroSD works ... 26

Figure 12 - Screenshot to show the contents of the MicroSD card after the program had been run ... 26

Figure 13 - Photo of the ESP32 + ADC Breakout + MicroSD Card Breakout circuit used to store the 4

analogue input measurements on the MircoSD card ... 27

Figure 14 - Screenshot to show the content of the MicroSD card after the program had been run 28

Figure 15 - A hand drawn circuit diagram for the ESP32 + ADC + MicroSD circuit that was used

previously in Figure 13 .. 29

Figure 16 - Nyquist's Theorem sampling rate equation for UK mains frequency of 50Hz 30

Figure 17 - Line of code to initialise the secondary serial, for the GPS breakout UART communications

 .. 33

Figure 18 - NMEA sentence response sent over UART to the ESP32, along with useful extracted

metrics ... 33

Figure 19 - Serial Monitor output of the GPS ADC benchmark program .. 34

Figure 20 - ESP32, ADS1115 and NEO-6M Fritzing circuit diagram .. 34

Figure 21 - C++ code used to set to ADS1015 sampling rate to 3300sps .. 35

Figure 22 - Serial monitor output of the final ADC benchmark speed test ... 36

Figure 23 - C++ code used to set up the ESP32 interrupt timer at a sampling rate of 1200Hz (833us

time period) ... 36

Figure 24 - Serial monitor output of the ADC sampling rate when the interrupt timer is set to 1200sps

 .. 37

Figure 25 - ESP32 code that utilises the DacESP32 library to setup a DAC cosine waveform output (of

supposed frequency 50Hz) to pin 25 ... 37

Figure 26 - Serial plotter output of the ESP32 51Hz DAC waveform being read at 1200sps by the ADC

 .. 38

Figure 27 - Analogue waveform with annotations pointing to the crucial true zero points of a

particular cycle in the wave .. 39

Figure 28 - Analogue waveform with important true zero crossing sample points highlighted........... 39

Figure 29 - Sampling pair voltage scenario that the algorithm checks for ... 39

Figure 30 - Extrapolated triangle diagram of the two zero crossing points ... 40

10

Figure 31 - Trigonometry equation used to determine the exact time that the zero crossing occurs at

 .. 40

Figure 32 - ESP32 C++ code for the true frequency algorithm .. 41

Figure 33 - Three possible equations for calculated Vpeak .. 42

Figure 34 - VRMS equation ... 42

Figure 35 - Sliding window visualisation ... 43

Figure 36 - VRMS sliding window algorithm ESP32 C++ code ... 43

Figure 37 - VRMS to Vpeak equation .. 44

Figure 38 - Serial plotter waveform of the ADC readings, VRMS and frequency while the amplitude

and frequency are being reduced ... 45

Figure 39 - MATLAB sine wave frequency simulation values .. 46

Figure 40 - Rough frequency time plot of the expected varying frequency input analogue sine wave 46

Figure 41 - MATLAB code used to construct the input MATLAB analogue sine wave for the simulation

 .. 47

Figure 42 - MATLAB code for the VRMS and frequency algorithms ... 48

Figure 43 - MATLAB output waveform zoomed (on y-axis) of the frequency section 49

Figure 44 - MATLAB output waveform of the algorithm validation simulation program..................... 49

Figure 45 - MATLAB output waveform zoomed (on y-axis) of the VRMS section 50

Figure 46 - Serial plotter showcasing the live midpoint tracking .. 51

Figure 47 - Presentation table of contents slide ... 52

Figure 48 - Function generator and circuit used in the oral presentation demo 53

Figure 49 - Oral presentation demo circuit diagram ... 53

Figure 50 - Serial monitor output for I2C Scanner... 54

Figure 51 - ESP32 code to initialise the ADCs .. 55

Figure 52 - Flowchart of the first proposed master slave architecture ... 56

Figure 53 - Communication protocol comparison table .. 57

Figure 54 - Fritzing circuit diagram for connecting the ESP32 master and slave via I2C. 58

Figure 55 - Second proposed external communications architecture ... 58

Figure 56 - Arduino IDE Serial Monitor output of the I2C Scanner program .. 59

Figure 57 - I2C transfer code written for the master ESP32 .. 60

Figure 58 - Flowchart for the ESP32 as a station .. 62

Figure 59 - Flowchart for the ESP32 as an access point .. 62

Figure 60 - ESP32 server setup code ... 63

Figure 61 - Command line output after the soft AP IP address has been pinged successfully 63

Figure 62 - Some of the AP and station web server setup code .. 64

Figure 63 - Laptop connected directly to the ESP32 Access Point ... 64

Figure 64 - Laptop connected to the same local Wi-Fi network that the ESP32 was connected to 65

Figure 65 - the ESP32 successfully hitting the ping endpoint in the backend Spring Boot application . 66

Figure 66 - Architecture that was decided on for the cloud data flow from the ESP32 through to the

cloud web-hosting and database storage ... 67

Figure 67 - The Java code for the getValues() endpoint in the Spring Boot application 67

Figure 68 – HTTP response returned from GCP Backend ping endpoint ... 68

Figure 69 - React website in live action on Google App Engine hosting ... 69

Figure 70 – React website demo mode ... 69

Figure 71 - Full folder and file structure of the MicroSD card ... 71

Figure 72 - Screenshot of the 12 useful live measurements being stored one of the MicroSD card text

files .. 71

Figure 73 – ESP32 ntp server setup code .. 72

11

Figure 74 – ESP32 code used to create the skeleton pre-formatted string for the 12 useful live

measurements .. 72

Figure 75 - Code used for the time and microSD card functionality in the main loop of the slave ESP32

 .. 73

Figure 76 - The line of code that initialises the GPS breakout .. 74

Figure 77 - GPS interrupt syncing code ... 74

Figure 78 - Serial Monitor output of the GPS interrupt sync testing ... 75

Figure 79 - Semester 1 op-amp circuit .. 75

Figure 80 - The transient output waveforms produced by the Figure 79 circuit 76

Figure 81 - Voltage divider equation ... 76

Figure 82 - Fixed voltage divider equation .. 77

Figure 83 - Newly-fixed inverting op-amp circuit with the correct voltage divider circuit containing the

5.17kΩ R1 resistor ... 77

Figure 84 - The transient waveform output of the fixed op-amp circuit shown in Figure 83 78

Figure 85 - Non inverting op-amp input equation .. 78

Figure 86 - Circuit diagram of the op-amp circuit wired up to the ESP32 circuit 79

Figure 87 – Physical op-amp circuit hooked up to ADC 1, as shown in circuit diagram in Figure 86 80

Figure 88 - Rapid Electronics 12V DC power supply that was used for this circuit 81

Figure 89 - Serial Plotter output waveform of the resultant signal being fed into the ADC from the

inverting op-amp circuit .. 81

Figure 90 - Code used to scale the voltage value to the 11kV primary side simulated value 82

Figure 91 - Voltage divider equation to determine function generator resistor value for split 83

Figure 92 - Multisim circuit schematic diagram for the voltage and current op-amp attenuation

circuits being fed the 5V function generator signal .. 84

Figure 93 - Transient waveform outputted by the circuit shown in Figure 92 85

Figure 94 - Fritzing circuit to represent the final smart wireless sensor circuit, which includes the full

double op-amp attenuation circuit ... 86

Figure 95 - Serial Plotter output taken for the 1200sps ADC readings for the outputs from the voltage

op-amp circuit and the simulated current op-amp circuit .. 87

Figure 96 – Serial monitor screenshot of voltage and current .. 88

Figure 97 – Scaling equation ... 88

Figure 98 – Power equation .. 89

Figure 99 - Energy equation .. 89

Figure 100 - Power C++ code ... 89

Figure 101 - Energy C++ code .. 89

Figure 102 - 18 metrics calculated by the master ESP32 .. 89

Figure 103 - ESP32 portable battery bank circuit ... 90

Figure 104 - 8 x AA battery holder to achieve the 12V solution .. 91

Figure 105 – Fault detection ESP32 code .. 92

Figure 106 - the final smart wireless sensor circuit – with the addition of the VT and CT transformers

 .. 93

Figure 107 - Gantt chart to show the project progress made in semester 1 .. 94

Figure 108 - Gantt chart to show the project progress that is expected to be made in semester 2 95

Figure 109 - Gantt chart to show the project progress that was actually made in semester 2 96

Figure 110 - Bonus Objectives Tables (Not required by BEng specification) 102

Figure 111 - MEng Bonus Objectives ... 103

Figure 112 - Further Bonus Objectives (only some listed) ... 103

12

Figure 113 - Table used for comparing the Arduino MCU models. The Arduino Nano RP2040 Connect

was found to be the most suited Arduino MCU for this project .. 111

Figure 114 - Table used for comparing the Raspberry Pi SBC models. The Raspberry Pi Zero 2 W was

found to be the most suited Raspberry Pi SBC for this project ... 112

Figure 115 - Photo to show the specifications and pinouts of the ESP32 devkit used in this project [33]

 .. 114

Figure 116 - Photo taken of the ADA ADS1115 ADC being used in the project prototype breadboard

circuitFigure 117 - Photo to show the specifications and pinouts of the ESP32 devkit used in this

project [33] .. 114

Figure 118 - Photo taken of the ADA ADS1115 ADC being used in the project prototype breadboard

circuit... 115

Figure 119 – Photo taken of the ADA MicroSD breakout being used in the project prototype

breadboard circuit ... 116

Figure 120 – Photo taken of the ADA MicroSD breakout that will be used in the project prototype

breadboard circuit ... 117

13

Introduction

Introduction Overview

In power substations, a single electrical fault can cause power outages that cause millions of pounds

worth of damage if not dealt with correctly. The circuit breaker/protection relay systems detect

when there is a fault on the line and provide alternative voltage support to maintain the required

voltage to the load. Digital fault recorders are used to record events before, during and after a

disturbance to figure out what has happened on the grid and they facilitate a post-fault analysis to

be made in order to make improvements to overall reliability. In Distributed DFR systems, the

individual DFRs around the plant are hardwired to a Data Concentrator via Serial or Digital

communications.

This architecture leads to two main flaws with DFRs. The DFR recordings and other useful live

measurements – such as the number of faults, voltage, current, energy consumption, power

consumption, etc. – can only be acquired by physically accessing the DFRs units themselves. This is

impractical and may even be physically impossible. Secondly, due to the large size of the DFRs and

their requirement for hardwired external communication connections, there may be scenarios

within a substation where it would be electrically impossible to physically place the DFRs without

breaching the electrical integrity of the system.

This project aims to develop an optimal hardware and software smart wireless sensor solution to

solve these two stated problems that individual DFRs have in a distributed DFR system.

This project researches into power systems and wireless sensing and then utilises this knowledge to

form the requirements needed for an optimal solution. Research is conducted into various platforms

and breakouts, which are then analysed and compared to determine the optimal embedded circuit

solution along with a signal conditioning attenuation circuit. The embedded circuit is then developed

and algorithms are written (and validated through simulation in MATLAB) to calculate the 12 final

useful near-real-time measurements, which are then made available to users via 4 different forms of

external communications.

Background

What are electrical faults on power lines and what causes them?
In electrical power systems, faults are any abnormal electrical currents. Faults on power

transmission lines are caused by anything that can cause conductors to clash and hence short circuit

(current maximises and voltage drops) e.g. strong winds, lightning, bird strike. [1]

Why are electrical faults undesirable?
In the scenario of an automated factory, undealt with faults on the power line would cause a voltage

drop in factory machines and hence would cause them to malfunction/shut down. This would result

in the whole factory line having to be reset, potentially costing millions. Therefore, it is crucial that

the faults are detected and dealt with accordingly as well as prevented in future.

14

How are faults detected and dealt with in power systems?
A Protection Relay (PR) and Digital Fault Recorder (DFR) are coupled to the secondary side

(protection level) of the transmission and distribution transformers, using copper and twisted-pair

wiring. [1]

The Protection Relay is a relay device that trips a circuit breaker when a fault is detected i.e. when

the voltage drops by a specified amount (e.g. voltage drops by 10%) or if the current increases by a

specified amount. Voltage support (e.g. using a Static VAR Compensator) will then be relied on to

supply additional power to the loads to ensure that the required voltage is maintained.

A Digital Fault Recorder is a multi-channel, Intelligent Electronic Device (IED) that uses

communications to retrieve fault, disturbance, and sequence of event records that are captured by

the protection relays distributed throughout a substation. [2]

DFRs have two main purposes:

• Recording of system events, such as faults – these can be analysed later in a “post mortem”

methodology to assess the performance of protection relays and circuit breakers during the

fault

• Monitoring of system protection performance and quality of supply

Modern industry DFR systems
DFR systems have evolved over time – the utility industry progressed from using a needle and paper

to more complex systems [3]. The utility industry is currently split between two types of DFR

systems: Distributed DFRs (DDFR) and Distributed Recording (Virtual DFR). [4]

Distributed DFRs involve having a separate DFR installed in each Protection Relay panel whereas

Distributed Recording makes use of the fault recording functionality that is already built into the

Protection Relays. Both of these systems are connected to some sort of Data Concentrator by means

of serial or digital communication, which is used to then collect, synchronise, and store the event

records [4].

A dedicated Distributed DFR system will be better at recording than a virtual DFR system (higher

sampling rate and resolution, etc.), but a virtual DFR system has a much lower installation cost.

Flaws of both DFR systems
For consistency, this project will talk about improving the individual DFR units in a DDFR system but

the same improvements can be made for the protection relay units in a Virtual DFR system.

As described earlier, both the DDFR and Virtual DFR systems must be hardwired to a Data

Concentrator by means of serial or digital communication. This leads to two flaws in both systems.

Problem 1 – Inaccessible Live Measurements

The DFR recordings and other useful live measurements – such as number of faults, voltage, current,

energy consumption, power consumption, etc. – can only be acquired by physically accessing the

DFR units (or protection relay units in Virtual DFR systems) themselves. This is extremely impractical

(especially in large substations) and it may even be physically impossible to access the individual

DFRs to acquire these near-real-time measurements.

15

Problem 2 – Breach of electrical integrity

Due to the size and mass of DFRs and their reliance on hardwiring for external communication, this

leads to scenarios where it would be electrically impossible to physically use DFRs for fault

recording. For example, putting in large DFRs up at the mastheads of transformers and hardwiring

them up will completely breach the electrical integrity of the system.

Smart Wireless Sensor solution to solve DFR problems
The high sampling rates, large memory capacity, flexible triggering, and improved datasets of

standalone DFRs make them the optimal solution for studying network performance and fault

analysis [4]. However, DFR systems have a couple of problems, as described. The DFR systems can

be augmented with a smart wireless sensor to provide solutions to these problems.

Easily accessible live measurements – Once a user comes within close enough proximity to the

sensor, the user will be able to read useful live measurements – such as number of faults, voltage,

current, energy consumption, power consumption, etc. – via wireless communications through the

platform wireless communications (Wi-Fi/BLE server). By using the sensor in combination with the

DFR, this will provide both accessible live measurements from the platform and optimal fault

analytics for later use from the DFR.

An electrically-safe solution – It’s a non-invasive solution, the voltage and current connections just

need to be connected with a clamp. The sensor is battery-powered, wireless, portable, and low

maintenance, hence making it the perfect solution to be clamped on almost anywhere that it would

be electrically impossible to do so with a DFR. [1] In these scenarios where it is electrically impossible

to use a DFR, the fault records produced by the smart wireless sensor will be adequate, although

they are inferior in terms of sampling and hence resolution for analysis, etc. compared to that of a

DFR. [5]

16

Smart Wireless Sensor COTS Platform solution

Augmenting DFRs with COTS small-footprint platforms should solve all the DFR problems previously

described. As an end goal, the platform should be able to asynchronously read the 8 analogue

channels from the 3-phase system for smart metering (and billing) then use wireless transmission

(Bluetooth/Wi-Fi) to a receiver (e.g. a PC or mobile phone) to send measurements in near-real-time

for display and storage. It should have some form of local storage for the readings too and the

samples should be taken in sync, regardless of the geolocation.

6 functionalities required of the final COTS Platform Circuit, as shown in Figure 1
Wi-Fi and Bluetooth: These wireless transmission forms are needed for wireless transmission of the

useful near-real-time measurements to nearby smart devices. If a Wi-Fi network is available, these

values could be transmitted via a local Wi-Fi/BLE server or even to cloud storage in future.

8 channel ADC: The 8 analogue inputs from the star 3-phase power system need to be

asynchronously measured so that faults can be detected and recorded. Useful live measurements

can be calculated and shared to users – such as voltage, current, number of faults, energy, and

power consumption.

MicroSD card: The useful ADC measurements and calculations will be stored on the microSD card.

GPS: Needed as a clock to discipline the interrupt timings. Works to 1PPS accuracy, regardless of the

geo-location

Battery: The platform should have a low enough realistic power consumption to run sufficiently on

external battery cells

Figure 1 - Block diagram to represent the requirements of the COTS solution that will
facilitate the power supply quality monitoring and external communications

17

Signal Conditioning
In a power station the secondary side of the distribution transformer can be expected to be around

110V [6]. 110V is much a greater potential difference than what a standard COTS Platform ADC

module can take as an analogue input. Most standard ADCs are unipolar and take analogue inputs of

a range between 0 – 5V roughly.

This means that the 3-phase AC voltage inputs will need attenuated down to between 0 – 5V

(depending on the ADC). Since the analogue inputs are AC waveforms, the inputs will also need to be

shifted so that both the positive portion and the negative portion of the transient wave fit within the

0 – 5V range. The midpoint of the waveform should sit at 2.5V so that the wave sits perfectly in the

center. The input signal is set at 1kHz for now – it will be set to the mains freq (50Hz) in semester 2.

The amplitude of the attenuated signal must be less than 2.5V and hence, a nice VRMS value of 1

would give a Vpeak value of sqrt(2) = 1.414V, which fits perfectly within the bounds.

To attenuate the analogue input signal down from 110V to 1.414V, an inverting op-amp circuit

would be the perfect choice. The resistor values can be worked out as follows:

𝐺𝑎𝑖𝑛 =
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
= −

𝑅𝑓

𝑅𝑖𝑛

𝐺𝑎𝑖𝑛 =
√2

110
=

1

𝑅𝑖𝑛

𝑅𝑖𝑛 =
110

√2

𝑅𝑖𝑛 = 77.78𝑘Ω ≈ 78𝑘Ω

Figure 2 - Signal conditioning gain equation

In Figure 3, shown below, the 78kΩ resistor is used for Rin and a 1KΩ resistor is used for Rfb, as

proven in the calculation previously. This theoretical 741 op-amp is being powered by positive and

negative 12V supplies.

Gain is negative for the inverting

op-amp as it produces a

negative output voltage

compared to the input due to it

being 180 degrees out of phase.

Rf set to 1kΩ as a baseline to

find value for R2 from there

Figure 3 - Schematic diagram of the inverting op-amp attenuation circuit.

18

To obtain the 2.5V offset as required for the ADC range, a voltage divider circuit was coupled to the

741 positive supply voltage so that 2.5V is being supplied to the non-inverting input of the 741 op-

amp. This will hence offset the output voltage by 2.5V. The resistor values needed for this voltage

divider circuit were worked out using the calculation, as shown below in Figure 4.

𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛
𝑅2

𝑅1 + 𝑅2

𝑉𝑜𝑢𝑡 (𝑅1 + 𝑅2) = 𝑉𝑖𝑛 × 𝑅2

𝑅1 =
𝑉𝑖𝑛 × 𝑅2

𝑉𝑜𝑢𝑡
− 𝑅2

𝑅1 =
12 × 1

2.5
− 1

𝑅1 = 3.80𝑘Ω

Figure 4 - Voltage divider equation for calculating op-amp r1 value

Shown below in Figures 5 and 6, are two grapher images of the transient waveforms outputted by

the schematic. The green line represents the AC waveform for Vin, which has a Vp of 110V. The blue

line represents the AC waveform for Vout which has a midpoint of 2.5V, a maximum voltage of 3.84V

(3sf), and a minimum voltage of 1.03V (3sf). This gives a Vpp value of 2.81 which is approximately 2 x

√2. Therefore, the schematic circuit output is as expected – it produces a Vout signal of Vpeak = √2

with an offset (and hence midpoint) of 2.5V. Figure 5 captures both the Vin and the Vout waveforms,

whereas Figure 6 is magnified on the y-axis to give a more clear view of the Vout waveform.

19

Figure 5 - Grapher image of the transient waveform produced by the schematic diagram in Figure 4. This grapher image
compares the maximum Vout value to the maximum Vin value.

Figure 6 - Grapher image of the transient waveform produced by the schematic diagram in Figure 4. This grapher image
compares the maximum Vout value to the minimum Vout value.

20

Choosing the optimal COTS platform
There does not exist a single COTS Platform on the market that has all of the 6 required

functionalities already built in. Therefore, external breakout boards can be used to facilitate any

needed functionality.

At a bare minimum, the platform must be powerful enough to process all the various inputs,

communications, calculations, and processes that will be needed as part of the project. It must also

have enough pins to support all the various inputs. To narrow down the platforms a bit further, it

would be ideal to use a board that already has Wi-Fi and Bluetooth connectivity built in. This is not

essential but is an added bonus as it reduces unnecessary complexities.

A crucial decision had to be made between using a microcontroller (MCU) or a single board

computer (SBC) for this project. The best-suited MCU and best-suited SBC were finalised upon and

then compared.

The best-suited single-board computer (SBC) option
Out of the Raspberry Pi SBC platforms, the Pi Zero 2 W was found to be the most suitable platform

for this project. This is thanks to its best-suited processing potential per size ratio (compared to the

other models), which will be able to handle all the inputs/processing/outputs required as part of this

project. It also includes a built-in MicroSD card module which is an added bonus as it would remove

the need for an external MicroSD card module.

The CPU in the Pi Zero 2 W is 5 times faster and has 40% faster single-core performance [7] than the

Pi Zero W so it would be worth the extra £7 to go for the Zero 2 W over the old model Zero W.

The comparison table of the different Raspberry Pi SBC model specifications can be seen in Appendix

3, Figure 114.

The best-suited microcontroller option
Microcontrollers from Arduino, Teensy, Espressif Systems, Beaglebones, and other manufacturers

were deeply reviewed. After thorough research, the best-suited MCU from Arduino came out to be

the Arduino Nano RP2040 Connect. Out of all the other manufacturers, the best microcontroller

came out the be the ESP32.

Both of these 2 microcontrollers would be great options for the project due to their extremely good

power/size ratio, however, there are a couple of key differences that set them apart:

• The Nano RP2040 has a slightly lower clock speed but it has a higher processing power due

to the latest ARM architecture

• The Nano RP2040 came out in 2021 compared to the ESP32 coming out in 2016. Therefore,

the ESP32 has extensive support available and is less buggy because of this

• The Nano RP2040 has a RAM of 264KB and ROM of 16MB compared to the ESP32 RAM

320KB and ROM 448KB

• ESP32 is much more power efficient – it also has ultra-low power management features

21

ESP32 is more suited to applications that require:

• Wi-Fi/BLE

• Some GPIOs

• Lower processing power

• Battery power source

Nano RP2040 is more suited to applications that require:

• Slightly higher processing power

• Multiple input peripherals

• Higher memory

• Wearable applications

Both of these MCUs have adequate processing power for this project and would make a great

platform choice. Overall, the ESP32 would be a more suitable MCU for the project due to its much

lower power consumption (which is crucial for this battery-powered sensor), extensive support

available since it has been out for 6 years, its lower cost, and the fact that it doesn’t have all the

unneeded sensors onboard such as the microphone, etc. [8]

The comparison table of the different Arduino model specifications can be seen in Appendix 2,

Figure 113.

Best MCU vs best SBC – (ESP32 vs Raspberry Pi Zero 2 W)
Both the ESP32 and Raspberry Pi Zero 2 W are the best possible MCU and SBC options respectively.

The ESP32 is a dual-core microcontroller that generally runs sequential code in a do-while loop

whereas the Pi Zero 2 is a quad-core general-purpose computer that runs under an operating system

(OS) and hence can have interrupts due to OS priority suspensions. The overlaying operating system

found in SBCs adds complexity but allows multiple tasks to be run at once due to the concurrent

nature, whereas the MCUs are mostly sequential in nature and are intended to run one program

repeatedly. [9]

To reduce complexities and to be as efficient as possible with available resources eg. battery power

– it would make sense to use the more powerful, complex, and resource-intensive SBCs only if it is

absolutely necessary i.e. if the MCU couldn’t handle the required load. Therefore after detailed

research, a powerful MCU such as the ESP32 should be more than capable of handling the ADC

sampling, Wi-Fi, BLE, MicroSD card storage, GPS interrupt timing syncing, etc. that is required by the

chosen platform. If one ESP32 is insufficient to handle all of these processes at once, a second ESP32

could be used in tandem, with one for ADC sampling and the other for the rest of the processes.

ESP32 Devkit model choice
ESP32 chips are created and developed by Espressif but a range of different companies produce

ESP32 devkits (using Espressif’s ESP32 chip) such as Adafruit, Sparkfun, and a range of other

companies [10]. Since Espressif actually create the ESP32 chip, a devkit directly developed by

Espressif was the best option for this project as it guarantees the best reliability, best

documentation, largest userbase, and hence will keep complexities to a minimum.

22

The ESP32-DevKitC-32UE (ESP32-WROOM-32UE) was the devkit of choice due to its ease of use,

built-in pinout, and low footprint – which is important for preserving battery life. The UE model was

specially chosen compared to the E model so that an external U.FL antenna could be connected

rather than relying on the E board’s weak internal antenna.

The full specifications and pinouts of this ESP32 devkit can be seen in Appendix 5, Figure 18.

23

Choice of breakout boards
The specifications for each of these breakout boards can be found in Appendices 6 - 8, along with

photos of each board in Figures 19 – 21.

8-Channel Analogue to Digital Converter Breakout
The ESP32 and most other MCUs have a built-in ADC. The ESP32 has 18 possible ADC channels,

however, the ESP32 only has one actual hardware ADC so the channels must be multiplexed rather

than read asynchronously [11]. An external multi-channel ADC could be used to measure multiple

channels both asynchronously and accurately, as required.

A 16-bit ADC has 15 usable bits – which is a great resolution. There aren’t very many 8-channel 16-

bit ADCs on the market, so the best option found was to use two Adafruit ADS1115 4-channel ADCs

and then connect them both up over I2C at a maximum sps of 860 samples/second. This ADC is

unipolar and has an input voltage range of -0.3 – 5.3V (when powered by a 5V supply) which is

perfect for the conditioned signal inputs.

MicroSD Card Breakout
The Adafruit MicroSD card breakout board+ came out to be the best option for the MicroSD card

module due to its renowned reliability and available open-source software. The software was

originally designed for SDHC MicroSD cards, however, an SDXC MicroSD card was ordered to use

with the breakout initially by mistake. The maximum size of SDHC cards is 32GB so a 32GB card was

ordered at a later stage. This MicroSD card breakout board communicates with the ESP32 via SPI

communications, which offers a much faster solution than “bit-banging” using other pins. [12]

GPS Breakout
The U-Blox NEO-6m was the best available GPS breakout board on the market due to its size,

popularity, and renowned reliability. This particular GPS module communicates with the ESP32 using

the TX and RX serial communication pins.

Brand Component Wholesaler
Individual Price
(inc VAT)

Notes

Espressif Systems
ESP32-DevKitC-32UE
(ESP32-WROOM-32UE)

Mouser £10.56
Free shipping over
£33

Adafruit
MicroSD adapter breakout
board – 254 (485-254)

Mouser £7.92
Free shipping over
£33

Adafruit

ADS1115 16-Bit ADC – 4
Channel with
Programmable Gain
Amplifier

Coolcomponents £14.89
Excludes £2.99
shipping

U-Blox
GPS Module GY-NEO6M
NEO-6M + Antenna

247Geek £6.99
Excludes £2.00
shipping

SanDisk
Ultra microSDXC UHS-I
memory card 128 GB +
adapter

Amazon UK £12.99 Free shipping

Figure 7 - Bill of Materials order that was sent on 28th November 2022

https://www.mouser.co.uk/ProductDetail/Espressif-Systems/ESP32-DevKitC-32UE?qs=GedFDFLaBXFguOYDKoZ3jA%3D%3D&mgh=1&vip=1&gclid=Cj0KCQiAgribBhDkARIsAASA5bttWdpIZwvi2HZl3oz9BN0UFew6SIiwc4gEvi22KQ5EbyinbJqq_wQaAttsEALw_wcB
https://www.mouser.co.uk/ProductDetail/Espressif-Systems/ESP32-DevKitC-32UE?qs=GedFDFLaBXFguOYDKoZ3jA%3D%3D&mgh=1&vip=1&gclid=Cj0KCQiAgribBhDkARIsAASA5bttWdpIZwvi2HZl3oz9BN0UFew6SIiwc4gEvi22KQ5EbyinbJqq_wQaAttsEALw_wcB
https://www.mouser.co.uk/ProductDetail/Adafruit/254?qs=GURawfaeGuAkwqCF4BmPzA%3D%3D
https://www.mouser.co.uk/ProductDetail/Adafruit/254?qs=GURawfaeGuAkwqCF4BmPzA%3D%3D
https://coolcomponents.co.uk/products/ads1115-16-bit-adc-4-channel-with-programmable-gain-amplifier?_pos=1&_sid=2226a59cd&_ss=r
https://coolcomponents.co.uk/products/ads1115-16-bit-adc-4-channel-with-programmable-gain-amplifier?_pos=1&_sid=2226a59cd&_ss=r
https://coolcomponents.co.uk/products/ads1115-16-bit-adc-4-channel-with-programmable-gain-amplifier?_pos=1&_sid=2226a59cd&_ss=r
https://coolcomponents.co.uk/products/ads1115-16-bit-adc-4-channel-with-programmable-gain-amplifier?_pos=1&_sid=2226a59cd&_ss=r
https://247geek.co.uk/gyneo6m?srsltid=AYJSbAdfGS0__eDO-W7I6yAhwa-dPLNbZw_2H8nlPXeacDKnloa3RqJoCBg
https://247geek.co.uk/gyneo6m?srsltid=AYJSbAdfGS0__eDO-W7I6yAhwa-dPLNbZw_2H8nlPXeacDKnloa3RqJoCBg
https://www.amazon.co.uk/SanDisk-microSDXC-Adapter-Performance-SDSQUA4-128G-GN6MA/dp/B08GYKNCCP/ref=sr_1_3?crid=1Q4DKVZEQTQKK&keywords=micro+sd+card+sandisk&qid=1668187539&sprefix=micro+sd+card+sandisk%2Caps%2C98&sr=8-3
https://www.amazon.co.uk/SanDisk-microSDXC-Adapter-Performance-SDSQUA4-128G-GN6MA/dp/B08GYKNCCP/ref=sr_1_3?crid=1Q4DKVZEQTQKK&keywords=micro+sd+card+sandisk&qid=1668187539&sprefix=micro+sd+card+sandisk%2Caps%2C98&sr=8-3
https://www.amazon.co.uk/SanDisk-microSDXC-Adapter-Performance-SDSQUA4-128G-GN6MA/dp/B08GYKNCCP/ref=sr_1_3?crid=1Q4DKVZEQTQKK&keywords=micro+sd+card+sandisk&qid=1668187539&sprefix=micro+sd+card+sandisk%2Caps%2C98&sr=8-3

24

Plan of action for development
On arrival of all the separate components, there were many possible orders of development that

could have been taken when working on this project. The most logical and efficient way to work

through this project would be to go through, component by component, and get them all working

individually before trying to combine their functionalities together. This builds the understanding of

each component better, allows more room for trial and error, and makes debugging/problem-

solving exponentially easier. Figure 8 shows an updated block diagram of the COTS platform and

breakout boards, specifically for the ESP32 MCU. (The specific battery model will be chosen at a later

stage in the project).

Logically, it made the most sense to start the development with the ESP32 devkit since all the other

components need to be connected to the MCU before they can actually be used and tested. From

there, the breakout boards can be tested individually, then they can be tested in combination with

each other as shown in the flow diagram order in Figure 9, below.

Figure 8 - Updated block diagram of the COTS platform and breakout boards, along with each breakout’s communication
format

Figure 9 - Flow diagram order for development of ESP32 platform and breakouts

25

ESP32 Development
The ESP32 can be used with the Arduino IDE so the first goal was to get a simple LED flickering circuit

working in the Arduino IDE.

To test the Bluetooth functionality of the board, a simple BLE server was set up on the ESP32 to

allow data to be transferred to a smartphone in range.

To test the Wi-Fi functionality and antenna range of the board, a simple program was used to scan

for nearby networks and display them in the serial monitor. A simple Wi-Fi server for turning on and

off an LED was run on the board to test the IoT server functionality. An external antenna had to be

connected to the U.FL port on the board to facilitate a strong enough connection to the local router

to set up the server.

Once the ESP32 had been tested thoroughly, the next logical step involved getting the ADC breakout

working with the ESP32.

ESP32 + ADC Breakout
The Adafruit ADS1115 was connected via I2C to the respective I2C pins on the ESP32. I2C normally

operates at 100-400kHz which is far beyond the samples per second (sps) needed for this project

and hence the sps will not be limited by I2C, but by the maximum sps of the ADC. [13] The circuit

diagram can be seen in Figure 15.

The ADS1115 can be powered by either a 3V or 5V supply. Since the analogue input range of the

ADS1115 is -0.3 – (Vdd + 0.3), then a 5V supply must be used as a 3.3V supply would not provide a

great enough range (-0.3 - 3.6V) for the conditioned analogue signals (which need a range of 1 – 4V).

A program was then engineered to take single-ended readings roughly once per second for all of the

4 channels, which were then printed out in the serial monitor. In the example shown below, the 3.3V

DC output from the ESP32 was connected to pins A0 and A2 and the 5V DC output from the ESP32

was connected to pins A1 and A3, for demonstration purposes. The serial monitor output can be

seen below, in Figure 10

Figure 10 - Screenshot of the Arduino IDE Serial Monitor tool, displaying the ADC measurements
for the 4 channels

26

ESP32 + MicroSD Card Breakout
The Adafruit MicroSD card breakout was connected via the hardware SPI pins on the ESP32. The

hardware SPI pins offer a much faster solution than “bit-banging” the interface code by using

another set of pins. [12]

The MicroSD breakout board has proper 3V level shifting built in. The board is native at 5V so, to

avoid unnecessary level shifting, a voltage of 5V from the ESP32 was supplied to the MicroSD card

breakout.

The board itself can be used for tasks such as creating directories, listing directories, removing

directories, writing files, appending files, reading files, renaming files, deleting files, and testing files

IO. [14] This functionality of the board was all manually tested to ensure correct functionality.

A program was then engineered that creates a file then appends values to it. This functionality will

be needed later for storing the ADC measurements. Figure 11 shows a snippet of the program and

Figure 12 shows a screenshot of the MicroSD card contents that were created once the full program

was run.

Figures 11 and 12 demonstrate the basic MicroSD card functionality needed for storing the ADC

measurements working as intended. The next logical step was to combine the functionality of the

ADC and the MicroSD card breakouts.

Figure 12 - Screenshot to show the contents of the MicroSD card after the program had been run

Figure 11 - Snippet of the program code to demonstrate how the writing and appending of text
files on the MicroSD works

27

ESP32 + ADC Breakout + MicroSD Card Breakout

Once the individual ADC and MicroSD breakouts had been tested individually, their functionality was

combined together into one single program. This program was engineered to take 4 single-ended

voltage measurements from the ADC and then append these values to a text file on the MicroSD

card. To simulate voltage signal inputs, the 3.3V output from the ESP32 was connected to A0 and A2

of the ADC and the 5V output from the ESP32 was connected to A1 and A3 of the ADC.

The full C++ code can be seen in Appendix 1. As the project progresses, the GPS module will be used

as a clock for disciplining the timing interrupts to specify when the samples should be taken from the

ADC. For now, however, this current program implementation doesn’t consider timings. It takes the

4-channel readings and appends them to the text file on every loop iteration (averaging around

16sps). This program is a good step towards the later functionality of storing useful values on the

MicroSD card, such as vrms/frequency/power/energy consumption, etc.

Figure 13 shows the breadboard circuit developed for use with this program. The MicroSD card

breakout is shown on the left, the ESP32 in the middle, and the ADS1115 ADC on the right.

Figure 13 - Photo of the ESP32 + ADC Breakout + MicroSD Card Breakout circuit used to store the 4 analogue input
measurements on the MircoSD card

28

Figure 14 shows a screenshot of the text files contained on the MicroSD card. It also shows the

contents of the ADS1115_voltage_measurements text file, which contains the appended

measurements outputted from the program, after the program had been run for a few minutes.

Figure 14 - Screenshot to show the content of the MicroSD card after the program had been run

29

Circuit Diagram

Figure 15, as shown below, shows the circuit diagram for the ESP32 + ADC + MicroSD circuit that was

used previously in figure 13 – except for 1 slight change. Earlier, the ADC took 4 analogue inputs

directly from the 3V and 5V output supplies of the ESP32. The ADC in this circuit diagram, however,

uses the output voltage signal from the inverting op-amp attenuation circuit. In this signal

conditioning circuit, the 741 op-amp is powered by a positive and negative 12V supply, however, this

is not very practical due to size and power constraints. This will be fine-tuned at a later stage in the

project.

The address pin of the ADS1115 is currently being set to GND. This address pin is used to set the

address of the I2C connection (to 0x48), to allow up to 4 ADCs to be used simultaneously on the I2C,

i.e. the second ADS1115 will need to have a different address set for it to be used in tandem with the

first ADS1115 over the I2C interface..

Figure 15 - A hand drawn circuit diagram for the ESP32 + ADC + MicroSD circuit that was used previously in Figure 13

30

ADC Sampling Rate Problem

The UK mains frequency is around 50Hz [15]. Following Nyquist’s Theorem [16], when sampling the

analogue inputs with the ADC, 24 samples per cycle should be an adequate number of samples to

calculate accurate VRMS values, frequency values, etc.

𝑓𝑠 = 𝑁 × 𝑓0

𝑓𝑠 = 24 × 50

𝑓𝑠 = 1.2𝑘𝐻𝑧

𝑡𝑠 =
1

𝑓𝑠

𝑡𝑠 =
1

1200

𝑡𝑠 = 833𝜇𝑠

Figure 16 - Nyquist's Theorem sampling rate equation for UK mains frequency of 50Hz

Shown above, in Figure 16, are the calculations for determining the required frequency and time

period of the ADC samples. It was calculated that the ADC should take 1200 samples per second

(sps), i.e. it should take samples every 833μs.

The ADS1115 has a high resolution of 16-bits (15 usable bits) but as a result, it only has a maximum

sample rate of 860sps. This maximum sampling rate of 860sps is not high enough to be able to take

the 1200sps readings that are required for this project and hence a faster sampling rate ADC is

needed.

The ADS1015 ADC has a slightly lower resolution of 12 bits (11 usable bits) but has a much higher

maximum sampling rate of 3300sps, hence facilitating the 1200sps measurements that are needed

for the 50Hz signal. Two Adafruit ADS1015 ADC breakouts were researched and then ordered.

31

Future work to be completed in semester 2

The ESP32 circuit is at the stage where 4 single-ended inputs measurements are read and then

stored on the MicroSD card.

• The next step will be to wire up the GPS breakout individually with the ESP32, to grasp how the

breakout works and to test that the desired functionality works as expected separately

• After that, the GPS breakout should be included in the ADC & MicroSD circuit then use the GPS’s

1PPS timing functionality as a clock to discipline the timing interrupts for taking the readings, at

1sps to begin with.

• The circuit should then be amended to use the ADS1015 instead of the ADS1115 then try to get

1200sps readings working successfully – as needed for a 50Hz signal with 24 samples per cycle.

• The program should be altered to work out the VRMS from those measurements, then store the

values to the MicroSD card at appropriate regular intervals.

• Using the samples taken and basic trigonometry, the two true zero points within each cycle

should be calculated and then used to work out the true frequency of each cycle.

• Using these frequency measurements, the energy consumption and power can be worked out

and stored on the MicroSD card too. The frequency should be roughly 50Hz but the true

frequency must be worked out to determine accurate energy consumption and power statistics

as required for metering/billing.

• The signal conditioning circuit currently takes in a voltage input of 110V, to simulate the

secondary side of the distribution transformer. In the development process, using a lower

voltage input such as 1/2V would be more practical so the signal conditioning circuit should be

amended to facilitate this lower voltage input

Once all the desired useful measurements are being read, calculated, and stored correctly locally,

the external communications should be set up.

• First, a Wi-Fi server should be set up on the ESP32 to host a static web page for displaying the

near-live-time useful measurements.

• Hosting a Wi-Fi server requires a constant/stable Wi-Fi connection so this may be unsuitable for

many substation scenarios. A BLE server doesn’t need a separate network, can communicate

with most modern smartphones, and has a very low energy usage [17]. Users in the substation in

close enough proximity to the ESP32 could access the near-real-time readings through their

smartphone using BLE. This may be a superior alternative to a Wi-Fi server – this will need

further research into to compare and decide on the best solution.

• Hosting a Wi-Fi/BLE server while taking the ADC readings at a high frequency may require too

much processing power for a single ESP32 to handle. If so, a second ESP32 could be used solely

for taking the high-frequency ADC measurements while the other ESP32 focuses on the

measurements and external communications.

Once the external communications of the smart wireless sensor have been set up successfully, there

is additional bonus functionality that could be implemented to further improve the functionality of

the smart sensor.

32

• A suitable battery solution could be designed and developed to support the portable

functionality of the platform and signal conditioning circuit

• The useful measurements could be stored in a suitable cloud database storage provided by

services such as Amazon Web Services (AWS) or Google Cloud Platform (GCP), etc.

• Even further, a static website could be hosted on these cloud platforms to display the readings

online, to be accessed worldwide.

• Rather than using a breadboard, a more semi-permanent solution such as Veroboard Stripboard

could be used

• A suitable model case could be designed in CAD modeling software and 3D-printed to hold all of

the circuitry and components

33

Semester 2

ESP32 + GPS Breakout

After the ESP32, ADC and MicroSD breakout circuit was working as intended, the next logical step

was to get the ESP32 working with the GPS breakout. The U-Blox NEO-6m was hooked up to the

ESP32 via UART (TX/RX). UART is a very simple communication form, however, a bug was found with

the ESP32 devkit - if the GPS breakout was connected to the ESP32 default tx/rx pins then the code

would fail during the upload process to the MCU.

This was solved by manually setting-up the UART serial communications with different tx/rx pins

than the default ones. Figure 17, as shown below, showcases the line of code used to set up the GPS

serial communications using pins 16 and 17 as the RX and TX pins of the ESP32, respectively. The

ESP32 general serial communication line with the PC was set up with a baud rate 2000000Hz, then

communications with the GPS breakout were set up at a baud rate of 9600Hz, as shown below.

What data does the GPS breakout send to the ESP32?

The GPS breakout sends National Marine Electronics Association (NMEA) sentences [18] to the

ESP32 via UART. Each of these NMEA sentences start with a “$” symbol and the data fields are

separated by commas. The TinyGPSPlus library [19] was utilised to easily extract usable data from

these NMEA sentences. Figure 18, as shown below, showcases the serial monitor output which

includes 5 NMEA sentences and some corresponding extracted data from those sentences – time,

latitude and longitude.

Figure 17 - Line of code to initialise the secondary serial, for the GPS breakout UART
communications

Figure 18 - NMEA sentence response sent over UART to the ESP32, along with useful extracted metrics

34

GPS breakout for ADC timing disciplining

Using a GPS breakout for disciplining/syncing the ADC interrupt may seem like a strange choice at

first, however, GPS breakouts are unique in the fact that the 1PPS signal sent from them is perfectly

synced, no matter the geo-location. The NMEA sentences are send via UART to the ESP32 perfectly

at the start of each GMT second. This in-sync 1PPS signal of the GPS breakout can then be utilised to

ensure that multiple smart wireless sensors will be taking readings perfectly in sync, as will be

explained in more detail later.

When working with the GPS breakout, a mistake was made of trying to utilise the actual extracted

NMEA time for the ESP32 timing interrupt disciplining. After some self-education on timing

interrupts, it then became clear that the 1PPS signal itself coming from the GPS should be utilised for

the interrupt syncing.

To test and validate the 1PPS interrupt timing functionality of the GPS, a timing interrupt was set up

on the ESP32. This timing interrupt was set up to take ADC readings on every falling edge of the

signal hitting that pin. The TX line of the GPS breakout was connected to pin 25 (yellow wire) so that

a burst of falling signal edges would hit the interrupt pin once every second, hence causing an ADC

reading to be taking every second. This circuit can be seen below, in Figure 20.

Figure 20 - ESP32, ADS1115 and NEO-6M Fritzing circuit diagram

Figure 19 - Serial Monitor output of the GPS ADC benchmark
program

35

The Serial Monitor screenshot, as shown above in figure 19, shows that the GPS timing interrupt

circuit was able to successfully achieve 1PPS ADC sample readings. In the end-goal circuit, the GPS

won’t be used in this exact way but this circuit proved that the GPS 1PPS signal is extremely accurate

and will facilitate the disciplining of the ADC timing interrupts perfectly.

The full details of how the GPS breakout is used for interrupt timing in the final circuit is explained in

later sections.

ADS1015 for 1200sps readings

As explained in the Semester 1 section, the UK mains frequency is roughly 50Hz and 24 samples

should be taken per cycle (following Nyquist’s Theorem). [16] This calculates to 1200 samples

needing to be taken every second (1200sps). As explained previously, the ADS1115 only has a

maximum sampling rate of 860sps.

Two Adafruit ADS1015 ADCs were ordered and the ADS1115 in the circuit was swapped out for one

of the ADS1015s. When setting up the 1200sps interrupt timer, duplicate readings could possibly

have been taken if the ADC was unable to keep up with the 1200sps sampling, therefore, it was

deemed necessary to thoroughly benchmark the ADC1015 to try to achieve its maximum sampling

rate.

Single-ended readings are used by the MCU to take ADC readings every so often, however, they are

inefficient and slow as it was later found that they have an in-built delay that cannot be overridden.

Continuous mode is the ADS1015’s fastest mode. Once the ADC has taken a new reading, the alert

pin on the ADC sends out a high signal – if this alert pin is hooked up to an interrupt pin on the

ESP32, the alert signal will tell the ESP32 when the ADC is ready to take another reading. Using

continuous mode in this way ensures that the fastest possible rate of unique values can be read

from the ADC at one time.

The ADC was thoroughly tested in continuous mode with the alert pin hooked up to an interrupt on

the ESP32 to achieve the maximum sampling rate possible for the ADC. The ESP32 was timed for

how long it took to take 30,000 samples and the results were printed in the serial monitor. In this

testing period a maximum rate of 1700sps was achieved with ease, but it took a substantial effort

investment to achieve the final sampling rate.

The first limiting factor of the continuous measurements was the default data rate. By modifying

Adafruit’s ADS1015 library to include useful additional functions, this default value could now be set

using the simple line shown below, in Figure 21.

Figure 21 - C++ code used to set to ADS1015 sampling rate to 3300sps

36

The second main limiting factor of the ADS1015 was eventually found to be the I2C bus frequency.

The ESP32 I2C bus clock speed is set to 100kHz by default, however, through modifying the Adafruit

library, the I2C clock speed was increased to 400kHz which facilitated the ES32 and ADC to reach

their final maximum speed.

Shown above, in Figure 22, is the serial monitor output of the final ADC speed test. It can clearly be

seen that a sampling rate of 3356sps was consistently taken through the continuous readings.

As shown in the previous program, the ADS1015 can successfully take readings at a sampling rate of

up to 3300sps. This proves that the ADC will be able to take unique readings at 1200sps without any

duplicate readings – ensuring that the ESP32 only retrieves new readings rather than re-reading the

same ADC reading twice.

The next step was try to achieve the desired ADC sampling rate of 1200sps. To do so, interrupts were

again utilised but this time the interrupts were to be triggered by ESP32 built-in clock. The ESP32 has

four 64-bit timers [20]. The timer interrupt was specified at 1200sps by passing the specified time

period as a parameter to one of the function calls, as shown in Figure 23 below.

The interrupt ADC reading code was then updated from previously using the alert pin from the ADC

for interrupts to using the ESP32 interrupt timer, as shown above in Figure 23. In summary, this

meant that the ESP32 should take readings from the ADC every 833us, hence achieving 1200sps. This

was tested thoroughly and a benchmark screenshot can be seen below in figure 24.

Figure 22 - Serial monitor output of the final ADC benchmark speed test

Figure 23 - C++ code used to set up the ESP32 interrupt timer at a sampling rate of
1200Hz (833us time period)

37

ESP32 Input Analog Signal

Now that 1200sps ADC readings were being consistently taken, it was time to find an analogue signal

input source. Up until this point in the project, the ESP32 5V and 3.3V DC outputs were being used as

inputs into the ADC. Since these signals are DC signals, the output waveforms plotted by the ADC

were horizontal lines. The end goal AC source was intended to use a mains supply/function

generator, however, in the meantime the ESP32 digital to analogue converter (DAC) was set up and

utilised as an input into the ADC. The external DacESP32 library [21] was utilised to obtain a

consistent sine/cosine waveform with just a couple of function calls. The DAC output pin was set at

pin 25 and the analogue output signal was set to a cosine wave with 50Hz frequency. Some of this

code can be seen below, in Figure 25.

The library was extremely valuable to this portion of the project, however, the frequency of the

output waveform was not as precise as it was made out to be. When setting a frequency of 50Hz,

the actual frequency of the analogue waveform was tested and calculated to be around 51Hz, which

is a substantial difference. Setting an accurate frequency with this, however, was not quintessential

Figure 24 - Serial monitor output of the ADC sampling rate when the interrupt timer is set to 1200sps

Figure 25 - ESP32 code that utilises the DacESP32 library
to setup a DAC cosine waveform output (of supposed
frequency 50Hz) to pin 25

38

as the frequency algorithm would be later be validated through simulated waveforms in MATLAB, as

will be shown at a later point in the project.

Figure 26, as shown below, showcases the Serial Plot output (in the Arduino IDE) of the ESP32 DAC

51Hz cosine analogue waveform. These ADC readings were taken at 1200sps and the plot shows a

lovely, consistent cosine waveform being sampled from the ADC. Through thorough testing, it was

validated that there were no duplicate values or random zero values being read from the ADC.

True Frequency

To work out the frequency of an analogue (sine/cosine) waveform, the time period must be

calculated. The time period of a waveform is the time it takes for the wave to complete one full

cycle. To determine the exact times when a cycle both starts and finishes, a voltage value should be

chosen. Once the waveform crosses from the negative side to the positive side (or vice versa), the

cycle can be concluded as having completed.

With non-shifted waveforms, it would make sense to use 0V as the defined crossing voltage,

however, since the wave has to be shifted due to the unipolar nature of the ADC a different

midpoint value must be chosen. The midpoint of 2.5V is a good starting point, however, what

happens if the midpoint of the waveform shifts to 2.6V? Later in the project it will be proven that the

zero crossing voltage value does not necessarily have to be the midpoint of the wave, it could

technically be anywhere between Vmin and Vmax (e.g. 1.1V and 3.9V) and the frequency values will

remain unaffected. Later in the report, there is a section to show additional functionality that was

added to calculate a running midpoint (as required for the VRMS).

Therefore, the initial zero crossing voltage value can be set to 2.5V to begin with – as it is a safe

value at roughly the expected midpoint of the wave. Figure 27, as shown below, showcases an

analogue waveform with annotations pointing to the true zero points that need to be accurately

measured.

Figure 26 - Serial plotter output of the ESP32 51Hz DAC waveform being read at 1200sps by the ADC

39

Figure 27 - Analogue waveform with annotations pointing to the crucial true zero points of a particular cycle in the wave

The ADC takes samples of the input analogue signal, with almost exactly 24 samples per cycle. This

can be visualised in the analogue waveform plot, as shown below, in Figure 28.

Figure 28 - Analogue waveform with important true zero crossing sample points highlighted

To find these true zero points, the frequency algorithm checks for scenarios where any two

consecutive samples match the following criteria, as shown in figure 29 below:

𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 ≤ 𝑧𝑒𝑟𝑜 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 < 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑜𝑙𝑡𝑎𝑔𝑒

Figure 29 - Sampling pair voltage scenario that the algorithm checks for

When this scenario occurs, then the algorithm will know that the analogue waveform has just

crossed the zero crossing. Knowing this, the algorithm will then multiply these two voltage values

True zero points

40

then use some basic trigonometry to determine the exact time of the crossing. This can be visualized

by extrapolating these two values into their linear triangle formation, as shown below, in Figure 30.

Figure 30, as shown above, is the extrapolated triangle of the two zero crossing points, as explained

previously. The “y” voltage value of 2.8V is the current sample reading and the “x” voltage value of

2.4V is the previous sample reading. The true line between these two sample points will have a very

slight bend, however, this bend is so miniscule that a straight line is assumed between the points

instead. “m” is the defined zero crossing voltage value of 2.5V.

The key to this frequency algorithm is the fact that it’s trying to figure out the time when the zero

crossing value is crossed by the waveform, as defined by the value “z”. Since both the voltage and

time values of x and y are stored in variables, a trigonometry equation, as shown below in Figure 31,

can be utilised to determine the exact time of the zero crossing – “z”.

Figure 31 - Trigonometry equation used to determine the exact time that the zero crossing occurs at

𝑧 = 𝑡 − (𝑇 ×
𝑦 − 𝑚

𝑦 − 𝑥
)

𝑧 = 1.1 − (0.1 ×
2.8 − 2.5

2.8 − 2.4
)

𝑧 = 1.1 − (0.1 ×
0.3

0.4
)

𝑧 = 1.1 − 0.075

𝑧 = 1.025 𝑠𝑒𝑐𝑜𝑛𝑑𝑠

Figure 30 - Extrapolated triangle diagram of the two zero crossing points

41

As shown in the equation in Figure 31 above, the zero crossing time was calculated to be 1.025

seconds, which is a quarter of the time between the example samples – “x” and “y”. This is validated

by the fact that the zero crossing point, “m”, is a quarter of the way between the previous and

current values – “x” and “y” respectively. This has proven that the zero crossing time and the

voltages are directly proportional to each other in nature, hence validating that the triangle

trigonometry can be utilised for the calculations.

Figure 32, as shown below, showcases the true frequency algorithm C++ ESP32 code. The first

highlighted line is equivalent to the equation shown in Figure 31 and the second highlighted line is

equivalent to the frequency time equation. The lower half of Figure 32 contains code for the running

average frequency. The “i > 100” if statement is used as a precautionary warmup for the ADC

breakout to allow time for any unexpected values to be cycled through – as this is important for the

running averages. The ESP32 “micros()” function is used to obtain the current time in microseconds.

The timings must be very precise, therefore the micros() function was used over the millis() function.

The full code can be seen in Appendix 9.

Figure 32 - ESP32 C++ code for the true frequency algorithm

42

VRMS Algorithm

When using a voltage/time plot to work out the voltage of a sinusoidal waveform, this can easily be

done by working out the value of Vpeak (Vp) using one of the 3 equations shown in Figure 33, below.

Vpeak = Vmax – midpoint

Vpeak = – (midpoint – Vmin)

Vpeak = (Vmax – Vmin) / 2

Figure 33 - Three possible equations for calculated Vpeak

To use any of these methodologies for calculating the voltage of the input analogue signal, the Vmax

and/or Vmin values of each wave cycle have to be determined. (The midpoint of the input analogue

waveform could change but this is solved by using the running midpoint value, which is explained

later in the report). The problem lies with obtaining the Vmax or Vmin value – the analogue

waveform is sampled with around 24 samples per cycle so it’s unlikely that an individual sample will

be taken on either/both of the very peak and trough points of the analogue waveform. This presents

an issue where the calculated voltages using these values will likely be slightly less than the true

voltage due to the nature of the timings of the samples.

The first proposed solution to this described issue was to use the Vmin and Vmax values of the

previous “n” cycles (n=5 for example) and then find the voltage based on the highest Vmax value

and the lowest Vmin value of those previous “n” number of samples. This solution seemed to work

to a passable standard, however, the voltage values were not very accurate/precise (as they

depended on the exact timings of the max and min samples) and hence, the algorithm failed as a

whole.

The final solution found was to first work out the voltage root-mean-square value (VRMS) then

calculate the voltage from this VRMS value.

𝑥𝑟𝑚𝑠 = √
𝑥1

2 + 𝑥2
2 + 𝑥3

2 + … + 𝑥24
2

24

Figure 34 - VRMS equation

The VRMS equation is shown above, in Figure 34. This equation can be utilised to work out the VRMS

of the current cycle at each new sample point. At each new sample point, the current sample point

and the 23 previous sample points should each be squared, then summed, then divided by 24, then

square rooted. To store the 23 most recent sample readings into the ESP32 memory, a circular

buffer should be utilised. This can be performed by using an array of size 23, along with a simple

integer variable to hold the current position. On each new sample reading, the most recent reading

will replace the oldest reading.

On each new sample reading, the full circular buffer can be iterated over then processed using the

equation shown in Figure 34. Iterating over the circular buffer is fine in theory, however, in practice

it would be quite a computationally expensive process as all 24 values need to be iterated over on

43

each new sample reading (23 in circular buffer + 1 most recent sample reading). This comes out at

an algorithm time complexity of 24O(N).

What if there was an algorithm that could be used instead of the circular buffer algorithm? An

algorithm that is more computationally efficient, more memory efficient, more readable and has

shorter overall code than the previously described circular buffer algorithm?

This wonder-algorithm is known as the sliding window algorithm. The sliding window algorithm

simply utilises a single variable for recalculating the VRMS, without having to iterate over the whole

circular buffer again each time. The premise of the sliding window algorithm is that on each new

sample value, the previous VRMS value is extrapolated out back to the sum square values then the

oldest squared sample voltage is subtracted from the sum square voltages and the newest sample

voltage is added to the sum square voltages. These sum square voltages are then divided by 24 then

square rooted again to obtain the new VRMS. This can be visualised using Figure 35, as shown

below.

The sliding window algorithm has an identical output to the circular buffer algorithm, however, it is

much more efficient – with an algorithm time complexity of O(N) rather than 24O(N). This

substantial increase in efficiency was a critical turning point for the project as the ESP32 taking the

1200sps ADC readings doesn’t have that much available time and computing power to spare

between taking each of the ADC sample readings (especially for 2 ADCs, as shown later).

Figure 36 - VRMS sliding window algorithm ESP32 C++ code

Figure 36, as shown above, showcases the ESP32 C++ code for the sliding window VRMS algorithm.

“M” represents midpoint, “V” represents voltage and “C represents current. The midpoint and

current functionality will be explained in later sections. Initially, the old buffer positions are found

using a modulus calculation then the old midpoint, old voltage (and old current values) are obtained

Figure 35 - Sliding window visualisation

44

from the three buffers. The midpoint has to be recalculated before obtaining the voltage, as will also

be explained in a later section. Once the midpoint has been calculated, it can then be utilised for the

VRMS code.

Firstly, the VRMS value is squared then multiplied by the bufferSize to extract out the

sumSquareVoltages value. Once the sumSquareVoltages value has been extrapolated out, then the

old value can be subtracted and the new value can be added to the sumSquareVoltages. The oldV

variable holds the oldest voltage value, which was just obtained from the buffer. The red line

highlights the oldest value in the sliding window that is being subtracted from the

sumSquareVoltages and the green line highlights the current value that is being added to the

sumSquareVoltages. The VRMS is then recalculated and the new value is stored in the first point in

the voltage buffer. The full code can be found in Appendix 9.

𝑉𝑝 = √2 × 𝑉𝑟𝑚𝑠

Figure 37 - VRMS to Vpeak equation

Once the VRMS has been recalculated for the new sample, the V-peak voltage value can then be

worked out by using the VRMS-to-voltage conversion equation, as shown in the equation in Figure

37, above.

Circular Buffer Size

The bufferSize variable is set earlier in the program. Altering the bufferSize value alters how the

circular buffer functionality works. The minimum bufferSize for a 50Hz wave is 24 (according to

Nyquist’s Theorem [16]), to allow for a full cycle to be used in the calculations. In practice, this VRMS

value will fluctuate slightly due to the analogue signal itself not being exactly 50Hz. These slightly

fluctuations can be smoothed out by increasing the bufferSize. Increasing the bufferSize to 1200, for

example, means that the VRMS of the new sample is calculated based upon the values taken in the

whole last second. This will produce a very accurate and smooth VRMS, however, it will also mean

that the VRMS has a slight delay when tracking the changing VRMS – as it is the antagonist to its

smoothness. The perfect bufferSize must be set depending on the use case of the smart wireless

sensor. If a 1Hz signal has to be measured, then a bufferSize of 1200 is the absolute minimum that

can be used at this 1200sps sampling rate – to ensure that at least one full wave is sampled. In the

UK mains scenario with a signal of frequency 50Hz, vigorous testing and analysis proved a buffer size

of anywhere between 24 and 1200 to be satisfactory – and should be tailored to the end user need,

whether they need a snappier or smoother VRMS value.

The ESP32 does have limited on-board memory and computational power so this must factored in

when determining the buffer size. Through testing and analysis, a total bufferSize of 1200 was found

to be computationally feasible and hence, when using three buffers (for midpoint, voltage and

current) a bufferSize of 400 each buffer was found to be optimal for this project in terms of

performance, smoothness and delay.

45

Frequency and VRMS in action

At this stage in the project, the midpoint, frequency, and VRMS were all being successfully measured

and calculated.

Figure 38, as shown above, showcases a screenshot of the Arduino IDE Serial Plotter for a function

generator analogue sinusoidal signal. It’s very clear from the analogue input sine wave in the figure

that both the frequency and voltage of the sine wave are both decreasing rapidly. Hence, the

measured frequency and VRMS lines of the plot decrease accordingly, as shown by the yellow and

red line, respectively. A running frequency and VRMS average were also being calculated and

plotted, as can be seen by the pink and green lines, respectively. This wave had been running for

approximately five seconds prior to this screenshot so the running average lines can be seen to

decrease at a more gradual rate than the rate of the frequency and VRMS lines.

Figure 38 - Serial plotter waveform of the ADC readings, VRMS and frequency while the amplitude and frequency are being reduced

46

Frequency and VRMS Algorithms Validation in MATLAB

Up to this point in the project, all of the project code had been written for the ESP32 in C++ in the

Arduino IDE. The algorithms that were engineered seemed to work perfectly, however, there was no

way of validate the algorithms using the real analogue signals due to slight inconsistencies in both

values and timings, etc. The only way that the algorithms could truly be validated is through a

simulated scenario, where the inputs, timings, readings, etc. could be controlled down to pinpoint

accuracy and consistency.

MATLAB was chosen as the simulation program for the algorithm validation task as it was known to

be precise and consistent enough for the task. To actually validate the algorithms, the input

analogue sine wave had to be constructed then set at a certain frequency for a specified number of

cycles then the frequency would be altered slightly and the sine wave would run for another number

of cycles, and so on.

Figure 39, as shown above, showcases the finalised desired sine wave frequency values for the

validation program. The sine wave would run at 49.97Hz for 50 cycles, then its frequency would be

increased to 49.98Hz for 150 cycles then its frequency would be decreased back down to 49.97Hz for

the final 70 cycles.

Figure 39 - MATLAB sine wave frequency simulation values

Figure 40 - Rough frequency time plot of the expected varying frequency input analogue sine wave

47

Figure 40, as shown above, showcases a rough frequency time plot used to represent the expected

varying frequency of the simulated input analogue sine wave. To validate the frequency algorithm,

both the input and output sine wave frequency waves should be plotted and compared. They should

be compared in shape and values to determine if the measured frequencies have met the required

frequency accuracy and precision. The desired frequency accuracy of this project was set out at +-

10mHz and the desired VRMS accuracy of this project was set out at +-10mV accuracy.

The expected VRMS and measured VRMS should be plotted against time and compared to validate

the VRMS algorithm, similar to validating the frequency algorithm.

MATLAB Sine Wave Population

Before being able to validate the frequency and VRMS algorithms, the sine wave specified in Figure

39 had to be constructed.

Figure 41 - MATLAB code used to construct the input MATLAB analogue sine wave for the simulation

48

Figure 41, as shown above, showcases the MATLAB code used to construct the input MATLAB

analogue sine wave. The sampling frequency, the specified frequencies and the cycles were set up in

a parameterised fashion to ensure that these values could easily be altered. The sampling rate was

set at 1200sps, as required for a 50Hz sine wave with 24 samples being read per cycle. The wave

VRMS was set at exactly 1V. The stopTimes and samples vectors were populated then they were

used to create the final sine wave vector, as specified by identifier “y”. This final sine wave was

plotted on the frequency time graph, in preparation for a later comparison. The full code for the

MATLAB algorithm validation can be found in Appendix 11.

Figure 42, as shown above, showcases the MATLAB code for the VRMS and frequency algorithms.

This code works by iterating over each voltage value in the sine wave vector “y”, as if the value was

being passed from the ADC to the ESP32. Since this signal is simulated, the midpoint of the signal is

set at 0, rather than 2.5V for the ADC breakout – due to the signal having to be shifted. The syntax of

the algorithm code in MATLAB is obviously slightly different to the ESP32 C++ code, however, the

overall functionality is kept to be exactly the same in both programs.

Figure 42 - MATLAB code for the VRMS and frequency algorithms

49

Figure 43, as shown above, showcases the MATLAB signal wave output of the algorithm validation

program. This image is very zoomed out to give a basic overview of the signal outputs. The blue

input sine wave can be seen at the bottom of the graph and the expected and actual frequency can

be seen plotted in yellow and orange, respectively.

Figure 44 - MATLAB output waveform of the algorithm validation simulation program

Figure 43 - MATLAB output waveform zoomed (on y-axis) of the frequency section

50

Figure 44, as shown above, showcases a zoomed in (with respect to the y axis) screenshot of

expected and actual frequency lines. The actual frequency output (orange line) clearly shows that

the measured frequency follows the expected frequency line extremely precisely. At the frequency

changes, the analogue sine wave is cut mid-way through the cycles, and hence causes the slight blip

in frequency at those frequency change points. These blip lines may look to be fairly significant,

however, this is due to this graph being zoomed in to such a high y-axis magnification. A goal of the

this project was to achieve a frequency measurement accuracy of +- 10mHz, however, after testing

and analysis using these MATLAB simulations, the frequency algorithm was found to have achieved

an even-better accuracy of +- 0.3mHz – which is over 33 times more accurate than originally

required! This accuracy can be seen in the command window frequency values to the right hand side

of figure 44.

Figure 45, as shown above, showcases a very magnified (on the y-axis) screenshot of the sine

wave/VRMS section of the MATLAB algorithm validation output. The sine wave can be seen in blue

and the measured VRMS is plotted as the horizontal purple line. The VRMS line clearly shows that

the measured VRMS follows the expected VRMS of 1V almost perfectly. There are slight blips at the

sine wave frequency change points due to the sine wave being cut mid-way through the cycles,

hence causing the VRMS for that sample fluctuate very slightly. This blip fluctuation does not exceed

40mV, as shown in the plot. A goal of the this project was to achieve a VRMS measurement accuracy

of +- 10mHz, however, after testing and analysis using these MATLAB simulations, the VRMS

algorithm was found to have achieved an even-better accuracy of +- 0.3mV – which is over 33 times

more accurate than originally required! This accuracy can be seen in the command window voltage

values to the right hand side of Figure 45. These values have been rounded to 4 decimal places.

Figure 45 - MATLAB output waveform zoomed (on y-axis) of the VRMS section

51

Overall, the MATLAB algorithm validation program has successfully proven that both the frequency

and VRMS algorithms are 100% valid. It has proven that the algorithms have achieved an accuracy

that is has greatly exceeded expectations – at 33 times more accurate than originally required!

Knowing that the frequency and VRMS algorithms were completely valid and extremely accurate,

the MATLAB simulation route was complete and the project moved back to focusing on the ESP32

program and functionality.

Midpoint

In an ideal scenario, the ADC would be bipolar and hence, would be able to measure both the

positive and negative voltage. However, the ADS1015 is unipolar so the analogue signal has to be

shifted by 2.5V to ensure that the signal lies between the ADC input range of 0-5.3V.

For a non-shifted signal, the midpoint would simply be at 0V, however, the midpoint of the shifted

signal will lie approximately at 2.5V. Due to the nature of the voltage attenuation and shifting op-

amp circuit, the midpoint is very unlikely to lie at exactly 2.5V. This fact is crucial, as the midpoint

being slightly off of the expected 2.5V could throw off the VRMS very slightly. Therefore it is

quintessential to this project to accurately track the midpoint. The final solution formulated for

doing so was to use a sliding window circular buffer, similar to the implementation for the VRMS.

This can be clearly seen in the VRMS ESP32 C++ code shown earlier, in Figure 36. As shown in Figure

36, the midpoint buffer (bufferM) is set to the same size as the VRMS buffer to ensure that the

midpoint value is updated via the sliding window algorithm in exact sync with the VRMS buffer

(bufferV). This ensures that the midpoint and VRMS maintain their accuracy and precision down to a

perfect degree.

Figure 46, as shown below, showcases the live midpoint tracking, in action, for a waveform of

varying DC offset. It’s clear to see from the screenshot that the DC offset is being increased

dramatically by adjusting the DC offset knob of the function generator. As a consequence, the

ADC1Voltage readings shift vertically upwards in response. The yellow line, representing the tracking

midpoint, can be seen very precisely tracking the midpoint of the waveform, with a very slight delay

due to having a buffersize of 400 (hence 0.333s delay).

Figure 46 - Serial plotter showcasing the live midpoint tracking

52

Figure 47 most importantly shows that both the frequency and the VRMS are completely unaffected

by the varying midpoint. This is a crucial point to having the tracking midpoint algorithm and hence,

has been proven to work successfully.

The midpoint of the analogue input wave should not vary much at all, however, the midpoint

algorithm successfully tracks the midpoint in a very similar way to the VRMS being tracked, thanks to

the same buffer size. The smoothness and delay can be fine-tuned by respectively increasing or

decreasing the shared buffer size.

Oral Presentation and Demo

On Friday 24th March, a presentation was delivered on the Smart Wireless Sensor project to two

senior lecturers in the EEECS faculty. The presentation covered the following topics, as shown above

in Figure 47. A successful demo was given at the end of the presentation.

The demo set-up included a function generator, the ESP32 and the microSD card breakout. The

function generator analogue signal was fed into one of the ADC analogue inputs and readings were

taken at 1200sps. At this stage in the project, the midpoint, VRMS, average VRMS, voltage,

frequency, average frequency and a few other measurements were shown with live-measurements

from the function generator analogue input signal. The function generator analogue signal

amplitude, frequency and DC offset were varied as part of the demonstration – to showcase the

minimal effects that exaggerated fluctuations would have on the measurements.

A photo of the circuit and function generator used in the demo can be seen below, in Figure 48. The

function generator can be seen with a frequency set to around 49.6Hz. This was hooked up to the

breadboard via 2 lead cables, which were then fed into the red and black leads ports of the

breadboard then into the ADC and ESP32 ground, respectively. The demo included a brief showcase

of how varying the signal frequency, amplitude and DC offset affected the waveform. The ADC

Figure 47 - Presentation table of contents slide

53

voltage readings, as well as the useful live measurements, were plotted on the Serial Plotter and

then printed in the Serial Monitor, for demonstration purposes. The demo also showcased the smart

wireless sensor taking readings from the function generator signal outputted as a square wave and a

triangular wave. The sensor was able to take these readings with ease and was unaffected, no

matter the type of function wave being read.

The Fritzing circuit diagram for the demo circuit can be seen below, in Figure 49.

Figure 48 - Function generator and circuit used in the oral presentation demo

Figure 49 - Oral presentation demo circuit diagram

54

Two ADS1015 ADCs

To recap – at this stage in the project, readings were being taken from one ADS1015 ADC at a

sampling rate of 1200sps. Through some minor tweaks to the Adafruit ADC library earlier, the

maximum sps rate achieved was 3300sps. Since the ADS1015 was being used in continuous mode,

only one analogue input could be used on that ADC at one time. The first ADC was being used for the

voltage measurements and hence it was critical to this project to get the second ADC working in

tandem, to facilitate voltage measurements (representing current) to be taken simultaneously.

The ADS1015 comes with an address pin, which facilitates the ADC I2C address to be changed,

depending on what is hooked up to the address pin.

For ADC 1, the GND signal was hooked up to the address pin, giving ADC 1 an I2C address of “0x048”.

For ADC 2, the Vin signal was hooked up to the address pin, giving ADC 2 an I2C address of “0x049”.

An I2C Scanner program was run on the ESP32 to check that both ADCs were being picked up by the

ESP32 over the I2C communication interface successfully. Figure 50, as shown above, clearly shows

that the ESP32 was able to detect the two ADCs over the I2C interface. To differentiate between the

two ADCs in the ESP32 code, the ADS1015 objects were initialised with their I2C device addresses, as

showcased previously.

Figure 50 - Serial monitor output for I2C Scanner

55

The code to initialise the ADCs can be seen in Figure 51, above. Initially, both ADCs are set to a

sampling rate of 3300sps then the two ADCs are initialised with their I2C address passed as the

begin() argument. If both ADCs are successfully initialised, then the continuous readings for both

ADCs are started.

The ESP32 was previously reading samples from ADC 1 at 1200sps and then the coded was updated
to take samples from both ADC 1 and 2 at 1200sps each. This means that the number of samples
that the ESP32 had to handle and compute with was doubled. Through some program efficiency
improvements, the ESP32 was successfully able to handle voltage readings and calculations from
both of the ADCs simultaneously. This is thanks to the strong computing power of the ESP32 and its
large amount of memory – this was a significant reason behind choosing the ESP32 as the MCU of
choice originally.

External Communications – Introducing a slave ESP32

As discussed in the last section, the ESP32 can handle 1200sps readings from two ADCs
simultaneously, but the desired functionality of the project involves further functionality – microSD
card storage, GPS, Wi-Fi/BLE server, cloud storage, etc. It is clear that, no matter how strong the
ESP32 is, it will not be able to handle the ADC readings and Wi-Fi tasks simultaneously. Therefore, a
second ESP32 was sourced and the potential architecture between the two ESP32s was theorised.

Architecture Requirements:

• The first desired requirements of the interlinking architecture followed the fact that the
master ESP32 should take the ADC readings and transfer them to the slave ESP32 by
whatever means, which in turn will use those readings for Wi-Fi-related purposes.

• The GPS interrupt timing disciplining is required to be wired to the master ESP32 as it is the
one actually taking the readings.

• Storing the values on the microSD card breakout could potentially be completed by either of
the ESP32s

Figure 51 - ESP32 code to initialise the ADCs

56

The first theorised attempt at communication between the master and slave ESP32s involved the
master sending the useful live measurements to the MicroSD card via SPI then the slave would in
turn read those values from the MicroSD card. This would mean that the master would only have to
store the values to the MicroSD card, without having to directly transfer them to the slave ESP32,
hence allowing the master to dedicate more processing potential to the ADC readings. Since the
master is already storing the readings to the microSD card in a suitable long-term format, the slave
ESP32 would only have to read from the microSD breakout. Essentially, this proposed architecture
would cover two essential bases, with only one process.

Figure 52, as shown above, showcases a flowchart of the first proposed master slave architecture.
This architecture would have been ideal, however, on deeper research it was found that SPI
communication protocol can only have one master. This proposed architecture, however, had both
ESP32s set up as masters to the microSD card breakout slave. Due to the nature of SPI – particularly
the CS timing [22] – this architecture was found to be infeasible.

Figure 52 - Flowchart of the first proposed master slave architecture

57

Protocol UART I2C SPI

Complexity Simple
Easy to chain multiple

devices
Complex as number of

devices increases

Speed
Slowest due to no clock

signal
Faster than UART Fastest

Number of wires 1 2 4

Number of devices Up to 2 devices
Up to 127, but gets

complex
Many, but gets very

complex

Number of masters and
slaves

Single to Single
Multiple slaves and

masters
1 master, multiple

slaves

Figure 53 - Communication protocol comparison table

To decide on the optimal communication protocol, the three types of possible communication
protocols were researched thoroughly. Figure 53, as shown above, showcases a comparison table of
the 3 protocols.

Since the microSD card could not be used as a passthrough for the data, it was decided that the slave
ESP32 should be the MCU that actually stores the values to the microSD card, to relieve the master
ESP32 from additional functionality – as the master has to allocate a lot of computational power to
the ADC readings. Since the slave will then be using SPI to store the values to the microSD card, it
became clear from the research that using SPI directly between the master and slave as well would
not be feasible, due to the nature of the clock timings requiring one clock signal only. This may be
possible to do, however, this project is limited in terms of time, so it is crucial to reduce complexities
where possible.

That leaves I2C and UART as the other possible communication protocols to be used between the
master and slave. As shown in Figure 53, it is clear that I2C is faster than UART. This is partly due to
the fact that UART does not have a clock signal [22]. In this project, it is quintessential that the speed
of the data transfer between the master and slave is as high as possible, to reduce delays from
affecting the ADC readings and Wi-Fi/BLE functionality of the master and slave, respectively.
Therefore, the next proposed architecture was to utilise the I2C communications interface to send
data from the master ESP32 to the slave ESP32.

Figure 55, as shown below, showcases the second proposed architecture, as discussed. The first step
towards engineering this architecture was to wire the master to the slave and see if the master
could detect the slave on the I2C bus.

Figure 54, as shown below, showcases the Fritzing circuit diagram for connecting the ESP32 master
and slave via I2C.

58

Figure 55 - Second proposed external communications architecture

ESP32 Slave

ESP32 Master

Figure 54 - Fritzing circuit diagram for connecting the ESP32 master and slave via I2C.

59

Figure 56, as shown above, showcases the Arduino IDE Serial Monitor output of the I2C Scanner
program. 0x48 and 0x49 are the two ADS1015 ADCs and it’s clear from the Serial Monitor that the
slave ESP32 is under the address 0x04.

The next goal was to get simple data transfers working from the master ESP32 to the slave ESP32. A
small library called “ESP32_I2C_Slave” [23] was utilised to get some very basic data transferring
between the master and slave. This library was archived in 2021 and it isn’t very popular, so the
library was used with skepticism initially, however, the functionality of the library worked perfectly
and hence, didn’t warrant the need to use a different library.

Figure 57, as shown below, showcases the I2C transfer code written for the master ESP32. It is key to
note that most of the values have been excluded from this screenshot. For demonstration purposes,
only “signalVoltage” and “currentFrequency” are included in this example. The full code can be
found in Appendix 9.

Once the master ESP32 has taken readings from the ADCs and calculated all the useful live
measurements, it will check if it has been more than a second since the last set of values was sent to
the slave. The WirePacker class will be utilised to store a string of characters as a char array. The
packet will then be read and written to the I2C bus by utilising the Wire class.

The slave code is a bit simpler. The slave essentially checks the I2C bus repeatedly for new updates.
If the master has sent data to the slave via I2C, then the slave will parse over that data to extract the
values into variables, then will use those variables in the code. The slave I2C code can be seen in
Appendix 10.

The ADC readings were then thoroughly tested and analysed to ensure that the new I2C
communications, between the master and slave, had no effect on the ADC readings themselves.

Figure 56 - Arduino IDE Serial Monitor output of the I2C Scanner program

60

Figure 57 - I2C transfer code written for the master ESP32

61

MicroSD Card writing from the slave ESP32

The slave ESP32 was wired to the MicroSD card breakout via SPI, in the same format as shown in
semester 1 of the project. The values being received over I2C from the master are parsed into
variables and then they are sent to the microSD card via SPI. To format these variables, the C++
snprintf function was utilised. Initially, these values were being written to a singular microSD card
text file called Smart_Wireless_Sensor_Readings.txt. This file could very quickly become populated
with data and hence reach an impractical size. A suitable solution to this problem was solved later in
the project.

External Communications Overview

Now that the master was sending data to the slave – which was in turn sending formatted data to

the microSD card – it was time to connect the slave ESP32 to the internet. The UE model of this

ESP32 devkit comes with a U.FL antenna port, to facilitate an external antenna to be connected to

the board. It was found that the built-in internal antenna had very poor signal and wall penetration,

therefore an external antenna was connected via the U.FL port. The slave could successfully scan for

nearby wireless networks, however, it struggled to connect to a Wi-Fi network. This was solved by

swapping the master ESP32 board with the slave ESP32 board. The ADC circuit functionality was re-

tested to ensure that swapping the boards had no effect on the readings and communications

between the boards and breakouts. The now-swapped slave board was successfully able to connect

wirelessly to the local network via a nearby router.

Now that the slave was able to connect to the internet, it was time to design the external

communications architecture. Throughout the project, the type of server had been described as

potentially either being a Wi-Fi server or a BLE server. Through some brief research, it was found

that the ESP32 cannot run Wi-Fi and Bluetooth server capabilities simultaneously [24]. Having access

to the internet for this project was decided as an essential component, due to future functionalities

such as cloud uploads and updating the board time to be in sync with GMT+1. Therefore, the idea of

using a BLE server was eradicated.

A goal of this project is to have easily accessible readings for the smart wireless sensor in all

scenarios. If the ESP32 was set up as a station for a web server, this means that a user connected to

the same network as the ESP32 would be able to access the ESP32 web page through the ESP32 Ip

address. This was seen as a valid potential option, however, if the smart wireless sensor was in a

scenario where it would not have access to a local network or the internet, then this solution would

be totally useless.

First, a solution was needed for this scenario where the smart wireless sensor would not have access

to a local network/the internet. The initial solution found was to have the ESP32 act as an access

point, rather than as a station.

62

Figure 59 shows the flow chart for the ESP32 as a station (hotspot) and Figure 58 shows the flow

chart for the ESP32 as a soft access point. With the access point architecture, this removes the need

for clients to connect to the router to access the ESP32 web server – the clients can directly connect

to the 2.4GHz Wi-Fi signal being transmitted from the ESP32 itself if they are within the 2.4GHz

signal range. Using the ESP32 as an access point was found to be optimal solution for those scenarios

where the smart wireless sensor would be unable to connect to the local network, however, it was

found that the ESP32 can be in both access point mode and station mode simultaneously by using

the “WIFI_MODE_APSTA” mode. It was also found that it would take no real extra computing power

to set up the ESP32 web server over the local network too – so the ESP32 was set up as both an

Access Point and a Station, simultaneously.

This meant that users would be able to access the ESP32 readings via the ESP32 Web Server by both

of the architectures shown in Figures 59 and 58. The users will be able to access the Web Server

from anywhere in the substation, either by standing nearby to the ESP32 and connecting to its own

network or by connecting to the local Wi-Fi network and accessing it that way.

However, what if someone wanted to read the sensor values from anywhere outside the substation,

or, even, from a different country? The solution is to utilise the ESP32 Wi-Fi features to send the

useful live measurements to a cloud-hosted website, thus enabling users to access the website and

measurements worldwide, at any time and any geo-location. The live measurements can then be

easily stored in cloud data storage, for later access.

In summary, users will be able to read the useful live measurements through multiple different

ways, as explained in these two following sections:

• First half: The ESP32 Web Server which can be accessed via the ESP32 Station and/or the ESP32

Access Point

• Second Half: The cloud-hosted website and cloud web storage

External Communications First Half – Simultaneous Access Point and Station Wi-Fi

Web Servers

A simple asynchronous web server was set up and tested in semester 1, however, this would type of

web server would be inadequate for this external communications architecture. The way the web

server in semester 1 was set up, was where a client would directly connect to the ESP32 via means

Figure 58 - Flowchart for the ESP32 as a station Figure 59 - Flowchart for the ESP32 as an access point

63

of TCP, then the ESP32 would repeatedly send html code to the client via HTTP requests so that a

web page would be displayed on the client device.

The slave ESP32 has a lot of functionality to deal with. It has to constantly check the I2C interface for

new readings from the master ESP32, it has to take those readings then parse them and store them

in the microSD card, it has to connect to the Wi-Fi to obtain the current time for the file/folder name

system and in future it will be uploading the sensor measurements to a cloud website and data

storage. This is clearly a lot functionality weighing on the slave ESP32 already. The web server that

was set up in semester 1 needs the ESP32’s full attention due to the nature of the greedy TCP

connection – as the ESP32 is constantly sending new html code the client to up the asynchronous

properties on the page – and hence, the ESP32 would not be to perform its other required tasks

while its greedily connected to the client.

The solution found is to still use an ESP32 web server, however, the web server will not function as

an asynchronous web page, but rather as a simple HTTP endpoint that will return the useful live

measurements to the user in the HTTP response body.

Figure 60, as shown above, showcases some of the ESP32 setup code. The ESP32 was setup in

“WIFI_MODE_APSTA” mode to specify that the ESP32 should be able function as both a station and

access point. The WiFi.softAP() method sets up the soft access point with a custom ssid and

password. The WiFi.begin() method then sets up the station with the local network ssid and

password that were defined in the code earlier. Once the three lines of code in Figure 60 have run,

the access point and the station should be up and running, however, there has not been an web

server functionality defined for those points so they must be health-checked in a specific way, as

shown below.

Figure 60 - ESP32 server setup code

Figure 61 - Command line output after the soft AP IP address has been pinged
successfully

64

The AP and the station IP addresses can be pinged at this stage, to ensure that they are up and

running. Figure 62, as shown above, showcases the command line output after the soft AP IP

address has been pinged successfully.

Figure 62, as shown above, showcases some of the AP and station web server setup code. This code

is part of the server.on() function call. This code essentially specifies what the ESP32 should do

whenever an HTTP request in the correct format is sent to either the network IP address (through

the station) or to the ESP32 IP address (through the access point). In both cases, the HTTP response

should be the same. A HTTP 200 “OK” response is returned with the 12 useful live measurements

returned in the HTTP body, as earlier defined by the “message” variable.

Figure 63, as shown above, showcases a screenshot of a laptop connected directly to the ESP32

Access Point through the laptop’s Wi-Fi peripherals. It then shows the HTTP request sent to the

ESP32 in the chrome browser to “192.168.4.1/readings”. Finally, it shows the HTTP body response in

the chrome main page, which was returned directly from the ESP32 to the laptop. All 12 readings are

returned in a clear, concise format for easy readability.

Figure 62 - Some of the AP and station web server setup code

Figure 63 - Laptop connected directly to the ESP32 Access Point

65

Figure 64, as shown above, showcases a screenshot of a laptop connected to the same local Wi-Fi

network that the ESP32 was connected to. It then shows the HTTP request sent in the chrome

browser over the local Wi-Fi network to the ESP32 to the “192.168.0.251/readings” address, which is

a different IP address from the ESP32 access point as the ESP32 was hosting the web server as a

station on a different IP address to that of the access point. Finally, it shows the HTTP body response

in the chrome main page, which was returned directly from the ESP32 to the laptop. All 12 readings

are returned in a clear, concise format for easy readability.

Figure 64 - Laptop connected to the same local Wi-Fi network that the ESP32 was connected to

66

External Communications Second Half – Cloud website and storage flow

To send the data from the slave ESP32 to a cloud-hosted website and to cloud bucket storage, there

are a few different hoops that the data must jump through to reach its end destination.

React.js/html/css was chosen as the most suited framework for the website functionality due to

React’s lightweight, yet asynchronous nature. This will facilitate asynchronous measurement

updates to the website.

The facts were then laid on the table. The ESP32 can send and receive HTTP requests across the local

network or through the access point mode. The React.js side of the website can also send HTTP

requests, however, the React.js website cannot directly send or receive HTTP requests to or from the

ESP32, and hence, cannot receive HTTP requests from the ESP32. This fact specified the need for a

suitable back-end. A possible back-end choice for the React.js website could be Node.js, since React

is native to Node, however, a Java/Spring Boot backend application was chosen due to its familiarity.

Spring Boot is a backend Java-based framework used for creating microservices [25].

Before setting up the more-complex endpoints for transferring values between the ESP32 and the

backend, a simple “ping” endpoint was set up in the Spring Boot application. This simple endpoint

returns an “OK” (200) HTTP response with a body containing the string “pong”. This is a very useful

endpoint to test the APIs to ensure that they can communicate as expected. Figure 65, as shown

below, showcases the ESP32 successfully hitting the ping endpoint in the backend Spring Boot

application.

Figure 65 - the ESP32 successfully hitting the ping endpoint in the backend Spring Boot application

67

Spring Boot Backend

Figure 66, as shown above, showcases the architecture that was decided on for the cloud data flow

from the ESP32 through to the cloud web-hosting and database storage. The ESP32 sends an HTTP

POST request to the setValues() endpoint of the Spring Boot application. This POST request contains

the 12 useful live measurements and the Java app then parses those variables into local Java

variables. Since the Spring Boot/Java app is continuously running in Google App Engine, whenever

the React.js website sends an HTTP GET request to the getValues() endpoint Spring Boot backend

application, the values of the variables in the Spring Boot app (that were last set by the ESP32

through the setValues() endpoint) will then be returned to the React website in JSON format as part

of a “SensorData” object, which contains the 12 values.

Figure 67, as shown above, showcases the Java code for the getValues() endpoint in the Spring Boot

application. The endpoint functionality is very basic – whenever the endpoint is called by the React

app, it builds a SensorData object (using the local variable values) then returns the SensorData

object to the React app. When instantiating Plain Old Java Objects (POJOs) in Java, each field must

Figure 66 - Architecture that was decided on for the cloud data flow from the ESP32 through to the cloud web-hosting and database
storage

Figure 67 - The Java code for the getValues() endpoint in the Spring Boot application

68

be set manually after instantiating the object. The Lombok library [26] was utilised with the

SensorData class to facilitate the use of builder() methods for instantiation and value assigning of

SensorData objects, as shown in Figure 67, above. The full Java/Spring Boot code can be seen in

Appendix 12.

The URL of the getValues() endpoint is set at “{baseUrl}/getReadings”. When running the

application locally, either of the following URLs can be used to hit the getReadings() endpoint:

• “localhost:8081/getReadings”

• “http://{ipAddress}:8081/getReadings”

In the Google Cloud Platform (GCP) App Engine production instance however, the URL would be

“https://smart-wireless-sensor-backend.nw.r.appspot.com/getReadings”. This URL can only be

called by the React App as a cross origin specification was set up to only allow API calls from the

React App to work. This was set up using the @CrossOrigin Spring Boot annotation and was done so

to prevent anyone from maliciously spamming the website, hence, messing up the readings.

To test the sending of API calls to the production instance, the “ping” endpoint has the cross origin

API calls set to any origin, therefore, the ping endpoint can be called directly by using the following

link:

https://smart-wireless-sensor-backend.nw.r.appspot.com/ping

The ping endpoint should return an “OK” (200) HTTP response with body containing the string

“pong”, as shown earlier. This can be validated be visiting the link and the response will be similar to

Figure 68, shown below. This ping endpoint is useful to test if the Spring Boot instance is up and

running in the GCP App Engine cloud.

React JS Website

The React website sends a GET request to the getValues() endpoint of the Spring Boot application

every two seconds. The GET request returns the SensorData object to the React app in JSON format.

The React app then extracts the useful live measurements from the SensorData JSON format then

updates its local variables, hence causing the values displayed on the website to update,

asynchronously – which means that the web page doesn’t have to refresh to do so.

If for some reason the ESP32 is not sending data to the Spring Boot application, then the React App

will detect that none of the values have updated for the past 5 seconds and hence it will enter a

demo mode. This demo mode is used to demonstrate how the website normally functions when the

ESP32 is turned on and is sending data.

Website link: https://smart-wireless-sensor.nw.r.appspot.com/

Figure 68 – HTTP response returned from GCP Backend ping endpoint

https://smart-wireless-sensor-backend.nw.r.appspot.com/ping
https://smart-wireless-sensor.nw.r.appspot.com/

69

The full React website code can be seen in Appendix 13. Figure 69, as shown below, showcases a

screenshot of the React website in live action.

 Figure 70, as shown below, showcases the website in demo mode. The following sentence of text

can be seen displayed at the bottom of the page to inform the user that the website is currently in

demo mode. “Demo on: ESP32 pipeline is currently not sending any data to the backend”

Figure 69 - React website in live action on Google App Engine hosting

Figure 70 – React website demo mode

70

Google Cloud Platform Bucket Storage

The history of the 12 useful live measurements are being stored on the local MicroSD card every

second. However, in an industry scenario, this MicroSD card may be unfeasible or impossible to

access. Therefore, to solve this problem, the history of the useful live measurements should be

stored in a suitable cloud storage system. The most suitable solution was found to be Google Cloud

Platform Storage (similar to AWS simple storage solution (S3)). GCP Storage uses buckets to store

the data – the buckets are basic containers used to store data in the cloud and can store most types

of files.

A triggering service was setup so that when the React webpage calls the getValues() endpoint of the

Spring Boot API, the 12 useful live measurements returned to the React web page are stored in a

structured text file/folder format very similar to the structure that can be seen on the MicroSD card

(this microSD card format can be seen in the next section, in Figure 71). Google’s bucket storage

system is simple, cheap and effective, making it the ideal solution for cloud data storage of the

useful live measurements.

MicroSD Card Smart Folder Structure and File Names

At this point in the project, the useful live measurements were being stored on the MicroSD card

into the Smart_Wireless_Sensor_Readings.txt file. This file had no structure, the new values were

just appended to the end of the file. There was no way for a user to see at what time the useful live

measurements were stored. A possible solution could have been to print the time above the set of

measurements, however, having all the measurements in one text file is very poor practice. This file

would be hard and painful to try to navigate through, it would become too large in file size and

hence eventually corrupt, it would be limited in terms of size due to the data partitions of the

MicroSD card.

To solve these problems, a solution was formulated which involved finding the current date and

time, then using this date and time as the file name of the text file. Once the time changes past a

certain degree, then a new text file will be created. The next decision to be made was how often a

new text file should be created, and the structure of file names and folders. The final decisions made

were as follows:

• The useful live measurements should be appended to a separate text file for each new

minute

• The text file name should be the full date and time

• The folder structure should be as follows:

“Smart_Wireless_Sensor_Readings/year/month/date/time/datemonthyear_time.txt”

• Eg: “Smart_Wireless_Sensor_Readings/2023/April/12/0847/2023April2023_0847.txt”

The folder structure makes it very easy to navigate to the desired year, month, date, and hour. The

file name includes the date and time too. Even though the text files are organised in folders based

on the date, the text file names themselves include the date too to ensure that if these text files are

copied to a location outside of the folder structure – eg. for analysis, or by accident – then it will be

easy to determine the origin of those files.

71

The full folder and file structure of the MicroSD card can be seen in Figure 72, as shown above. It

demonstrates the comprehensive structure to both the text files and their overlying folders.

Figure 71 - Full folder and file structure of the MicroSD card

Figure 72 - Screenshot of the 12 useful live measurements being stored one of the MicroSD card text files

72

Figure 71, as shown above showcases a screenshot of the 12 useful live measurements being stored

one of the MicroSD card text files. The reason and choice behind each of these live measurements

will be explained in a later section.

An accurate and updated date and time are needed to be able to create the correct microSD card

text files and folders. When the ESP32 is reset or loses power, the current date and time are lost.

Therefore, on each initialisation/reboot of the ESP32, the current date and time should be acquired

and synced. To update the date and time, a valid internet connection must be secured. Therefore,

the slave ESP32 will first connect to the internet then try to acquire the updated date and time via

an ntp server via the internet. [27]

Figure 73 – ESP32 ntp server setup code

Figure73 as shown above, showcases the line of code used in the setup section of the ESP32 code to

synchronise the ESP32 time with an ntpServer (“pool.ntp.org”). This line of code only needs to be ran

in the setup section when initialising the ESP32. Once the ESP32 time has been synchronised here,

the ESP32 time stay up to date for the remaining period that the ESP32 is running.

Figure 74, as shown above, showcases the ESP32 code used to create the skeleton pre-formatted

string for the 12 useful live measurements. The “format” variable is then fed into an snprintf()

function, where the 12 measurements are passed in place of the skeleton placeholders defined by

the percentage symbols. This skeleton code format can be seen in multiple other places in the code,

including the HTTP response body return string of the station and AP web server.

Figure 74 – ESP32 code used to create the skeleton pre-formatted string for the 12 useful live measurements

73

Figure 75, as shown above, showcases the code used for the time and microSD card functionality in

the main loop of the slave ESP32. The “getLocalTime(&timeinfo)” line calls the getLocalTime()

function and passes a reference to the memory address of the timeinfo variable as a parameter. This

means that the getLocalTime function will be able to directly access and make changes to the

timeinfo variable without having to return a separate variable. The timeinfo variable is assigned a

string value containing the updated date and time. This string is then formatted to the specific folder

and file name format. The string is then used as the path when appending to the text file. The

“appendFile()” microSD card function will even create a new text file if the specified file and folder

path does not already exist.

Figure 75 - Code used for the time and microSD card functionality in the main loop of the slave ESP32

74

GPS breakout for ADC timing disciplining - Solution

As shown in the previous GPS section, the 1PPS signal coming from the GPS breakout was passed

into the ESP32 interrupt pin and caused the ESP32 to take ADC readings accurately once every

second. The next task was to use this 1PPS signal to discipline the interrupt timer of the ESP32, i.e.

no matter the geo-location or the number of smart wireless sensors, the ADC readings in every

sensor should be taken at exactly the same time – perfectly in sync. This is crucial for the smart

wireless sensors, to ensure that the readings and useful live measurements of the sensors are taken

at exactly the same time.

Since the ADC readings will be taken at a very high sampling rate of 1200sps, it would be unwise to

try to sync the ESP32 every second. An optimal solution was formed of disciplining the timing

interrupts initially then relying on the ESP32 clock, from then on, to maintain the 1200sps readings

and hence, maintain the in-sync interrupt ADC reading timings. When the master ESP32 is initialised

or rebooted, it will wait in a loop until it receives the 1PPS signal from the GPS breakout via UART.

Once the signal is received, the ESP32 interrupt timer is kicked-off and the ESP32 begins taking

readings from the ADC, following the timings of the ESP32 interrupt timer (at 1200sps).

Figure 76, as shown above, showcases the line that initialises the GPS breakout. This line is ran in the

setup section of ESP32 master program.

Figure 77, as shown above, showcases the GPS interrupt syncing code that runs at the start of the

main ESP32 master code loop, after the ESP32 setup code has already ran. The first while loop clears

the serial in preparation for the second while loop. Once the serial has been cleared by the first

while loop, the second while loop waits for the first byte of the NMEA sequence sent from the GPS

breakout to the ESP32. The first byte will be transferred at the exact start of a new second and

Figure 76 - The line of code that initialises the GPS breakout

Figure 77 - GPS interrupt syncing code

75

hence, the while loop will break at this exact moment then the ADC readings will begin to be taken –

following the 1200sps interrupt timings of the ESP32 clock. This interrupt disciplining ensures that

the master ESP32 always starts off its timings at the exactly the start of a new second, and thanks to

the ESP32 clock precision, the timing interrupts will stay in sync from this point forward.

The GPS interrupt timing was thoroughly tested to ensure that the functionality worked as expected.

Figure 78, as shown above, showcases the Serial Monitor output of the GPS interrupt sync testing.

The millis() function was utilised to test how long the second while loop (shown in Figure 77) would

have to wait for the exact start of a new second. This could be anywhere between 1 – 999ms. Figure

78 shows waiting times of 14ms, 423ms and 69ms, proving that the GPS interrupt timer disciplining

functionality works as expected. The GPS breakout as part of the circuit can be seen later, in Figure

87.

Signal Conditioning Circuit Problem Fix
In semester 1, there was an issue with the signal conditioning circuit. To shift the output voltage

signal by 2.5V, a 2.5V signal was passed into the non-inverting pin of the op-amp.

Figure 78 - Serial Monitor output of the GPS interrupt sync testing

Figure 79 - Semester 1 op-amp circuit

76

Figure 79, as shown above, showcases the op-amp circuit in semester 1 that was having the circuit

issues. The problem lay with the value of the voltage divider 3.80kΩ resistor value as highlighted in

red.

Figure 80, as shown above, showcases the transient output produced by the Figure 79 circuit. The

dark blue “Shift” line shows the 2.5V non-inverting input voltage being fed into the op-amp,

however, the Vout signal has been shifted much further than 2.5V, as shown in the transient wave.

Using the C1 and C2 wave cursors, the midpoint of the wave can clearly be found as (4.6406 +

1.7893) / 2 = 3.215V when it should actually be equal to 2.5V.

𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛
𝑅2

𝑅1 + 𝑅2

𝑉𝑜𝑢𝑡 (𝑅1 + 𝑅2) = 𝑉𝑖𝑛 × 𝑅2

𝑅1 =
𝑉𝑖𝑛 × 𝑅2

𝑉𝑜𝑢𝑡
− 𝑅2

𝑅1 =
12 × 1

2.5
− 1

𝑅1 = 3.80𝑘Ω

Figure 81 - Voltage divider equation

Figure 80 - The transient output waveforms produced by the Figure 79 circuit

77

The original voltage divider calculation used to obtain this 3.80kΩ resistor value can be shown

above, in Figure 81. The problem with this voltage divider calculation is that it does not account for

the gain of op-amp itself.

𝑉𝑜𝑢𝑡 = 𝐺𝑎𝑖𝑛 × 𝑉𝑖𝑛 ×
𝑅2

𝑅1 + 𝑅2

𝑉𝑜𝑢𝑡 (𝑅1 + 𝑅2) = 𝐺𝑎𝑖𝑛 × 𝑉𝑖𝑛 × 𝑅2

𝑅1 =
𝐺𝑎𝑖𝑛 × 𝑉𝑖𝑛 × 𝑅2

𝑉𝑜𝑢𝑡
− 𝑅2

𝑅1 =
(1 +

1
3.5

) × 12 × 1

2.5
− 1

𝑅1 = 5.17𝑘Ω ≈ 5.20𝑘Ω)

Figure 82 - Fixed voltage divider equation

Figure 82, as shown above, showcases the fixed voltage divider equation – with the gain included in

the equation. As shown in the equation, the correct value of R1 in the voltage divider circuit was

found to be 5.17kΩ, which can be rounded up to 5.20kΩ for the physical circuit later.

Figure 83, as shown above, showcases the newly-fixed inverting op-amp circuit with the correct

voltage divider circuit containing the 5.17kΩ R1 resistor.

Figure 84, as shown below, showcases the transient waveform output of the fixed op-amp circuit

shown in Figure 83. It’s clear from using the C1 and C2 wave cursors in Figure 84, that the midpoint

of the Vout waveform is equal to (3.9263 + 1.0748) / 2 = 2.501V which is almost exactly 2.5V, as

expected.

Figure 83 - Newly-fixed inverting op-amp circuit with the correct voltage divider circuit containing the 5.17kΩ
R1 resistor

78

𝑁𝑜𝑛 𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑛𝑔 𝑜𝑝 𝑎𝑚𝑝 𝑖𝑛𝑝𝑢𝑡 =
𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑂𝑓𝑓𝑠𝑒𝑡

𝐺𝑎𝑖𝑛

𝑁𝑜𝑛 𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑛𝑔 𝑜𝑝 𝑎𝑚𝑝 𝑖𝑛𝑝𝑢𝑡 =
2.5

1 +
1

3.5

𝑁𝑜𝑛 𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑛𝑔 𝑜𝑝 𝑎𝑚𝑝 𝑖𝑛𝑝𝑢𝑡 = 1.944𝑉

Figure 85 - Non inverting op-amp input equation

Figure 85, as shown above, showcases a different equation that is used to validate the voltage

divider voltage shift section of the op-amp circuit. The equation shows that the non-inverting op-

amp input pin requires an input of roughly 1.944V to obtain the Vout voltage shift of 2.5V. The

purple “1o944V” line on shown in Figure 84 (and its source in Figure 85) shows a DC value of

1.9448V being fed into the non-inverting pin of the op-amp, which is very close to the calculated

value of 1.944V, hence validating that the voltage divider shift circuit is splitting the voltage by the

correct amount and hence, is functioning as expected.

Figure 84 - The transient waveform output of the fixed op-amp circuit shown in Figure 83

79

Signal Conditioning Physical Circuit

After fixing the signal conditioning circuit with the correct resistor values, as shown in the previous

section, it was time to build the physical circuit. The following parts were acquired for the circuit:

• 5.2kΩ resistor (5kΩ + 200Ω) (rounded up from 5.17kΩ)

• 3.5kΩ resistor (3.3kΩ + 200Ω)

• Two 1kΩ resistors

• Function Generator

• UA741 Op Amp

• 12V DC Power supply for the 741 op-amp

• Breadboard jumper wires

• Test leads

Figure 86 - Circuit diagram of the op-amp circuit wired up to the ESP32 circuit

80

Figure 86, as shown above, showcases the circuit diagram of the op-amp circuit wired up to the

ESP32 circuit. The output of the op-amp circuit is connected to the A0 analogue input pin of the first

ADS1015 ADC. The function generator amplitude was set at 5V and the frequency was set at

49.98Hz, to simulate a mains signal frequency – which will be extremely close to 50Hz. A photo of

the physical circuit can be seen below, in Figure 87.

Figure 87 – Physical op-amp circuit hooked up to ADC 1, as shown in circuit diagram in Figure 86

81

Figure 88, as shown above, showcases the Rapid Electronics 12V DC power supply that was used for

this circuit. This was later replaced by a 8 x 1.5V AA battery holder.

The function generator feeds a non-shifted 5V analogue input signal to the signal conditioning

circuit, which inverts the signal and attenuates it down to the 1VRMS Vout. This 1VRMS output

signal was then fed into an analogue input of the ADS1015.

Figure 88 - Rapid Electronics 12V DC power supply that
was used for this circuit

Figure 89 - Serial Plotter output waveform of the resultant signal being fed into the ADC from the inverting op-amp circuit

82

Figure 89, as shown above, showcases the Serial Plotter output waveform of the resultant signal

being fed into the ADC from the inverting op-amp circuit. The waveform was very clean after coming

through the inverting op-amp circuit, this is thanks to the high impedance of the op-amp itself. This

signal was used to represent the voltage coming from VT in the three phase system.

Voltage Scaling

The smart wireless sensor measures the signal conditioning attenuation circuit Vout signal. The Vin

value of the circuit was set to 5V, however, the secondary side voltage of the VT transformer is

actually 110V. This 110V would be unsafe and unfeasible to work with in practice, and hence, 5V was

used as Vin, for demonstration purposes.

Since this project is not working with the true VT values, this project is therefore used to simulate

these values. The primary side voltage of the VT transformer is the voltage value that the smart

wireless sensor is actually trying to measure, therefore, this primary side voltage must be calculated

through scaling the simulated value. A suitable primary side voltage would be around 11kV.

The full V-peak value of the primary side is set at 11kV. Therefore, when the secondary side voltage

is at the V-peak value of 110V, the voltage value in the program should be scaled to this full V-peak

value. In the signal conditioning circuit, the 110V is scaled down to 1VRMS (1.414V) and hence,

whenever the voltage being inputted into the ADC is of 1.414V, then the scaled voltage should be

calculated to be 11kV for the primary side and 110V for the secondary side.

This is a simple ratio – if the value being fed into the ADC is was halved, i.e. 1.414 / 2 = 0.707V, then

the scaled primary side voltage will be halved down to 5.5kV and the scaled secondary side voltage

will then be halved down to 55V.

Figure 90, as shown above, showcases the two lines of code used to scale the voltage value to the

11kV primary side simulated value. To find the voltage of the analogue input signal, the VRMS has to

be worked out first, as explained in the VRMS section. The primarySideVoltagePeak float variable

was set to 11000.0, earlier in the code. The VRMS value is scaled by calculating the ratio of the

measured voltage value compared to the full scale ADC voltage value of sqrt(2) (= 1.414) which is

then multiplied by 11000. In summary, an input signal of voltage 1.414V will equate to the

scaledVoltage variable value (shown on the second line) being set to 11kV, as expected.

Figure 90 - Code used to scale the voltage value to the 11kV primary side simulated value

83

Current

The current can’t actually be measured, so it is instead being simulated. A simulation was made that

represents a full fault current generator for the three-phase current transformer (CT). The peak fault

current of the simulation is set to a value of 200A, however, most of the time the actual load current

will be around 10% of that, i.e. at roughly 20A. The current will only reach 200A if there is short

circuit fault in the circuit.

In this simulation circuit, the current is represented by the voltage output coming from the function

generator. Since the load current is around 10% of the full 200A peak fault current, this must be

accounted for when using the function generator to simulate the current signal (with voltage). There

are two possible options to obtain this signal of 10% amplitude:

1. Use two function generators – one for the VT voltage and one for the CT voltage

2. Use one function generator in combination voltage divider circuit to split the signal between

the voltage op-amp circuit and the “current” op-amp circuit. The current simulation signal

will be dropped to a voltage of roughly 10% of the voltage simulation signal

The first option is wasteful as it requires two separate function generators and this set up will also

produce two waveforms that are randomly out of phase – which is unrealistic as the VT and CT

signals will be in phase in the real-world scenario. Therefore, the optimal choice is to use one

function generator in combination with a simple voltage divider circuit.

Figure 91, as shown below, showcases the simple voltage divider equation used to determine what

size of resistors were needed for the voltage divider circuit to split the function generator signal

between the voltage and current simulation signal conditioning circuits.

𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛
𝑅2

𝑅1 + 𝑅2

𝑉𝑜𝑢𝑡 (𝑅1 + 𝑅2) = 𝑉𝑖𝑛 × 𝑅2

𝑅1 =
𝑉𝑖𝑛 × 𝑅2

𝑉𝑜𝑢𝑡
− 𝑅2

𝑅1 =
5 × 1

0.5
− 1

𝑅1 = 9𝑘Ω

Figure 91 - Voltage divider equation to determine function generator resistor value for split

84

Figure 92, as shown above, showcases the Multisim circuit schematic diagram for the voltage and

current op-amp attenuation circuits being fed the 5V function generator signal split by the voltage

divider.

Figure 92 - Multisim circuit schematic diagram for the voltage and current op-amp attenuation circuits being fed the 5V function generator
signal

85

Figure 93 - Transient waveform outputted by the circuit shown in Figure 92

86

Figure 93, as shown above, showcases the transient waveform outputted by the circuit shown in

Figure 92. The light blue waveform labelled “Vout” showcases the voltage output waveform and the

dark blue waveform labelled “Vout2” showcases the simulated current output waveform. The dark

blue current (“Vout2”) waveform can be seen to have a Vp-p value of (2.6342 - 2.3527) / 2 =

0.141Vp, which is exactly 10% of the PR2 voltage waveform (Vp = 1.414V), which is as expected. By

using the current waveform cursor values again, the midpoint can also be proven to be (2.6342 +

2.3527) / 2 = 2.493V which is almost exactly 2.5V, as expected.

Figure 94 - Fritzing circuit to represent the final smart wireless sensor circuit, which includes the full double op-amp attenuation circuit

87

Figure 92, as shown above, showcases the Fritzing circuit to represent the final smart wireless

sensor circuit, which includes the full voltage and simulated current function generator double op-

amp attenuation circuit connected to the ESP32 master slave circuit. The second physical inverting

op-amp circuit was then put together on a breadboard, exactly the same as the voltage signal

conditioning circuit. The physical voltage divider circuit was added to the function generator input to

split the signal to between the voltage and simulated current op-amp circuits.

Figure 95, as shown above, showcases the simple Serial Plotter output taken for the 1200sps ADC

readings for the outputs from the voltage op-amp circuit and the simulated current op-amp circuit. It

is clear that both waveforms are very clean in nature and the simulated current voltage signal is

small fraction of the first voltage signal. It is not clear from Figure 95 if the current value is 10% of

the voltage value, however, this will be proven below.

Once the simulated current signal was being read from the ADC successfully, it was time to actually

calculate the “current” value from this second voltage signal. The solution was exactly the same as

the first signal – to work out the IRMS using the sliding window technique then the current value is

just sqrt(2) multiplied by the IRMS value.

Now that the “simulated current” value was successfully being calculated, the value being roughly

10% of the voltage value is further proven in the Serial Monitor screenshot in Figure 96, as shown

below. The calculated voltage and current signals were included in this screenshot to demonstrate

the ratio, as highlighted by the red and green rectangles. The frequency of the current waveform did

not need to be calculated in the code as the frequency of this waveform is exactly the same as the

voltage waveform, due to them coming from the same function generator signal.

Figure 95 - Serial Plotter output taken for the 1200sps ADC readings for the outputs from the voltage op-amp circuit and the simulated current
op-amp circuit

88

Current Scaling

Now that the simulated current signal readings were coming through successfully and the current

was being successfully calculated, it was time to scale the current. This was done in exactly the same

manner as the voltage was scaled.

The full peak fault current value of the primary side of the CT transformer was set at 200A,

previously. Therefore, a calculated simulated current voltage of 1.414V being calculated from the

current op-amp circuit readings would equate to a primary side current of 200A. As explained

previously, the load current of the circuit normally sits at around 10% of the full peak fault current

value and hence the voltage divider circuit from the function generator signal was used to drop the

voltage of the signal being fed into the simulated current op-amp circuit to 10%.

It was then proven, in Figure 96, that the “simulated current” voltage coming through was around

(0.13V) 10% of the voltage value, as expected. Therefore, the primary side current shown in Figure

96 can be worked out using the following equation:

𝐶𝑇 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑠𝑖𝑑𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑃𝑒𝑎𝑘 𝐹𝑎𝑢𝑙𝑡 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 ×
𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑆𝑖𝑔𝑛𝑎𝑙 𝑉𝑜𝑙𝑡𝑎𝑔𝑒

𝐹𝑢𝑙𝑙 𝑆𝑐𝑎𝑙𝑒 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑉𝑎𝑙𝑢𝑒

𝐶𝑇 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑠𝑖𝑑𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 200 ×
0.13

√2

𝐶𝑇 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑠𝑖𝑑𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 18.385𝐴

Figure 97 – Scaling equation

The scaling equation, shown in Figure 97, was then implemented into the code to scale the current

values to their full CT primary side current values.

Figure 96 – Serial monitor screenshot of voltage and current

89

Power and Energy Consumption

Now that the scaled voltage and scaled current values were being calculated from the two op-amp

circuit outputs, the power and energy consumption values could finally be calculated by

implementing two algorithms in the code. The power equation can be seen below, in Figure 98.

𝑃𝑜𝑤𝑒𝑟 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 × 𝑉𝑜𝑙𝑡𝑎𝑔𝑒

Figure 98 – Power equation

The energy consumption could then be calculated by using the energy equation in Figure 99, as

shown below.

𝐸𝑛𝑒𝑟𝑔𝑦(𝑘𝑊ℎ) = 𝑃𝑜𝑤𝑒𝑟(𝑘𝑊) × 𝑇𝑖𝑚𝑒(ℎ)

Figure 99 - Energy equation

The C++ code implementation of the power and energy consumption equations can be shown

below, in Figure 100 and Figure 101, respectively. The scaledPower and avgScaledPower variables

are later converted to kW by the slave ESP32 whenever it parses the I2C message from the master.

Figure 100 - Power C++ code

Figure 101 - Energy C++ code

The power and energy consumption were the final metrics that were calculated as part of the smart

wireless sensor project. The full list of 18 metrics being measured/calculated can be shown in the

list, in Figure 102, below. Both the scaled and non-scaled values can be found in the master ESP32

program, in Appendix 9.

• ADC1 voltage readings

• ADC2 “current” readings

• Scaled VRMS

• Scaled IRMS

• Average scaled VRMS

• Average scaled IRMS

• Scaled voltage

• Scaled current

• Average scaled voltage

• Average scaled current

• Frequency

• Average frequency

• Scaled power

• Average scaled power

• Energy Consumption

• Number of Faults

• Time elapsed

• Midpoint

 Figure 102 - 18 metrics calculated by the master ESP32

90

Out of the 18 above metrics listed in Figure 102, the 12 underlined metrics are the metrics that are

being sent to the slave ESP32, and hence, being sent to the smart wireless sensor cloud-hosted

website and cloud data storage. Screenshots of the final website and website demo can be seen in

the External Communications section, in Figure 69 and Figure 70, respectively.

Battery-powered Solution

A portable power bank was utilised to provide power to both the ESP32s. This allows the double

ESP32 circuit to be used in any scenario or location, regardless of whether there’s a mains supply

nearby. A photo of the power bank connected to the ESP32 circuit can be seen below, in Figure 103.

The “Anker” portable power bank seen in this photo was chosen for its small cylindrical form factor

and decent battery capacity. Multiple power banks could be used in future to improve the power

bank longevity.

Figure 103 - ESP32 portable battery bank circuit

91

To power the 12V op-amps, a 12V car battery would obviously be an infeasible solution. Therefore, a

small and lightweight 8 x AA battery holder was purchased to achieve the 12V solution. Each AA

battery is 1.5V, and hence, having 8 of these batteries in series achieves the desired +-12V solution

that is needed to power the op-amps. The battery holder was wired up to both of the two op-amps

and was able to power them both successfully. A photo of the 8 x AA battery holder was taken after

filling it up with fresh batteries and can be seen below, in Figure 104.

Since both of the ESP32s and both of the op-amps are now being fully powered by batteries, the

smart wireless sensor can now be taken and used in any location or scenario without breaching the

electrical integrity of the circuit.

If this smart wireless sensor project was to continue, the next step would be to improve the battery

functionality so that the two op-amps and the ESP32s could run off of the same supply. Through

simulation, it was found that the op-amps functioned as expected, when being powered by a 9V

supply. Using a single 9V lithium-ion battery would be a much smaller and neater solution than the

current solution. 9V is too high for the ESP32s as they need a 5V supply. Therefore, a simple voltage

divider circuit could be set up to provide 9V to the two op-amps, while also supplying 5V to the two

ESP32s.

Research could be done into using a rechargeable 9V battery instead of the 9V alkaline battery, with

the possibility of using solar power to recharging the battery – depending on the scenario of the

sensor use-case. At the very minimum, it should be very easy and accessible for the user to replace a

long-lasting the 9V battery in the circuit, every so often.

Figure 104 - 8 x AA battery holder to achieve the 12V solution

92

Fault Detection Measurement

In the substation scenario, when there is a fault on the power line, this causes a short circuit and

hence, the circuit rises quickly. A trip point is set up so that if the current exceeds this trigger point

value, then the protection relay device will trip the circuit breaker, which knocks off the power line

supply and switches to the voltage support. In this project, the primary side CT load current is

around 20A. A trip point was set to 100A for this project so that whenever the current exceeds 100A

for at least one reading, the number of faults will be incremented by one. This was implemented in

the code, however, what if the fault stayed above 100A for an extended period of time?

The solution to this problem was solved in the code implementation – the fault is only declared as

having finished once the current falls down below 40A again.

Figure 105, as shown above, showcases the fault detection code in the C++ master ESP32 program.

The code checks if the scaledCurrent is detected at being over 100A. If the scaledCurrent was read as

below 40A more recently than when it was read at above or equal to 100A, then the faultCounter

will be incremented. This ensures that the faultCounter is only incremented once on each new fault,

rather than being incremented multiple times during each fault. A value of 40A was chosen as the

fault-finished value to ensure that the fault has truly finished occurring – when the scaledCurrent

value lowers below 40A it can be safely concluded that the fault has finished occurring.

Figure 105 – Fault detection ESP32 code

93

Final Circuit
Figure 106, as shown below, showcases the final smart wireless sensor circuit – with the addition of

the transformers. The VT and (simulated) CT transformers fed into the two op-amp attenuation

circuit, with the rest of the circuit unchanged. The voltage outputs of these two signal conditioning

circuits are then fed into the first analogue input of each of the two ADS1015 ADCs which take the

1200sps readings from the signals. The readings are run through the various algorithms and the 12

useful live measurements are then outputted via external communications means to the users.

1VRMS

1VRMS

VT

Simulated

CT

11kV 110V

20A 5A

(11V)

Figure 106 - the final smart wireless sensor circuit – with the addition of the VT and CT transformers

94

Semester 1 Progress Gantt Chart

Key dates:

Interim Report Submission

Figure 107 - Gantt chart to show the project progress made in semester 1

95

Semester 2 Predicted Progress Gantt Chart

Oral Examination Week Final Report Submission

Figure 108 - Gantt chart to show the project progress that is expected to be made in semester 2

96

Semester 2 Recorded Progress Gantt Chart

Oral Examination Day Final Report Submission

Figure 109 - Gantt chart to show the project progress that was actually made in semester 2

97

Management – Reflection and Analysis Against Plan

Figure 107 showcases the recorded progress Gantt Chart of Semester 1.

Figure 108 showcases the predicted progress Gantt chart going into the start of Semester 2.

Figure 109 showcases the recorded progress Gantt chart of Semester 2.

The progress of semester 1 was demonstrated in the Interim report. The following section will

reflect and analyse the semester 2 predicted Gantt chart to the measured Gantt chart (Figure 108

and Figure 109, respectively).

As shown in the predicted semester 2 progress Gantt chart in Figure 108, the chapters with green

text colour were tasks that were added in the recorded semester 2 Gantt chart. The chapters in with

the red text colour were tasks that were either no longer seen as necessary or they are chapters that

did not fulfill the predictions (weren’t completed for various reasons).

When visually comparing the predicted and recorded semester 2 Gantt charts, it’s very clear that the

predicted Gannt chart had a much more linear, waterfall-like flow compared to the actual recorded

Gantt chart. This is due to the fact that the order in which the semester 2 tasks were completed was

actually very different to the predicted order. This gives the recorded Gantt chart a very messy and

chaotic appearance, however, this is perfectly okay as the order of priority and dependency in

projects cannot always be truly predicted.

The second noticeable visual difference is fact that the predicted Gantt chart finishes the current

task before moving to multiple other tasks, whereas in the recorded Gantt chart, some tasks are

reopened up to 4 times – as seen in the “1200sps ADC voltage measurements” task. Reopening and

altering tasks is not ideal due to the inefficiency of context switching back to those old tasks,

however, reopening old tasks is sometimes a necessary process. This is due to more experience

gained further into project, meaning that in hindsight there are certain tasks that must be modified.

This is also due to the fact that certain tasks have a cyclical dependency – they depend on the nature

of the future tasks, which in turn depend on the past tasks. This leads to both tasks needing to be

altered multiple times each, e.g. “1200sps ADC voltage measurements” and “Use true zero points to

work out true frequency” tasks, as shown in the recorded Gannt chart.

Individual tasks analysis
For the individual tasks, the “1200sps ADC voltage measurements” task was predicted to take 8

days. In the recorded chart, it take 8 days initially, however, it had to be reopened 3 more times to

make appending changes after making progress with the frequency and VRMS. It had to be

reopened due to the fact that the way that the 1200sps sampling rate was achieved in the first 8

days was inadequate for the nature of the VRMS and frequency.

The second task completed was the “Use true zero points to work out true frequency” task. It was

predicted to take 8 days, but it actually took 14, due to the complex nature of the task and the fact

that the ADC measurements task had to be amended as part of the process.

The next task completed was the “50Hz VRMS calculations” task. The VRMS and frequency tasks

were completed in the opposite order to expected, which was fine as they didn’t rely on each other.

The VRMS task was expected to take 6 days, however, it actually took 16 days. This is due to the

98

overlapping changes with the ADC readings and frequency, hence causing a delay in getting the

VRMS functionality fully completed.

The next task was the “Algorithm validation in MATLAB simulation” task. This task was not predicted

in the predicted Gantt chart, however, it proved to be a quintessential step for the project. The

analogue signals themselves are not consistent enough for validating the algorithms so the analogue

signals were simulated in MATLAB then the algorithms were ran on the signals, proving that the

algorithms work as intended, and are valid to the required degree.

The next task completed was “Full circuit testing with different signal-gen cases”. This task was

expected to be done after the energy consumption task, which actually ended up being the last task

completed, which was poorly predicted. This task took the expected time of 4 days total, which is

half the time that it was expected to take. This task paid off well as it ended up facilitating a smooth

oral presentation demo.

The next task was the “Presentation preparation” task. The presentation date was marked as the

Monday on the predicted chart, however, the actual date was on the Friday. This allowed for more

time to prepare for the presentation, totaling at a respectable 9 days total.

The next task was the “Tracking midpoint functionality” task, which was completed on the day

before the presentation. This was a last minute edit which thankfully worked perfectly at tracking

the midpoint, even when varying the DC Offset. This functionality was not predicted and ended up

being a great addition to the project, allowing the VRMS to be smoothly calculated, no matter how

varying the DC offset is.

After the oral presentation, a lot more time was freed up for working on the project. The large

amount of the semester 2 functionality was completed in the next 2 weeks. The next task was an

unpredicted task, the “Second ESP32 Implement” task. This was a crucial task to be completed as the

subsequent task all relied on the second ESP32 to be in place before they could be attempted.

The next task completed was the “Wi-Fi server set up and test” task. The basic Wi-Fi server code had

already been set up in semester 1, however, to work in both station and AP mode there was a lot of

additional intricate complexity that needed added to the code. It took 2 full days in total, which was

great. This task was completed later than expected, as it was expected to be completed before the

presentation.

The next task completed was the “Advanced MicroSD card storage functionality”. This task was not

predicted in the predicted Gantt chart, however, it proved to be a vital addition to the project. It

only took 2 days to get the full, complex format working, thanks to the work done in semester 1.

The next 3 tasks were heavily overlapping over a 5 day period. This was the full cloud functionality

setup. The first task was unpredicted – the “Backend Spring Boot Java Application”. When creating

the prediction Gantt chart, the methodology of how the cloud functionality would be implemented

was completely unknown, so it was no surprise that this additional task had to be completed as part

of setting up the cloud apps. This backend app was needed as a middleman between the ESP32 and

the Google Cloud Platform (GCP) React JS website. Since the website calls the Spring Boot endpoints

before storing the sensor readings in the relational could database, the website hosting task was

started before the cloud data storage task – which was unpredicted.

The next task completed was the “GPS interrupt timer disciplining” task. This task was not predicted

in the predicted Gantt chart, however, this task was essential to ensure that smart wireless sensor

99

would only start taking readings on the exact start of a new second. This is crucial for working with

multiple smart wireless sensors, to have the readings exactly in sync.

The next task completed was the “Signal conditioning circuit design improvements” task. This task

took slightly less time than expected, at 4 days instead of 7. This task was predicted as the 5th task to

be completed, however it was done towards the end, due to the fact that it was key to ensure that

the main ESP32 was all set up correctly to ensure that the signals coming from the signal

conditioning circuit would be as expected. The op-amp calculations were fixed and the voltage signal

conditioning circuit was built.

The next task completed was the “Battery solution” task, which was completed a bit later than

expected. It only took 1 day, whereas it was predicted to take 8 days. This is thanks to the simplicity

of the solution itself – a portable power bank to power the ESP32s and a 8 x AA 12V battery holder

to power the two op-amps.

The next task completed was the “Current circuit implementation” task. This task was somehow

overlooked in the predicted chart and hence came in towards the end of the project as additional

functionality. A second op-amp circuit was set up, exactly the same as the voltage op-amp circuit,

and a voltage divider circuit was added to the function generator input signal to obtain a simulated

current signal roughly 10% the amplitude of the main voltage signal. This signal was the passed into

the current op-amp circuit.

The next task completed was the “Voltage and current scaling” task. This task was an additional task

added into the recorded Gantt chart. This task essentially scaled the measured analogue input

voltage values to the VT and CT primary side full peak voltage and current values, respectively.

The final actual project task completed was the “Energy consumption/power values from current”

task. This task was meant to be completed as the fourth task in the predicted chart, however, the

current acquisition process was clearly overlooked on creation of that predicted chart. This final task

depended on a lot of tasks being completed first and hence ended being last. The scaled voltage and

scaled current were utilised to calculate the power, then the energy consumption was the final value

to be calculated and sent to the backend and cloud, tying off the project.

The “Final report writeup” task was predicted to take 16 days, however, it actually took 11 days. The

final bits of project functionality took slightly longer than expected, which delayed the starting of the

report. 11 days ended up being very sufficient for writing the report, thanks to the structure of the

Winter Interim report saving a lot of time.

Redundant tasks and uncompleted tasks
The “BLE server set up and test” task – shown in red – was uncompleted due to the fact that (during

semester 2 it was found that) the ESP32 cannot use both of its Wi-Fi and Bluetooth modules at once,

therefore, a choice had to be made between hosting a Wi-Fi server or BLE server. Since the ESP32

needed internet access for obtaining the GMT time for SD card file naming and also for cloud data

uploading, it was an obvious choice to choose the Wi-Fi server. The Wi-Fi server was set up both

Station mode and access point (AP) format, where the latter ended up acting very similar to how the

BLE server would have worked anyway. This task was therefore coloured red due to the fact that it

was made redundant by this technical limitation.

The “3D-print and aesthetic sensor casing” bonus task – shown in red – was uncompleted due to

other task prioritisations taking its place. As bonus functionality for the future, the smart wireless

100

sensor would be hosted on a neat stripboard/Veroboard, hence bringing down the total sensor size

and paving the way for a sensor casing to be a great addition.

Summary/Overview of the Smart Wireless Sensor Management
The project handbook suggested leaving 20% of the time reserved for unforeseen delays (extra

tasks) but this was not account for in the predicted semester 2 Gantt chart. In hindsight, this is a

good idea and shall be implemented in any future Gantt charts.

Overall, the predicted progress Gantt chart ended up being relatively accurate in terms of the task

completed, however, the ordering of the tasks was slightly off – which is okay. Due to other

university module assignments and responsibilities, the number of tasks completed from February

up until the oral presentation (on the 25th March) was lower than the number of tasks completed in

the few weeks following the presentation. Those tasks completed before the 25th March also took a

lot longer per task when viewed on the chart. This is simply due to the fact that the number of hours

per day being allocated to the tasks before the 25th March was a lot lower than the few weeks after.

From the 25th March until the 17th April (report submission date), this project was the sole focus for

those three and a half weeks, facilitating a lot of project work being able to be completed, thanks to

large time blocks and minimised context switching between various forms of university work.

Possible Future Work
If this smart wireless sensor project was to continue, the next step would be to improve the battery

functionality so that the two op-amps and the ESP32s could run off of the same supply. Currently the

ESP32s are being supplied by a portable power bank and the op-amps are being power by a 12V 8 x

AA battery holder. Through simulation, it was found that the op-amps functioned as expected, when

being powered by a 9V supply. Using a single 9V lithium-ion battery would be a much smaller and

neater solution than the current solution. 9V is too high for the ESP32s as they need a 5V supply.

Therefore, a simple voltage divider circuit could be set up to provide 9V to the two op-amps, while

also supplying 5V to the two ESP32s.

A 4G sim card breakout could be integrated into the circuit to ensure that the sensor will almost

always have internet access. This would maximise the scenarios where the sensor would have

internet access as the sensor will not always have a local network to connect to nearby. This would

be extremely beneficial in ensuring that the cloud-based website and cloud data storage is utilised as

much as possible, rather than the local Wi-Fi AP server having to be used every time.

The power consumption of the project should then be optimised to use the least amount of power

possible. Research could be done into using a rechargeable 9V battery instead of the 9V alkaline

battery, with the possibility of using solar power to recharging the battery – depending on the

scenario of the sensor use-case. At the very minimum, it should be very easy and accessible to

replace the 9V battery in the circuit.

The next step would be to migrate the project from the breadboard to a stripboard/Veroboard. This

is a more semi-permanent, smaller, and neater solution. After that, a the next step would be to 3D

print a suitable sensor casing, and attach suitable voltage and wire clamps.

101

Once the prototype has been sufficiently tested for possible improvements, these improvements

should be made then a PCB should be designed and produced. This would result in a much smaller

and more accessible solution, hence reaching the full project potential. An aesthetic casing to hold

the PCB and components should be designed and produced, while allowing easy access to the 9V

battery, should it need to be replaced.

102

Contribution – Comparison against specification

Specification Objectives

Objectives
1. Investigate power system measurement and wireless sensing
2. Design a near-real-time solution in hardware and software to measure low

voltage/current signals
3. Develop appropriate hardware/host software for wireless PC/laptop/GUI control and

interfacing
4. Write C/C++ software to implement the solution for near-real-time measurement
5. Write C/C++ software to implement near-real-time determination of other quantities

(e.g. power/energy)
6. Evaluate and test the smart sensors with different operating scenarios

Bonus MEng Extension Objectives
1. Develop appropriate hardware and software for bi-directional sensor measurement

interfacing
2. Develop a broad range of operating scenarios with different voltage/current attributes for

smart metering
3. Implement and evaluate final solution with simulated/measured/laboratory signals

The full specification page can be seen at the start of this project report. The main 6 project

objectives are listed above, along with the 3 bonus MEng extension objectives. This project is a BEng

project, however, so these MEng extension objectives were not expected to be completed.

Required Specification Objectives Table

 BEng Objectives Completed

1. Investigate power system measurement and wireless sensing

2. Design a near-real-time solution in hardware and software to measure low
voltage/current signals

3. Develop appropriate hardware/host software for wireless PC/laptop/GUI
control and interfacing

4. Write C/C++ software to implement the solution for near-real-time
measurement

5. Write C/C++ software to implement near-real-time determination of other
quantities (e.g. power/energy)

6. Evaluate and test the smart sensors with different operating scenarios

Figure 110 - Bonus Objectives Tables (Not required by BEng specification)

103

Bonus Objectives Tables (Not required by BEng specification)

 MEng Bonus Objectives Completed

1. Develop appropriate hardware and software for bi-directional sensor
measurement interfacing

2. Develop a broad range of operating scenarios with different voltage/current
attributes for smart metering

3. Implement and evaluate final solution with simulated/measured/laboratory
signals

Figure 111 - MEng Bonus Objectives

 Further Bonus Objectives (only some listed) Completed

1. Backend Spring Boot Java Application system for relaying HTTP requests
between slave ESP32 and the cloud-side

2. Cloud website hosting to display up-to-date sensor readings that updates
asynchronously periodically

3. Cloud data storage to store the sensor readings in a clear and structured file and
folder relational format, for intuitive navigation of sensor readings

4. Validate the frequency and VRMS algorithms using simulated analogue signals
(MATLAB) to conclude if their precision is better than +-10mHz and +- 10mV

5. Advanced MicroSD card storage system with file and folder funneling based on
updated current GMT time.

6. Develop a suitable algorithm for varying DC offset tracking, without affecting
VRMS measurements

7. Develop consistent interrupt timer disciplining through the use of a 1PPS GPS
signal, facilitating multiple sensors to always take readings in sync

8. Maximise code sustainability (green code) – Use industry-leading data
structures and algorithms techniques to improve microcontroller algorithm
efficiency, hence reducing power consumption and improving code
sustainability – a worldwide recognised issue

Figure 112 - Further Bonus Objectives (only some listed)

This project is a BEng project, therefore, the only required specification objectives of this project can

be seen as the 6 objectives listed in Figure 110. These objectives were all completed and hence the

project specification was fulfilled.

Even though this project is only a BEng project, all 3 of the MEng Bonus Objectives were completed,

hence showing more added value, beyond the specification. This is shown in Figure 111

104

Figure 112 showcases the Further Bonus Objectives table. These 8 bonus objectives were self-

proposed and completed, bringing the project to an even higher standard.

In summary, all 6 required objectives were fulfilled and an additional 11 bonus objectives were

completed, hence adding very strong value beyond that resulting from just fulfilling the

specification.

105

Discussion
This project sought to develop an appropriate solution to compensate for the downsides of Digital

Fault Recorders. Individual large and heavy DFRs in Distributed DFR systems must be hardwired to a

Data Concentrator by means of serial or digital communication. This in turn leads to inaccessible live

measurements and a restriction as to where the DFRs can be placed without breaching the electrical

integrity of the system. A smart sensor was developed to augment DFRs to solve these problems.

The overall functionality required of the sensor was determined and was demonstrated in semester

1 in Figure 1. For all the researched platforms, it was found that the built-in platform ADC inputs

would fail to provide asynchronous 8-channel measurements so this functionality had to be acquired

externally. Through detailed research, the most suitable platform was found to be the ESP32-

DevKitC-32UE due to its strong processing power, small form factor, reliability, pin inputs/outputs,

etc. To make up for missing functionality, suitable breakout boards were researched and narrowed

down to a final bill of materials order shown in Table/Figure 7 – the communication forms of these

breakouts are shown in Figure 8. The transmission side of the transformer is around 110V and the

ADC can only take in a range of roughly -0.3 – 5.3V (with a 5V supply) so a signal conditioning

inverting op-amp attenuation circuit was designed, with a voltage shift of 2.5V to ensure that the

negative half of the signal wave could be measured. It was found that the ADS1115 could

successfully store measurements on the microSD card but its maximum sampling rate was found to

be too low – at only 860sps, whereas 1200sps is needed for a 50Hz signal at 24 samples/cycle – so

the 3300Hz sampling rate model was ordered (ADS1015). 3300sps voltage readings were achieved

then a true zero point algorithm was implemented, to facilitate the true frequency to be measured.

Midpoint, VRMS and current algorithms were designed and implemented too. These algorithms

were then validated through simulation in MATLAB and found to be 33 times more accurate than

originally required. A GPS breakout was utilised for interrupt timing disciplining so that multiple

sensors could be used in sync. The sensor was tested thoroughly with a function generator before

designing the final op-amp circuits to facilitate the voltage and simulated current to be measured

and scaled to represent the primary side VT and CT voltages and currents, respectively. A second

ESP32 was added to the circuit to handle external communications and a battery solution was

implemented. An advanced local MicroSD card storage file/folder system was further refined for

storing the 12 measurements. A full backend cloud data pipeline was implemented – to facilitate the

12 useful live measurements to be asynchronously displayed on a cloud-hosted website and stored

in cloud data storage for later access. A local Access Point & Station Wi-Fi server was added on the

slave ESP32, so that readings could be read, even in absence of Wi-Fi.

The wireless sensor fault analysis functionality is inferior to that of the standalone DFRs – as DFRs

have higher sampling rate/resolution, higher memory capacity, improved datasets, etc. – as they are

specifically designed for fault analysis (among other purposes) and cost over 20 times the price [28].

The purpose of the smart wireless sensor is not to replace DFRs but to augment DFRs to make up for

their limitations. The sensor solution can be used in combination with DFRs to provide live readings

to any users, through the cloud-hosted website and cloud storage, while retaining the superior fault

analysis functionality of the DFRs. The smart wireless sensors can be placed in locations that were

previously electrically impossible for the DFRs due to the sensors’ wireless communications and their

lightweight, small form factor. In these locations where the DFR cannot be placed, the smart wireless

sensor provides an adequate solution for fault analysis, when this was previously impossible.

Many previous studies investigate the optimisation of DFR systems. This project takes already

optimised DFR systems and augments them with further functionality.

106

Conclusion
The project sought to develop a smart wireless sensor MCU solution to solve the problems that

industry-standard 3-phase Distributed Digital Fault Recorders currently face – inaccessible live

measurements and electrical-based restrictions for DFR placement. Research was conducted to

investigate the possibility of a smart wireless sensor platform solution to augment DFRs to

compensate for currently lacking functionality.

The end-goal specification was used to determine the requirements of the platform which included

Wi-Fi, Bluetooth, 1200sps ADC reading functionality, a 1PPS GPS signal for interrupt syncing,

MicroSD card storage, and a possible battery supply solution. The suitable platform had to be

chosen. An MCU was concluded as more suited to this project than an SBC. The ESP32 was

concluded as the optimal MCU for this project and it came with built-in Wi-Fi and Bluetooth but

lacked the rest of the additional functionality. The ADC of the ESP32 is incapable of the required 8-

channel asynchronous measurements so an external ADC, MicroSD card, and GPS breakout were

researched and ordered. The secondary side of the transformer is around 110V and the ADC can

only take in a range of roughly -0.3 – 5.3V, so a signal conditioning inverting op-amp attenuation

circuit was designed, with a voltage shift of 2.5V to ensure that the negative half of the signal could

be measured.

A circuit was created consisting of the ESP32, ADC, and MicroSD card breakouts and a program was

developed to take 4 singled-ended input voltage values and store them on the MicroSD card. A

higher refresh rate ADC was purchased then its library was optimised to facilitate the full 3300sps

readings to be taken. Consistent 1200sps readings were then set up, as required for a 50Hz mains

signal of 24 samples/cycle, by utilising the ESP32’s built-in interrupt clock. The GPS breakout was

implemented for interrupt timer disciplining. True frequency, midpoint, VRMS and current

algorithms were designed and implemented into the ESP32 code to facilitate all the required

measurements to be calculated for later use. These algorithms were then validated through a

simulation in MATLAB and found to be 33 times more accurate than originally required (+-0.3mHz

for true frequency and +-0.3mV for VRMS). The circuit was thoroughly tested with a function

generator before designing the final op-amp circuits to facilitate the voltage and simulated current

to be measured and scaled to represent the primary side VT and CT voltages and currents,

respectively. A second ESP32 was added to the circuit to handle external communications and a

battery solution was implemented, for portability benefits. An advanced local MicroSD card storage

file/folder system was refined, along with a full backend cloud data flow – for the sensor readings to

be asynchronously displayed on a cloud-hosted website and cloud data storage for later access. A

local Access Point & Station Wi-Fi server was added, so that readings could be read, even in absence

of Wi-Fi (via the access point).

In reflection, this project demonstrates the value provided and the potential that the smart wireless

sensor offers. It will be able to solve the two biggest problems of DFRs by augmenting them with

additional functionality. Users can read the useful live/near-real-time measurements – such as

number of faults, voltage, current, energy consumption, power consumption, etc. – via the cloud-

hosted website, cloud storage, and local station web server. However, if the sensor is in the absence

of a network connection, then the readings can still be accessed through the platform Wi-Fi AP

server – if the user is within the 2.4GHz Wi-FI range of the sensor. It’s a non-invasive solution, the

voltage and current connections just need to be connected with a clamp. The sensor is battery-

powered, wireless, portable, and low maintenance, hence making it the perfect solution to be

clamped on almost anywhere that it would be electrically impossible to do so with a DFR.

107

The DFR costs over 20 times the price of the smart wireless sensor [28] – as a result, the DFR has

superior fault analysis functionality. This is a limitation of the smart wireless sensor but, when used

in combination with the DFR, the combined fault analysis of the DFR and live measurements provide

an unmatched solution.

This augmented DFR solution has proven to be an extremely effective solution to solve the main

pitfalls of standalone DFRs in distributed DFR systems. Useful and accessible live readings being

transmitted to a cloud-hosted website, cloud data storage, and an ESP32 Access Point & Station Web

server mean that the readings can seamlessly be read worldwide, as well as by anyone connected to

the local network, or even without a local Wi-Fi network – by anyone nearby. This, combined with

being able to place the sensor in previously inaccessible DFR placement locations, has successfully

fulfilled the proof of concept and pushed the boundaries of smart wireless communications in

substations.

Further research and development could be invested into the smart wireless sensor to facilitate an

improved battery system with the use of a single 9V battery, rather than the current portable power

bank and 12V solution. A rechargeable solution could be engineered, with the possibility of using

more sustainable energy sources, such as using solar panels, etc. 4G internet capabilities could be

implemented to ensure that readings are uploaded to the cloud website and storage, regardless of

whether there’s a local Wi-Fi network nearby. The smart wireless sensor could be moved from the

breadboard to a more semi-permanent solution, such as a stripboard/Veroboard. After thorough

prototype testing, a final PCB solution could be designed and engineered, along with an aesthetic

casing – facilitating the smart wireless sensor to reach its full project potential.

108

Appendices

Appendix 1: 4-channel ADC measurements storing to MicroSD Card C++ program

written in semester 1

#include <Adafruit_ADS1X15.h>

#include "FS.h"

#include "SD.h"

#include "SPI.h"

#include <iostream>

#include <string>

using namespace std;

// set up ADS1115

Adafruit_ADS1115 ads;

void writeFile(

 fs::FS &fs,

 const char * path,

 const char * message

) {

 Serial.printf("Writing file: %s\n", path);

 File file = fs.open(path, FILE_WRITE);

 if (!file) {

 Serial.println("Failed to open file for writing");

 return;

 }

 if (file.print(message)) {

 Serial.println("File written");

 } else {

 Serial.println("Write failed");

 }

 file.close();

}

void appendFile(

 fs::FS &fs,

 const char * path,

 const float volts0,

 const float volts1,

 const float volts2,

 const float volts3

) {

 Serial.printf("Appending to file: %s\n", path);

 String message = "---

 ----\nAIN0: "

 + String(volts0, 6) + "V\n"

 + "AIN1: " + String(volts1, 6) + "V\n"

 + "AIN2: " + String(volts2, 6) + "V\n"

 + "AIN3: " + String(volts3, 6) + "V\n";

 File file = fs.open(path, FILE_APPEND);

 if (!file) {

 Serial.println("Failed to open file for appending");

109

 return;

 }

 if (file.print(message)) {

 Serial.println("Message appended");

 } else {

 Serial.println("Append failed");

 }

 file.close();

}

void setup(void)

{

 Serial.begin(115200);

 // set up SD card

 if (!SD.begin()) {

 Serial.println("Card Mount Failed");

 return;

 }

 uint8_t cardType = SD.cardType();

 if (cardType == CARD_NONE) {

 Serial.println("No SD card attached");

 return;

 }

 // create the voltages text file

 writeFile(

 SD,

 "/ADS1115_voltage_measurements.txt",

 "ADS1115 Voltage Values\n"

);

 if (!ads.begin()) {

 Serial.println("Failed to initialise ADS.");

 while (1);

 }

}

void loop(void)

{

 int16_t adc0, adc1, adc2, adc3;

 float volts0, volts1, volts2, volts3;

 adc0 = ads.readADC_SingleEnded(0);

 adc1 = ads.readADC_SingleEnded(1);

 adc2 = ads.readADC_SingleEnded(2);

 adc3 = ads.readADC_SingleEnded(3);

 volts0 = ads.computeVolts(adc0);

 volts1 = ads.computeVolts(adc1);

 volts2 = ads.computeVolts(adc2);

 volts3 = ads.computeVolts(adc3);

 Serial.println("---

 --");

 Serial.print("A0: "); Serial.print(volts0); Serial.println("V");

 Serial.print("A1: "); Serial.print(volts1); Serial.println("V");

 Serial.print("A2: "); Serial.print(volts2); Serial.println("V");

 Serial.print("A3: "); Serial.print(volts3); Serial.println("V");

110

 appendFile(

 SD,

 "/ADS1115_voltage_measurements.txt",

 volts0,

 volts1,

 volts2,

 volts3

);

 delay(5);

}

111

Appendix 2: Arduino MCU Comparison Table

Platform Chip Operating
Voltage

Flash
Memory

SRAM EEPROM Clock
Speed

Analogue
Input Pins

Digital I/O
Pins

PCB Size Weight Wi-Fi Bluetooth Price

Arduino Micro ATmega32U4 5V 32KB 2.5KB 1KB 16MHz 12 20 (7
PWM)

13 x 48
mm

13g n n €21.60

Arduino Nano ATmega328 5V 32KB 2KB 1KB 16MHz 8 22 (6
PWM)

18 x 45
mm

7g n n €21.60

Arduino Nano
33 IoT

SAMD21 Cortex®-M0+
32bit

3.3V 256KB 32KB None 48MHz 8 14 (11
PWM)

18 x 45
mm

5g y y €20.80

Arduino Uno
Rev3

ATmega328P 5V 32KB 2KB 1KB 16MHz 6 14 (6
PWM)

53 x 69
mm

25g n n €24.00

Arduino Uno
WiFi Rev2

ATmega4809 5V 48KB 6,144B 256B 16MHz 6 15 (5
PWM)

53 x 69
mm

25g y y €46.70

Arduino Mega
2560 Rev3

ATmega2560 5V 256KB 8KB 4KB 16MHz 16 54 (15
PWM)

53 x 102
mm

37g n n €42.00

Arduino MKR
WiFi 1010

SAMD21 Cortex®-M0+
32bit

3.3V 256KB 32KB None 48MHz 7 8 (13
PWM)

25 x 52
mm

32g y y €33.50

Arduino
Portenta H7

STM32H747XI dual
Cortex®-M7+M4 32bit

3.3V 2MB 1MB None 480MHz 8 84 (10
PWM)

25 x 66
mm

30g y y €99.00

Arduino Nano
RP2040
Connect

Dual-core 32-bit Arm
Cortex-M0+ processor

3.3V 2MB 264kB
on-
chip
SRAM

None 133 MHz
(up to)

8 14 (10
PWM)

18 x 45
mm

6g y y €20.16

Figure 113 - Table used for comparing the Arduino MCU models. The Arduino Nano RP2040 Connect was found to be the most suited Arduino MCU for this project

112

Appendix 3: Raspberry Pi SBC Comparison Table

Platform Chip Operating
Voltage

RAM Clock
Speed

Digital I/O Pins PCB
Size

Weight Wi-Fi
(2.4GHz)

Bluetooth Price

Raspberry Pi 4 Quad core
Cortex-A72
(ARM v8) 64-
bit

5V 1/2/4/8GB
SDRAM

1.5GHz 40 49 x 85
mm

46g y (5GHz
too)

y £40.00 (1GB
RAM model)

Raspberry Pi
Zero

Single core 3.3V 512MB 1GHz 40
(unpopulated)

30 x 65
mm

16g n n £5

Raspberry Pi
Zero W

Single core 3.3V 512MB 1GHz 40
(unpopulated)

30 x 65
mm

16g y y (4.1 and
BLE)

£10

Raspberry Pi
Zero 2 W

Quad-core 64-
bit Arm Cortex-
A53

3.3V 512MB
(SDRAM)

1GHz 40
(unpopulated)

30 x 65
mm

16g y y (4.2 and
BLE)

£14

Raspberry Pi
Pico WH
RP2040
Microcontroller

Dual-core 32-
bit Arm Cortex-
M0+ processor

3.3V 264kB on-
chip SRAM

133 MHz
(up to)

26 (3 analogue
inputs)

21 x 51
mm

10g y n £5

Figure 114 - Table used for comparing the Raspberry Pi SBC models. The Raspberry Pi Zero 2 W was found to be the most suited Raspberry Pi SBC for this project

113

Appendix 4: Other Platforms Specifications

Teensy 4.1 Development Board [29]

• ARM Cortex-M7 at 600 MHz

• 7936K Flash, 1024K RAM (512K tightly coupled), 4K EEPROM (emulated)

• 55 digital input/output pins, 35 PWM output pins

• 18 analogue input pins

• 8 serial, 3 SPI, 3 I2C ports

• 1 SDIO (4-bit) native SD Card port

ESP8266 (ESP32) [30]

• Processor: L106 32-bit RISC microprocessor core based on the Tensilica Diamond Standard

106Micro running at 80 or 160 MHz

• 32 KiB instruction, 80 KiB user data

• IEEE 802.11 b/g/n Wi-Fi

• 17 GPIO pins

• 10-bit ADC (successive approximation ADC)

ESP32 [31]

• CPU: Xtensa dual-core (or single-core) 32-bit LX6 microprocessor, operating at 160 or 240

MHz and performing at up to 600 DMIPS

• Ultra-low power (ULP) co-processor

• Memory: 320 KiB RAM, 448 KiB ROM

• Wi-Fi: 802.11 b/g/n

• Bluetooth: v4.2 BR/EDR and BLE (shares the radio with Wi-Fi)

• 34 × programmable GPIOs

• 12-bit SAR ADC up to 18 channels

• 2 × 8-bit DACs

• 10 × touch sensors (capacitive sensing GPIOs)

• 4 × SPI

BeagleBone AI [32]

• Dual Arm® Cortex®-A15 microprocessor subsystem

• 1GB RAM and 16GB on-board eMMC flash with high-speed interface

• Gigabit Ethernet, 2.4/5GHz WiFi, and Bluetooth

• microHDMI

• Zero-download out-of-box software experience with Debian GNU/Linux

• £130

114

Appendix 5: Espressif ESP32-DevKitC Specifications [33]

Figure 115 - Photo to show the specifications and pinouts of the ESP32 devkit used in this project [33]

115

Appendix 6: Adafruit ADS1115 ADC Breakout Specifications [34]

• Supply voltage range: 2 – 5.5V

• Analogue input range: -0.3 – 5.3V (when using 5V Vdd supply)

• 16-bit ADC

• 4-channel inputs

• Continuous current consumption: 150uA

• I2C interface

• Internal Oscillator

• Programmable data rate: 8SPS to 860SPS

• 860 samples/second over I2C

Figure 118 - Photo taken of the ADA ADS1115 ADC being used in the project
prototype breadboard circuit

116

Appendix 7: Adafruit MicroSD Card Breakout Board+ Specifications [35]

• Onboard 5v -> 3v regulator provides 150mA for power-hungry cards

• 3v level shifting means you can use this with ease on either 3v or 5v systems

• Uses a proper level shifting chip, not resistors: fewer problems, and faster read/write access

• Use 3 or 4 digital pins to read and write 2Gb+ of storage

• Activity LED lights up when the SD card is being read or written

• 8 mounting holes and separate header

• Push-push socket with card slightly over the edge of the PCB

Figure 119 – Photo taken of the ADA MicroSD breakout being used in the project prototype
breadboard circuit

117

Appendix 8: U-Blox Neo-6m GPS Breakout Board Specifications [36]

• GPS Module GY-NEO6M NEO-6M + onboard Battery + EEPROM + Antenna + U.FL connector

• Highly configurable U-Blox Neo-6M module

• Onboard LDO 3.3v regulator

• EEPROM & Battery for faster GPS Lock

• Can be configured to 5Hz update rate for better responsiveness

• The default baud rate is 9600 but can be changed

• Provided with an external antenna

• Can be used with the Arduino TinyGPS Library

• Standard NMEA and/or U-Blox UBX outputs

• 1PPS (1 Pulse per Second) output signal on the connector

Figure 120 – Photo taken of the ADA MicroSD breakout that will be used in the project prototype
breadboard circuit

118

Appendix 9: Final ESP32 Master C++ Code for ADC Readings, GPS, etc.

#include <Adafruit_ADS1X15.h>

#include <Arduino.h>

#include <Wire.h>

#include <WireSlave.h>

#define I2C_SLAVE_ADDR 0x04

Adafruit_ADS1015 ads1;

Adafruit_ADS1015 ads2;

// Required on ESP32 to put the ISR in IRAM.

#ifndef IRAM_ATTR

#define IRAM_ATTR

#endif

// Pointer to the timer

hw_timer_t *My_timer = NULL;

volatile bool new_data = false;

void IRAM_ATTR onTimer() {

 new_data = true;

}

void setup(void)

{

 // Set-up the timer interrupt and start it

 My_timer = timerBegin(0, 80, true);

 timerAttachInterrupt(My_timer, &onTimer, true);

 timerAlarmWrite(My_timer, 833, true);

 timerAlarmEnable(My_timer);

 Serial.begin(2000000);

 // ADS1015 ADCs

 ads1.setDataRate(RATE_ADS1015_3300SPS);

 ads2.setDataRate(RATE_ADS1015_3300SPS);

 if (!ads1.begin(0x48)) {

 Serial.println("Failed to initialize ADS1015 1.");

 ESP.restart();

 }

 if (!ads2.begin(0x49)) {

 Serial.println("Failed to initialize ADS1015 2.");

 ESP.restart();

 }

 // Start differential conversions.

 ads1.startADCReading(ADS1X15_REG_CONFIG_MUX_SINGLE_0,

/*continuous=*/true);

 ads2.startADCReading(ADS1X15_REG_CONFIG_MUX_SINGLE_0,

/*continuous=*/true);

 // GPS serial setup

 Serial2.begin(9600, SERIAL_8N1, 16, 17); // set up GPS module serial

communication on 9600 baud

}

119

void loop(void)

{

 unsigned long startTime;

 unsigned long timeTaken;

 unsigned long prevPositiveZeroCrossing = micros();

 unsigned long prevTime = micros();

 static unsigned long lastWireTransmit = 0;

 static byte x = 0;

 int bufferSize = 400;

 float sumSquareVoltages = 0.0;

 float sumSquareCurrents = 0.0;

 float vrms = 0.0;

 float irms = 0.0;

 float avgScaledVRMS = 0.0;

 float avgScaledIRMS = 0.0;

 float scaledVoltage = 0.0;

 float scaledCurrent = 0.0;

 float scaledVRMS = 0.0;

 float scaledIRMS = 0.0;

 float scaledPower = 0.0;

 float avgScaledPower = 0.0;

 float timeElapsed = 0.0;

 float energyConsumption = 0.0;

 float faultCounter = 0.0;

 float bufferV[bufferSize];

 float bufferC[bufferSize];

 float bufferM[bufferSize];

 float prevVoltage = 0.0;

 float currentFrequency = 0.0;

 float avgFrequency = 0.0;

 int cycleCounter = 1; // used to count the number of full cycles that

have occurred for the running average frequency calculations

 float freqMidPoint = 2.5;

 float midPoint = 2.5;

 float midPointAvg = 0.0;

 float primarySideVoltagePeak = 11000.0;

 float primarySideFaultCurrentPeak = 200.0;

 boolean faultOccuring = false;

 boolean prevFaultOccuring = false;

 // --------------- gps syncing ---------------

 // clear the serial

 while (Serial2.available() > 0) {

 Serial2.read();

 delay(1);

 }

 // wait for the start of a new second

120

 while (Serial2.available() == 0) {

 }

 // warmup - starting at the exact start of a new second

 for (int i = 0; i < 100 ; i++) {

 while (!new_data) {

 }

 ads1.getLastConversionResults();

 ads2.getLastConversionResults();

 }

 startTime = millis();

 // 1000 seconds

 for (int i = 0; i < 1200000 ; i++) {

 // Tries to send new data to the slave once per second

 if (!new_data && millis() - lastWireTransmit > 1000 && i > 100) {

 // first create a WirePacker that will assemble a packet

 WirePacker packer;

 char values[250];

 // First row

 dtostrf(scaledVoltage, -10, 3, values);

 packer.write(values);

 packer.write(",");

 dtostrf(scaledCurrent, -10, 3, values);

 packer.write(values);

 packer.write(",");

 dtostrf(currentFrequency, -10, 3, values);

 packer.write(values);

 packer.write(",");

 dtostrf(scaledPower, -10, 3, values);

 packer.write(values);

 packer.write(",");

 // Second row

 dtostrf(avgScaledVRMS * sqrt(2), -10, 3, values); // avgScaledVoltage

 packer.write(values);

 packer.write(",");

 dtostrf(avgScaledIRMS * sqrt(2), -10, 3, values); //

avgScaledCurrent

 packer.write(values);

 packer.write(",");

 dtostrf(avgFrequency, -10, 3, values);

 packer.write(values);

 packer.write(",");

 dtostrf(avgScaledPower, -10, 3, values);

 packer.write(values);

 packer.write(",");

121

 // Third row

 dtostrf(energyConsumption, -10, 3, values);

 packer.write(values);

 packer.write(",");

 dtostrf(faultCounter, -10, 1, values);

 packer.write(values);

 packer.write(",");

 dtostrf(timeElapsed, -10, 3, values);

 packer.write(values);

 packer.write(",");

 dtostrf(midPoint, -10, 3, values);

 packer.write(values);

 packer.write(",");

 // close the packet

 packer.end();

 // transmit the packed data

 Wire.beginTransmission(I2C_SLAVE_ADDR);

 while (packer.available()) { // write every packet byte

 int content = packer.read();

 Wire.write(content);

 }

 Wire.endTransmission(); // stop transmitting

 lastWireTransmit = millis();

 }

 // waits until new data is taken from the ADC at each timer interrupt

 while (!new_data) {

 }

 int16_t resultsADS1 = ads1.getLastConversionResults();

 float voltage = ads1.computeVolts(resultsADS1);

 int16_t resultsADS2 = ads2.getLastConversionResults();

 float current = ads2.computeVolts(resultsADS2);

 // --------------------------- VRMS -----------------------------

 if (i < bufferSize) {

 // midPoint

 midPointAvg = ((midPointAvg * i) + voltage) / (i + 1);

 bufferM[i] = midPoint;

 // vrms

 bufferV[i] = voltage - midPoint;

 sumSquareVoltages += pow(voltage - midPoint, 2);

 vrms = sqrt(sumSquareVoltages / (i + 1));

 // irms

 bufferC[i] = current - midPoint;

 sumSquareCurrents += pow(current - midPoint, 2);

 irms = sqrt(sumSquareCurrents / (i + 1));

 } else {

 int pos = i % bufferSize;

 float oldM = bufferM[pos];

122

 float oldV = bufferV[pos];

 float oldC = bufferC[pos];

 // midPoint

 midPointAvg = ((midPointAvg * bufferSize) + voltage - (oldV + oldM))

/ bufferSize;

 midPoint = midPointAvg;

 bufferM[pos] = midPoint;

 // vrms

 sumSquareVoltages = (pow(vrms, 2) * bufferSize) - pow(oldV, 2) +

pow(voltage - midPoint, 2);

 vrms = sqrt(sumSquareVoltages / bufferSize);

 bufferV[pos] = voltage - midPoint;

 // irms

 sumSquareCurrents = (pow(irms, 2) * bufferSize) - pow(oldC, 2) +

pow(current - midPoint, 2);

 irms = sqrt(sumSquareCurrents / bufferSize);

 bufferC[pos] = current - midPoint;

 }

 // scale the voltage and current values to the primary side values

 scaledVRMS = (vrms * primarySideVoltagePeak) / sqrt(2);

 scaledVoltage = (scaledVRMS * sqrt(2)); // 11000V == 1.414V

 scaledIRMS = (irms * primarySideFaultCurrentPeak) / sqrt(2);

 scaledCurrent = (scaledIRMS * sqrt(2)); // 200A == 1.414V

 scaledPower = scaledVoltage * scaledCurrent; // Watts

 avgScaledPower = ((avgScaledPower * i) + scaledPower) / (i + 1); //

Watts

 avgScaledVRMS = ((avgScaledVRMS * i) + scaledVRMS) / (i + 1);

 avgScaledIRMS = ((avgScaledIRMS * i) + scaledIRMS) / (i + 1);

 // ------------------------- Frequency ---------------------------

 long currentTime = micros();

 // if at zero crossing (zero crossing from negative to positive

specifically)

 if (prevVoltage <= freqMidPoint && voltage > freqMidPoint) {

 long trueZero = currentTime - ((currentTime - prevTime) * ((voltage -

freqMidPoint) / (voltage - prevVoltage)));

 currentFrequency = 1000000.0 / (trueZero - prevPositiveZeroCrossing);

 if (i > 100) {

 avgFrequency = ((avgFrequency * cycleCounter) + currentFrequency) /

(cycleCounter + 1);

 cycleCounter++;

 } else {

 avgFrequency = currentFrequency;

 }

 prevPositiveZeroCrossing = trueZero;

 }

 // needs 100 samples warmup

123

 if (i > 100) {

 // energy consumption

 timeElapsed = (millis() - startTime) / 1000; // s

 energyConsumption = avgScaledPower * timeElapsed / 3600000; // kWh

 // ----------------------- Fault Detection -------------------------

 if (scaledCurrent >= 100.0) { // trip point set at 100A

 faultOccuring = true;

 } else if (scaledCurrent < 40.0) { // fault finished value boundary

set at 40 to ensure fault

 faultOccuring = false; // has truly finished, rather

than recounting the same fault twice

 }

 // checks for the very start of a fault

 if (prevFaultOccuring == false && faultOccuring == true) {

 faultCounter++;

 }

 prevFaultOccuring = faultOccuring;

 // -------------------------- Plotting ----------------------------

 // Serial.print("ScaledVoltage:");

 // Serial.print(scaledVoltage);

 // Serial.print(" ");

 //

 // Serial.print("ScaledCurrent:");

 // Serial.print(scaledCurrent);

 // Serial.print(" ");

 //

 // Serial.print("Frequency:");

 // Serial.print(currentFrequency);

 // Serial.print(" ");

 //

 // Serial.print("ScaledPower:");

 // Serial.print(scaledPower, 3);

 // Serial.print(" ");

 //

 // Serial.print("AvgScaledVoltage:");

 // Serial.print(avgScaledVRMS * sqrt(2));

 // Serial.print(" ");

 //

 // Serial.print("AvgScaledCurrent:");

 // Serial.print(avgScaledIRMS * sqrt(2));

 // Serial.print(" ");

 //

 // Serial.print("AvgFrequency:");

 // Serial.print(avgFrequency);

 // Serial.print(" ");

 //

 // Serial.print("AvgPower:");

 // Serial.print(avgScaledPower, 3);

 // Serial.print(" ");

 //

 // Serial.print("EnergyConsumptionkWh:");

 // Serial.print(energyConsumption);

 // Serial.print(" ");

 //

124

 // Serial.print("TimeElapsed:");

 // Serial.print(timeElapsed);

 // Serial.print(" ");

 //

 // Serial.print("ScaledVRMS:");

 // Serial.print(scaledVRMS);

 // Serial.print(" ");

 //

 // Serial.print("ScaledIRMS:");

 // Serial.print(scaledIRMS);

 // Serial.print(" ");

 // Serial.print("AvgScaledVRMS:");

 // Serial.print(avgScaledVRMS);

 // Serial.print(" ");

 //

 // Serial.print("AvgScaledIRMS:");

 // Serial.println(avgScaledIRMS);

 Serial.print("ADC1Voltage:");

 Serial.print(voltage);

 Serial.print(" ");

 Serial.print("ADC2Current:");

 Serial.print(current);

 Serial.print(" ");

 Serial.print("FaultCounter:");

 Serial.print(faultCounter);

 Serial.print(" ");

 Serial.print("MidPoint:");

 Serial.println(midPoint);

 }

 prevVoltage = voltage;

 prevTime = currentTime;

 new_data = false;

 }

 timeTaken = millis() - startTime;

}

125

Appendix 10: Final ESP32 Slave C++ Code for storing to MicroSD card, hosting station

and AP web server, sending data to Spring Boot application pipeline for cloud website

and storage, etc.

#include <Arduino.h>

#include <Wire.h>

#include <WireSlave.h>

#include <string>

#include "FS.h"

#include "SD.h"

#include "SPI.h"

#include <WiFi.h>

#include <HTTPClient.h>

#include "time.h"

#include <ESPAsyncWebServer.h>

#define SDA_PIN 21

#define SCL_PIN 22

#define I2C_SLAVE_ADDR 0x04

// define prototypes for functions

void receiveEvent(int howMany);

void appendFile(fs::FS &fs, const char * path, String message);

void sendReadingsToBackend();

const char *ssid = ""; // your local network ssid

const char *password = ""; // your local network password

const char *soft_ap_ssid = "SmartWirelessSensorAP";

const char *soft_ap_password = "testpassword";

AsyncWebServer server(80);

const char *ntpServer = "pool.ntp.org";

const long gmtOffset_sec = 0;

const int daylightOffset_sec = 3600;

float voltage = 0.0;

float current = 0.0;

float frequency = 0.0;

float power = 0.0;

float avgVoltage = 0.0;

float avgCurrent = 0.0;

float avgFrequency = 0.0;

float avgPower = 0.0;

float energyConsumption = 0.0;

float faultCounter = 0.0;

float timeElapsed = 0.0;

float offset = 0.0;

void setup()

{

 Serial.begin(2000000);

 // I2C

 bool success = WireSlave.begin(SDA_PIN, SCL_PIN, I2C_SLAVE_ADDR);

126

 if (!success) {

 Serial.println("I2C slave init failed");

 ESP.restart();

 }

 // microSD card

 while (!SD.begin()) {

 delay(100);

 Serial.println("Failed to initialise microSD card - check that it's

inserted");

 ESP.restart();

 }

 uint8_t cardType = SD.cardType();

 if (cardType == CARD_NONE) {

 Serial.println("Invalid card type: none");

 ESP.restart();

 }

 // Wi-Fi server mode

 WiFi.mode(WIFI_MODE_APSTA);

 WiFi.softAP(soft_ap_ssid, soft_ap_password);

 WiFi.begin(ssid, password);

 // Connect to Wi-Fi network

 Serial.println("Connecting");

 unsigned long startTime = millis();

 while (WiFi.status() != WL_CONNECTED) {

 delay(500);

 Serial.print(".");

 if (millis() - startTime > 3000) {

 Serial.println("***WiFi Disconnected - Please try restarting the

ESP32***");

 Serial.println("The sensor readings are still available via the Smart

Wireless Sensor Access Point");

 Serial.print("Connect to the \"SmartWirelessSensorAP\" Access Point

on any device, then go to http://");

 Serial.print(WiFi.softAPIP());

 Serial.println("/readings");

 break;

 }

 }

 Serial.println("");

 WireSlave.onReceive(receiveEvent);

 // Time - Use Wi-Fi to syncronise the ESP32 time with this server (only

needs done on initialisation)

 configTime(gmtOffset_sec, daylightOffset_sec, ntpServer);

 // Wi-Fi Server and AP Server Setup

 Serial.print("ESP32 IP as soft AP: ");

 Serial.println(WiFi.softAPIP());

 Serial.print("ESP32 IP on the WiFi network: ");

 Serial.println(WiFi.localIP());

 server.on("/readings", HTTP_GET, [](AsyncWebServerRequest * request) {

127

 const char * format =

 "Smart Wireless Sensor Measurements\n"

 "----------------------------------\n"

 "Voltage: %.3fkV\n"

 "Current: %.3fA\n"

 "Frequency: %.3fHz\n"

 "Power Consumption: %.3fkW\n"

 "Average Voltage: %.3fkV\n"

 "Average Current: %.3fA\n"

 "Average Frequency: %.3fHz\n"

 "Average Power Consumption: %.3fkW\n"

 "Energy Consumption: %.3fkWh\n"

 "Number of Faults: %.0f\n"

 "Time Elapsed: %.0fs\n"

 "Voltage Offset/Midpoint: %.3fV\n";

 char message[450];

 snprintf(

 message,

 450,

 format,

 voltage,

 current,

 frequency,

 power,

 avgVoltage,

 avgCurrent,

 avgFrequency,

 avgPower,

 energyConsumption,

 faultCounter,

 timeElapsed,

 offset

);

 if (ON_STA_FILTER(request)) {

 request->send(200, "text/plain", message);

 return;

 } else if (ON_AP_FILTER(request)) {

 request->send(200, "text/plain", message);

 return;

 }

 });

 server.begin();

}

void loop()

{

 WireSlave.update();

 delay(1);

}

void sendReadingsToBackend() {

 //Check WiFi connection status

 if (WiFi.status() == WL_CONNECTED) {

128

 HTTPClient http;

 char requestURL[250];

 snprintf(

 requestURL,

 250,

 "https://smart-wireless-sensor-

backend.nw.r.appspot.com/setReadings/%.3f,%.3f,%.3f,%.3f,%.3f,%.3f,%.3f,%.3

f,%.3f,%.3f,%.3f,%.3f", // cloud server URL

 // "http://192.168.0.26:8081/setReadings/%.3f,%.3f,%.3f,%.3f,%.3

f,%.3f,%.3f,%.3f,%.3f,%.3f,%.3f,%.3f", // local NPM server URL

 voltage,

 current,

 frequency,

 power,

 avgVoltage,

 avgCurrent,

 avgFrequency,

 avgPower,

 energyConsumption,

 faultCounter,

 timeElapsed,

 offset

);

 String serverPath = requestURL;

 // Your Domain name with URL path or IP address with path

 http.begin(serverPath.c_str());

 Serial.print("Sending GET request to: ");

 Serial.println(serverPath.c_str());

 // Send HTTP GET request

 int httpResponseCode = http.GET();

 if (httpResponseCode > 0) {

 Serial.print("HTTP Response code: ");

 Serial.println(httpResponseCode);

 String payload = http.getString();

 Serial.println(payload);

 }

 else {

 Serial.print("Error code: ");

 Serial.println(httpResponseCode);

 }

 // Free resources

 http.end();

 }

 else {

 Serial.println("***WiFi Disconnected - Please try restarting the

ESP32***");

 Serial.println("The sensor readings are still available via the Smart

Wireless Sensor Access Point");

 Serial.print("Connect to the \"SmartWirelessSensorAP\" Access Point on

any device, then go to http://");

 Serial.print(WiFi.softAPIP());

 Serial.println("/readings");

 }

129

}

void receiveEvent(int howMany)

{

 String s = "";

 while (WireSlave.available()) // loop through every byte in the I2C

message

 {

 char ch = WireSlave.read();

 s += ch;

 }

 // Serial.println(s);

 int commaCount = 0;

 int start = 0;

 for (int i = 0; i < s.length(); i++) {

 char ch = s.charAt(i);

 if (ch == ',') {

 float floatValue = s.substring(start, i).toFloat();

 switch (commaCount) {

 case 0:

 voltage = floatValue / 1000.0;

 break;

 case 1:

 current = floatValue;

 break;

 case 2:

 frequency = floatValue;

 break;

 case 3:

 power = floatValue / 1000.0;

 break;

 case 4:

 avgVoltage = floatValue / 1000.0;

 break;

 case 5:

 avgCurrent = floatValue;

 break;

 case 6:

 avgFrequency = floatValue;

 break;

 case 7:

 avgPower = floatValue / 1000.0;

 break;

 case 8:

 energyConsumption = floatValue;

 break;

 case 9:

 faultCounter = floatValue;

 break;

 case 10:

 timeElapsed = floatValue;

 break;

 case 11:

 offset = floatValue;

 break;

130

 }

 start = i + 1;

 commaCount++;

 }

 }

 const char * format =

 "---\n"

 "Voltage: %.3fkV\n"

 "Current: %.3fA\n"

 "Frequency: %.3fHz\n"

 "Power Consumption: %.3fkW\n"

 "Average Voltage: %.3fkV\n"

 "Average Current: %.3fA\n"

 "Average Frequency: %.3fHz\n"

 "Average Power Consumption: %.3fkW\n"

 "Energy Consumption: %.3fkWh\n"

 "Number of Faults: %.0f\n"

 "Time Elapsed: %.0fs\n"

 "Voltage Offset/Midpoint: %.3fV\n";

 char message[450];

 snprintf(

 message, 450, format,

 voltage,

 current,

 frequency,

 power,

 avgVoltage,

 avgCurrent,

 avgFrequency,

 avgPower,

 energyConsumption,

 faultCounter,

 timeElapsed,

 offset

);

 struct tm timeinfo;

 char dateTimeString[] = "/Smart_Wireless_Sensor_Readings.txt";

 if (getLocalTime(&timeinfo)) {

 strftime(

 dateTimeString,

 100,

 "/%d%B%Y_%H%M.txt",

 &timeinfo

);

 } else {

 Serial.println("Failed to obtain time, appending to

Smart_Wireless_Sensor_Readings.txt file");

 }

 const char * path = dateTimeString;

 appendFile(SD, path, message);

 sendReadingsToBackend();

}

131

void appendFile(

 fs::FS &fs,

 const char * path,

 String message

) {

 File file = fs.open(path, FILE_APPEND);

 if (!file) {

 Serial.println("Text file could not be appended to or created");

 return;

 }

 Serial.print(message);

 if (!file.print(message)) {

 Serial.println("***File append failed: Check that microSD card has been

inserted, then reboot***");

 }

 file.close();

}

132

Appendix 11: MATLAB simulation to validate the true frequency and vrms algorithms

that are run on the master ESP32

clear all;
clc;

fs = 1200; % sampling frequency
dt = 1/fs; % seconds per sample

f = [49.97, 49.98, 49.97];
cycles = [50, 150, 70];

stopTimeTotal = 0;
totalSamples = 1;
for i = 1:length(f)
 stopTimes(i) = cycles(i) / f(i);
 samples(i) = stopTimes(i) * fs;
 stopTimeTotal = stopTimeTotal + stopTimes(i);
 totalSamples = totalSamples + samples(i);
end

t = (0:dt:stopTimeTotal);

for i = 1:totalSamples
 if (i <= samples(1) + 1)
 y(i) = sqrt(2) * sin(2 * pi * f(1) * t(i));
 yTrue(i) = f(1);
 elseif (i <= samples(1) + samples(2) + 1)
 y(i) = sqrt(2) * sin(2 * pi * f(2) * t(i));
 yTrue(i) = f(2);
 elseif (i <= samples(1) + samples(2) + samples(3) + 1)
 y(i) = sqrt(2) * sin(2 * pi * f(3) * t(i));
 yTrue(i) = f(3);
 end
end

plot(t, y);

hold on

prevVoltage = 0.0;
prevTime = 0.0;
currentFrequency = 0.0;
disp(currentFrequency)

midPoint = 0;
prevPositiveZeroCrossing = -1;

buffer = y(1:24);
disp(buffer);
sumSquareVoltages = 0;
for i = 1:length(buffer)
 sumSquareVoltages = sumSquareVoltages + buffer(i)^2;
 disp(sumSquareVoltages);
 vrmsPlot(i) = 0;
end
vrms = sqrt(sumSquareVoltages / length(buffer));

133

for i = 1:length(y)
 voltage = y(i);
 currentTime = t(i);

 % VRMS
 if (i > length(buffer))

 pos = mod(i-1, length(buffer)) + 1;

 old = buffer(pos);
 new = y(i);

 sumSquareVoltages = (vrms^2 * length(buffer)) - old^2 + new^2;
 vrms = sqrt(sumSquareVoltages/length(buffer));
 buffer(pos) = y(i);

 disp(round(vrms,3)); % 3dp
 vrmsPlot(i) = vrms;
 end

 % Frequency
 if (prevVoltage <= midPoint && voltage > midPoint)
 trueZero = currentTime - ((currentTime - prevTime) * ((voltage - midPoint)
/ (voltage - prevVoltage)));

 currentFrequency = 1 / (trueZero - prevPositiveZeroCrossing);
 if (i > 100)
 disp(round(currentFrequency, 3)); % 3dp
 end
 prevPositiveZeroCrossing = trueZero;
 end

 frequenciesPlot(i) = currentFrequency;

 prevVoltage = voltage;
 prevTime = currentTime;
end

plot(t,frequenciesPlot)

hold on

plot(t, yTrue)

hold on

plot(t, vrmsPlot)

disp("length(t)");
disp(length(t));
disp("length(yTrue)");
disp(length(yTrue));

134

Appendix 12: Backend Spring Boot Java Application

SensorController.java file

package com.sam.ross.sensor.contoller;

import com.sam.ross.sensor.objects.SensorData;

import lombok.extern.slf4j.Slf4j;

import org.springframework.http.ResponseEntity;

import org.springframework.web.bind.annotation.CrossOrigin;

import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.PathVariable;

import org.springframework.web.bind.annotation.RestController;

@RestController

// specifies that should only accept HTTP requests received from the React

JS web URL

@CrossOrigin(origins = {"https://smart-wireless-sensor-

backend.nw.r.appspot.com/"})

//@CrossOrigin // uncomment to enable HTTP requests from any origin

@Slf4j

public class SensorController {

 double voltage = 0.0;

 double current = 0.0;

 double frequency = 0.0;

 double avgVoltage = 0.0;

 double avgCurrent = 0.0;

 double avgFrequency = 0.0;

 double timeElapsed = 0.0;

 double power = 0.0;

 double avgPower = 0.0;

 double energyConsumption = 0.0;

 double offset = 0.0;

 double faultCounter = 0.0;

 @GetMapping("/setReadings/{data}")

 public ResponseEntity<String> setValues(@PathVariable String data) {

 log.info("setValues endpoint has received a request (controller)");

 String[] values = data.split(",");

 for (String value: values) {

 if (value.equals("nan")) {

 return ResponseEntity.ok("\"nan value received\"");

 }

 }

 voltage = Double.parseDouble(values[0]);

 current = Double.parseDouble(values[1]);

 frequency = Double.parseDouble(values[2]);

 power = Double.parseDouble(values[3]);

 avgVoltage = Double.parseDouble(values[4]);

 avgCurrent = Double.parseDouble(values[5]);

 avgFrequency = Double.parseDouble(values[6]);

 avgPower = Double.parseDouble(values[7]);

 energyConsumption = Double.parseDouble(values[8]);

 faultCounter = Double.parseDouble(values[9]);

 timeElapsed = Double.parseDouble(values[10]);

135

 offset = Double.parseDouble(values[11]);

 return ResponseEntity.ok("Success: " + data);

 }

 @GetMapping("/getReadings")

 public ResponseEntity<SensorData> getValues() {

 log.info("getValues endpoint has received a request (controller)");

 SensorData sensorData = SensorData.builder()

 .voltage(voltage)

 .current(current)

 .frequency(frequency)

 .avgVoltage(avgVoltage)

 .avgCurrent(avgCurrent)

 .avgFrequency(avgFrequency)

 .timeElapsed(timeElapsed)

 .power(power)

 .avgPower(avgPower)

 .energyConsumption(energyConsumption)

 .offset(offset)

 .faultCounter(faultCounter)

 .build();

 return ResponseEntity.ok(sensorData);

 }

 @CrossOrigin // ping requests accepted from any origin

 @GetMapping("/ping")

 public ResponseEntity<String> ping() {

 log.info("ping endpoint has received a request (controller)");

 return ResponseEntity.ok("pong");

 }

}

136

SensorData.java file

package com.sam.ross.sensor.objects;

import lombok.AllArgsConstructor;

import lombok.Builder;

import lombok.Getter;

import lombok.NoArgsConstructor;

@Getter

@Builder

@NoArgsConstructor

@AllArgsConstructor

public class SensorData {

 private double voltage;

 private double current;

 private double frequency;

 private double power;

 private double avgVoltage;

 private double avgCurrent;

 private double avgFrequency;

 private double avgPower;

 private double energyConsumption;

 private double faultCounter;

 private double timeElapsed;

 private double offset;

}

137

Appendix 13: React JS Website Application

index.js – The main ReactJS JavaScript file

import React from 'react';

import ReactDOM from 'react-dom/client';

import './index.css';

class MainWrapper extends React.Component {

 constructor(props) {

 super(props);

 this.state = {

 baseUrl: "http://192.168.0.26:8081/getReadings",

 // baseUrl: "https://smart-wireless-sensor-

backend.nw.r.appspot.com/getReadings",

 voltage: 0.0,

 current: 0.0,

 frequency: 0.0,

 power: 0.0,

 avgVoltage: 0.0,

 avgCurrent: 0.0,

 avgFrequency: 0.0,

 avgPower: 0.0,

 energyConsumption: 0.0,

 numberOfFaults: 0,

 timeElapsed: 0.0,

 offset: 0.0,

 demo: "demo-on",

 counter: 0,

 // alphabetical here for handy alignment with chrome dev tools for

obtaining demo values

 demoAvgCurrent: [18.601, 18.599, 18.598, 18.596, 18.596],

 demoAvgFrequency: [49.707, 49.714, 49.701, 49.705, 49.717],

 demoAvgPower: [198.121, 198.119, 198.079, 198.032, 198.066],

 demoAvgVoltage: [10.651, 10.650, 10.648, 10.651, 10.654],

 demoCurrent: [18.598, 18.596, 18.596, 18.601, 18.599],

 demoFrequency: [49.701, 49.705, 49.717, 49.707, 49.714],

 demoOffset: [2.497, 2.483, 2.5, 2.484, 2.497],

 demoPower: [198.032, 198.066, 198.121, 198.119, 198.079],

 demoTimeElapsed: 1,

 demoVoltage: [10.648, 10.651, 10.654, 10.651, 10.650],

138

 prevResultTimeElapsed: 0.0,

 sameReadingsCounter: 0,

 };

 }

 componentDidMount = () => {

 this.myTimer = setInterval(() => {

 this.getReadings();

 }, 1000);

 }

 componentWillUnmount = () => {

 clearInterval(this.myTimer);

 }

 getReadings() {

 fetch(this.state.baseUrl)

 .then((res) => {

 if (res.status >= 400 || res.status === 204) {

 this.setDemoValues();

 throw new Error(res.status);

 }

 return res.json();

 })

 .then(

 (result) => {

 console.log(result);

 let demoResult = "demo-off";

 let updatedSameReadingsCounter = this.state.sameReadingsCounter + 1;

 if (result.timeElapsed !== this.state.prevResultTimeElapsed) {

 updatedSameReadingsCounter = 0;

 }

 this.setState({

 sameReadingsCounter: updatedSameReadingsCounter

 });

 if (this.state.sameReadingsCounter > 7) {

 this.setDemoValues();

 demoResult = "demo-on";

 } else {

 if (result.timeElapsed === this.state.prevResultTimeElapsed) {

 }

 this.setState({

 voltage: result.voltage,

 current: result.current,

 frequency: result.frequency,

139

 power: result.power,

 avgVoltage: result.avgVoltage,

 avgCurrent: result.avgCurrent,

 avgFrequency: result.avgFrequency,

 avgPower: result.avgPower,

 energyConsumption: result.energyConsumption,

 numberOfFaults: result.faultCounter,

 timeElapsed: result.timeElapsed,

 offset: result.offset,

 demoTimeElapsed: result.timeElapsed,

 demo: demoResult,

 prevResultTimeElapsed: result.timeElapsed,

 })

 }

 },

 (error) => {

 console.log("Unexpected error returned: " + error.message);

 this.setDemoValues();

 }

)

 }

 setDemoValues() {

 let count = this.state.counter;

 this.setState({

 demoTimeElapsed: this.state.demoTimeElapsed + 1,

 demoEnergyConsumption: this.state.demoEnergyConsumption + 0.055023167,

 })

 // reset demo state every 24 hours

 if (this.state.demoTimeElapsed === 86401) {

 this.setState({

 demoTimeElapsed: 0,

 demoEnergyConsumption: 0,

 })

 }

 this.setState({

 voltage: this.state.demoVoltage[count % 5],

 current: this.state.demoCurrent[count % 5],

 frequency: this.state.demoFrequency[count % 5],

 power: this.state.demoPower[count % 5],

140

 avgVoltage: this.state.demoAvgVoltage[count % 5],

 avgCurrent: this.state.demoAvgCurrent[count % 5],

 avgFrequency: this.state.demoAvgFrequency[count % 5],

 avgPower: this.state.demoAvgPower[count % 5],

 energyConsumption: this.state.demoAvgPower[count % 5] *

this.state.demoTimeElapsed / 3600.0,

 timeElapsed: this.state.demoTimeElapsed,

 offset: this.state.demoOffset[count % 5],

 counter: count + 1,

 demo: "demo-on"

 });

 }

 render() {

 return (

 <div className="container">

 <header className="header">

 <h1 className="header1">Smart Wireless Sensor Readings</h1>

 </header>

 <div className="section-middle">

 <div className='outer-row'>

 <div className="row">

 <div className="readings">

 <p>Voltage:</p>

 </div>

 <div className="readings">

 <p>Current:</p>

 </div>

 <div className="readings">

 <p>Frequency:</p>

 </div>

 <div className="readings">

 <p>Power:</p>

 </div>

 </div>

 <div className="row">

 <div className="readings">

 <p>{this.state.voltage.toFixed(3)}kV</p>

 </div>

 <div className="readings">

 <p>{this.state.current.toFixed(3)}A</p>

 </div>

 <div className="readings">

 <p>{this.state.frequency.toFixed(3)}Hz</p>

141

 </div>

 <div className="readings">

 <p>{this.state.power.toFixed(3)}kW</p>

 </div>

 </div>

 </div>

 <div className='outer-row'>

 <div className="row">

 <div className="readings">

 <p>Avg Voltage:</p>

 </div>

 <div className="readings">

 <p>Avg Current:</p>

 </div>

 <div className="readings">

 <p>Avg Frequency:</p>

 </div>

 <div className="readings">

 <p>Avg Power:</p>

 </div>

 </div>

 <div className="row">

 <div className="readings">

 <p>{this.state.avgVoltage.toFixed(3)}kV</p>

 </div>

 <div className="readings">

 <p>{this.state.avgCurrent.toFixed(3)}A</p>

 </div>

 <div className="readings">

 <p>{this.state.avgFrequency.toFixed(3)}Hz</p>

 </div>

 <div className="readings">

 <p>{this.state.avgPower.toFixed(3)}kW</p>

 </div>

 </div>

 </div>

 <div className='outer-row'>

 <div className="row">

 <div className="readings" id='readings'>

 <p>Energy Consumption:</p>

 </div>

 <div className="readings" id='readings'>

 <p>Number of Faults:</p>

 </div>

 <div className="readings" id='readings'>

142

 <p>Time Elapsed:</p>

 </div>

 <div className="readings" id='readings'>

 <p>Offset/midpoint:</p>

 </div>

 </div>

 <div className="row">

 <div className="readings" id='readings'>

 <p>{this.state.energyConsumption.toFixed(3)}kWh</p>

 </div>

 <div className="readings" id='readings'>

 <p>{this.state.numberOfFaults}</p>

 </div>

 <div className="readings" id='readings'>

 <p>{this.state.timeElapsed}s</p>

 </div>

 <div className="readings" id='readings'>

 <p>{this.state.offset.toFixed(3)}V</p>

 </div>

 </div>

 </div>

 </div>

 <header className="header">

 <div className={this.state.demo}>

 Demo on: ESP32 pipeline is currently not sending any data to the

backend

 </div>

 </header>

 </div>

);

 }

}

// ==

const root = ReactDOM.createRoot(document.getElementById("root"));

root.render(<MainWrapper />);

143

index.html

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8" />

 <link rel="icon" href="%PUBLIC_URL%/favicon.ico" />

 <meta name="viewport" content="width=device-width, initial-scale=1" />

 <meta name="theme-color" content="#000000" />

 <meta name="description" content="Web site created using create-react-app"

/>

 <link rel="apple-touch-icon" href="%PUBLIC_URL%/logo192.png" />

 <link rel="manifest" href="%PUBLIC_URL%/manifest.json" />

 <title>ESP32 Sensor Readings</title>

</head>

<body>

 <div class="container">

 <div id="root"></div>

 </div>

</body>

</html>

144

index.css

html,

body {

 margin: 0;

 min-height: 100%;

 height: 100%;

}

body {

 font: 14px "Century Gothic", Futura, sans-serif;

 font-family: system-ui, -apple-system, system-ui, "Helvetica Neue",

Helvetica,

 Arial, sans-serif;

 max-width: 100%;

 overflow-x: hidden;

}

.header {

 display: flex;

 justify-content: center;

 align-items: center;

 height: 27%;

}

h1 {

 font-weight: 200;

 font-size: 4rem;

}

#root {

 height: 100%;

 margin: 0;

 display:flex;

 justify-content: center;

 flex-direction: column;

 flex-grow: 1;

}

.container {

 height: 100%;

 margin: 0;

 display: flex;

 flex-direction: column;

}

/* index.js CSS */

145

.section-middle {

 display: flex;

 flex-direction: column;

 justify-content: center;

 flex-grow: 1;

}

.outer-row {

 margin: 2rem 0;

}

.row {

 display:flex;

 justify-content: space-evenly;

 height: 2.7rem;

}

.readings {

 width: 15%;

 font-size: 1.25rem;

 text-align: center;

 display: flex;

 justify-content: space-evenly;

 background-color: rgb(249, 249, 249);

}

.demo-off {

 color: transparent;

}

p {

 margin: 0;

 display: flex;

 flex-direction: column;

 justify-content: center;

}

146

References

[1] B. Weedy, B. Cory, N. Jenkins, J. Ekanayake and G. Strbac, Electric Power Systems, Wiley, 2012.

[2] Entsoe, “Digital Fault Recorders,” [Online]. Available:

https://www.entsoe.eu/Technopedia/techsheets/digital-fault-recorders.

[3] A. O. Pires, “Continuing evolution of fault recording,” [Online]. Available:

https://www.pacw.org/continuing-evolution-of-fault-recording.

[4] H. Rich and L. Barcelos, “The Return of the Dedicated DFR,” GE Grid Solutions, LLC.

[5] Qualitrolcorp, “Why Should You Use Standalone DFRs?,” [Online]. Available:

https://www.qualitrolcorp.com/resource-library/blog/why-should-you-use-standalone-dfrs/.

[6] N. Grid, “Substation Construction,” [Online]. Available:

https://www.nationalgrid.co.uk/substation-construction.

[7] PiCockpit, “Everything about Raspberry Pi Zero 2 W,” [Online]. Available:

https://picockpit.com/raspberry-pi/everything-about-raspberry-pi-zero-2-w/.

[8] U. Electronic, “RP2040 VS ESP32[Video+FAQ]: Which one is better?,” [Online]. Available:

https://www.utmel.com/components/rp2040-vs-esp32-which-one-is-better?id=1478.

[9] Okdo, “The Differences Between Single-Board Computers vs. Microcontrollers,” [Online].

Available: https://www.okdo.com/blog/single-board-computers-vs-microcontrollers/.

[10] Wikipedia, “ESP32,” [Online]. Available: https://en.wikipedia.org/wiki/ESP32.

[11] R. N. Tutorials, “ESP32 ADC – Read Analog Values with Arduino IDE,” [Online]. Available:

https://randomnerdtutorials.com/esp32-adc-analog-read-arduino-ide/.

[12] Adafruit, “Micro SD Card Breakout Board Tutorial - Arduino Wiring,” [Online]. Available:

https://learn.adafruit.com/adafruit-micro-sd-breakout-board-card-tutorial/arduino-wiring.

[13] Arduino, “ADS1115 high speed data rate,” [Online]. Available:

https://forum.arduino.cc/t/ads1115-high-speed-data-rate/1043434/7.

147

[14] Adafruit, “Micro SD Card Breakout Board Tutorial - Arduino Library,” [Online]. Available:

https://learn.adafruit.com/adafruit-micro-sd-breakout-board-card-tutorial/arduino-wiring.

[15] GridWatch, “Power Grid Frequency,” [Online]. Available: https://gridwatch.co.uk/frequency.

[16] “The Nyquist–Shannon Theorem: Understanding Sampled Systems,” [Online]. Available:

https://www.allaboutcircuits.com/technical-articles/nyquist-shannon-theorem-understanding-

sampled-systems/.

[17] LiveSparks, “Easiest ESP32 BLE (Bluetooth Low Energy) Tutorial | Arduino,” [Online]. Available:

https://www.youtube.com/watch?v=P0aqbD9umDE.

[18] “GPS Sentences | NMEA Sentences | GPGGA GPGLL GPVTG GPRMC,” [Online]. Available:

https://www.rfwireless-world.com/Terminology/GPS-sentences-or-NMEA-sentences.html.

[19] “TinyGPSPlus,” [Online]. Available: https://github.com/mikalhart/TinyGPSPlus.

[20] “ESP32 Timers & Timer Interrupts,” [Online]. Available:

https://circuitdigest.com/microcontroller-projects/esp32-timers-and-timer-interrupts.

[21] “DacESP32,” [Online]. Available: https://github.com/yellobyte/DacESP32.

[22] “UART vs I2C vs SPI – Communication Protocols and Uses,” [Online]. Available:

https://www.seeedstudio.com/blog/2019/09/25/uart-vs-i2c-vs-spi-communication-protocols-

and-uses/.

[23] ESP32_I2C_Slave. [Online]. Available: https://github.com/gutierrezps/ESP32_I2C_Slave.

[24] “Question about Esp32 using WIFI and BLUETOOTH at same time,” [Online]. Available:

https://github.com/pschatzmann/arduino-audio-tools/issues/9.

[25] S. B. -. Introduction. [Online]. Available:

https://www.tutorialspoint.com/spring_boot/spring_boot_introduction.htm.

[26] L. Java. [Online]. Available: https://www.javatpoint.com/lombok-java.

[27] “ESP32 NTP Client-Server: Get Date and Time (Arduino IDE),” [Online]. Available:

https://randomnerdtutorials.com/esp32-date-time-ntp-client-server-arduino/.

148

[28] RS, “Siemens SICAM P855 Power Quality Analyser,” [Online]. Available: https://uk.rs-

online.com/web/p/power-quality-analysers/2363545.

[29] PJRC, “Teensy® 4.1 Development Board,” [Online]. Available:

https://www.pjrc.com/store/teensy41.html.

[30] Wikipedia, “ESP8622,” [Online]. Available: https://en.wikipedia.org/wiki/ESP8266.

[31] Wikipedia, “ESP32,” [Online]. Available: https://en.wikipedia.org/wiki/ESP32.

[32] Beagleboard, “BeagleBone® AI,” [Online]. Available: https://beagleboard.org/ai.

[33] Espressif, “esp32-devkitC-v4-pinout,” [Online]. Available:

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/_images/esp32-devkitC-v4-

pinout.png.

[34] Components101, “ADS1115 Module with Programmable Gain Amplifier,” [Online]. Available:

https://components101.com/modules/ads1115-module-with-programmable-gain-amplifier.

[35] Adafruit, “MicroSD card breakout board+,” [Online]. Available:

https://www.adafruit.com/product/254.

[36] 247geek, “U-Blox GPS Module GY-NEO6M NEO-6M + Antenna,” [Online]. Available:

https://247geek.co.uk/gyneo6m?srsltid=AeTuncp8-

sVH4k3BuExIKma4sYFVFdpsvK00YWKsGowhE7qwgj2B63sq5rE.

