Sam Ross

BEng (Hons) Final Year Project Report

Smart Wireless Sensor

April 2023

Abstract

This project aims to research, design, and develop an embedded smart wireless sensor solution that
can augment individual three-phase system Digital Fault Recorders (DFRs) to solve their main two
problems — the DFR recordings and other useful near-real-time measurements/metrics cannot be
accessed/retrieved remotely and secondly, it may be electrically impossible to install DFRs in certain
substation scenarios due to their hardwiring requirements and size constraints.

The ESP32-DevKitC-32UE MCU was concluded as the optimal prototyping platform for the project. A
range of other components were acquired, including two ADS1015 ADCs for taking voltage readings,
a MicroSD card breakout for storing the useful live measurements, a GPS breakout for interrupt
timer disciplining and a secondary ESP32 for handling external communications. Two signal
conditioning circuits were then designed and engineered to attenuate the secondary-side voltage
(VT) and current (CT) signals down to 1VRMS, which were then fed into the two ADCs. The 1200sps
readings taken by the ADCs are then run through various validated algorithms to calculate the 12
final useful live measurements. These 12 near-real-time measurements are then displayed on the
secondary ESP32 Wi-Fi Access Point & Station Web Servers, along with being sent through a backend
pipeline to a cloud-hosted React JS website and stored in cloud data storage. The true frequency and
VRMS algorithms were validated through a simulation in MATLAB and found to be over 33 times
more accurate than originally required (+-0.3mHz and +-0.3mV, respectively).

Table of Contents

SMAMT WIiEIESS SENSON «..eiiiiiiiie ettt ettt ettt e st e ettt e sttt e s bt e e s beesbeeesabeesbeeeaseeesabeeesabeesabeesneeesareeenns 1
Y o1 - Tot T TPV PUTOPPROTSUI 2
Yo 1Tol 1 Tor= 4 [0 o F PP 7
o) =Totdlo] o =Tt u 1Y/ PPNt 7
Yol o 1YY 1= o F =T o Y=Y o PP 8
Declaration Of OFiZINAIILY ...ccuueiiieiiiee e e e e s st e e s s bte e e e sbreeesssareeeesanes 8
[o) B T = (U LSRNt 9
T (o e [¥Tord o] o WO TSP U RS TRRUPPRUPPOPRRPO 13
INErOAUCTION OVEIVIEW ...ttt ettt et b e st st st b e beesbe e saeesaseebeesbeesaeesanenas 13

2 o] =44 o YU 1o o SRS 13
What are electrical faults on power lines and what causes them?..........ccccovveveeiiiiiiiiiiieeeeec e, 13
Why are electrical faults UNdesirable?..........ooouiiii it 13
How are faults detected and dealt with in power systems?cccccveeeciieeecciiee e 14
Modern iNAdUStry DFR SYSEEMIS ..ciiiuiiiiiiiiiie ettt ecitee et e et e e st e e e saree e s s sabee e e ssabeeesssnbaeeesnnseeas 14
Flaws Of DOth DFR SYSTEMSviiiiiiiiiiecciee ettt e e e e ree e s e e e s bee e e e nbaeesennreeas 14
Smart Wireless Sensor solution to solve DFR problems..........ccoveeivciiiiiiciiie e 15
Smart Wireless Sensor COTS Platform SOIULION........c.coiiiiiiiiiiieeeee e 16
6 functionalities required of the final COTS Platform Circuit, as shown in Figure 1........c..cccccuueee.. 16
YT 0 F= 1 @oT o o [T o 11 = UPPSRIT 17
Choosing the optimal COTS Platform ...ouueei e e e saree e 20
The best-suited single-board computer (SBC) OPLION......c.eeciieeiieeeiee ettt esre e e 20
The best-suited MicroCoNtroller OPLION.........coiiciiii i e e e e e 20
Best MCU vs best SBC — (ESP32 vs Raspberry PiZero 2 W) ... icceee et 21
ESP32 Devkit MOdel ChOICEcoiiiiiieee et 21
Choice Of breakout BOArds...... ..o e 23
8-Channel Analogue to Digital Converter Breakoutceeviiiieiiiiiiieie e 23
MICrOSD Card BreakoUt........ooceiiiiieeiieeee sttt sme e sne e e nnnas 23

GPS BrEaKOUL ...ttt sttt e st e e ae e s b e e s bt e e s be e e sne e e s re e eneeesareeeane 23
Plan of action for deVEIOPMENTccco i rae e e e 24
R S B 11V o o1 =Y o} SRS 25
ESP32 + ADC BrEaKOUTveeeuiiieiiieiiee ettt ettt ettt ste e ettt sit e s bee e st e e b e e smt e e sabeeesabeesaneeeaneeesareeennnes 25
ESP32 + MicroSD Card BreakOUtcoocueeiiieeiiiieeiiee ettt ettt et e st s esne e e sanes 26
ESP32 + ADC Breakout + MicroSD Card BreakouUt..........coceereerierierienieeieeieesiee sttt 27

(O ol 0T 1 D =T ={ -] o I T T PP P PP TP 29

ADC Sampling Rate Probl@mMoci et ree e et e e e e e abae e e e nareeas 30
Future work to be completed in SEMESLEr 2 ...co.uuiiiiiciiie e 31
Y] 0 T=TY (= PP P PPN 33

ESP32 4 GPS BreakOuUT.eeiieiieiieiieeeee ettt b e st st sbe e i saee e 33

GPS breakout for ADC timing diSCIPlNING ...ceccvviiiieiiie e ebre e e s aaee e 34

ADS1015 fOr 1200SPS FEAINES ...vvereeurrieeiiiieeeiitteeeesireeeesireeeestreeeesssaeeeesssseeessssreeessssseeesssseeesssssenes 35

ESP32 INPUL ANGIOZ SIZNAI ..eviiiiiiiiie et e rbee e e s e e e e e e e e e e s e snreeeeenareeas 37

R ST g=To VL= o Lol OO ORN 38

VLY A F=(o] 14 Vo TSP 42

CIrCUIAE BUFF@I SIZE ...ttt ettt sttt et be e s bt e s beesaeeeaeeeneeen 44

Frequency and VRMS iN @CtiONcii ittt e et e e e e e e ebae e e e sbae e e e snbaee e e nareeas 45

Frequency and VRMS Algorithms Validation in MATLABcooocieiiiiiiee et 46

MATLAB Sine Wave POPUIGLIONueiiiiiee ettt e st e e st e s e sbee e s e sbaee e s nnreeas 47

V1o T ToT 1o\ AR 51

Oral Presentation and DEMIOcoc.eiiiiiieeieeie ettt sttt ettt s e st st st et be e beesbeesaeeeaeeennean 52

TWO ADSIOLS ADCS......eiiuiieieeieeeieesiee ettt et et st sttt s et e s bt e st e sae e st e e bt e b e e s beesaeeeareereenneenreenane e 54

External Communications — Introducing a slave ESP32.........ccooviiiiiiciie et 55

MicroSD Card writing from the SIave ESP32.........ooiiiiiiii ettt et 61

External CommuNICatioNS OVEIVIEW......c.c.eiiueiiuiiiieiieiie ettt ettt sttt e sse e st eesbeesbeesaeesaee e 61

External Communications First Half — Simultaneous Access Point and Station Wi-Fi Web Servers.62

External Communications Second Half — Cloud website and storage flowccccoecveveiiierennnen. 66
REACT JS WEDSITE ...ttt 68
Google Cloud Platform BUCKEt STOragec.ooeiiiiiiie ittt et e e e eaee e e e e ntaeeeeanes 70

MicroSD Card Smart Folder Structure and File Names.........ccceeiireriieniieeiee e 70

GPS breakout for ADC timing disciplining - SOIULIONc.cviiiiiiiiiice e 74

Signal Conditioning CircUit Problem FiX.........ccuiiiiiiiiiiiciie et esanee e 75

Signal Conditioning Physical CiFCUItccuviiiiiiiie ettt e e re e e esaaeeeeas 79

Vo] T Y or- | T oV U PPRRRRNE 82

LT =0 ST PRSP PRI 83

LOIU Yo AT or- LT o =PSRN 88

Power and ENergy CONSUMPLION ...ciiiiiieiiieiiiee et eetee et e s eeire e e etae e e e bee e s e snbaee s e sbaee s e sabaeeeennsenas 89

Battery-powWered SOIULION.ccuii e e e e e e e e e e et e e e e e e e s e e nnreaaeeeeeeeaas 90

Fault Detection IMEaSUMEMENT.......cccuii ettt et e st esbe e e sab e sbeesneeesarenesnnes 92

FINAE CIPCUIE ettt ettt et e st e st e s bt e e s bt e et e e e sareesabeeesabeesaneeeaneeesareeesnnes 93

Semester 1 Progress Gantt Chart.........ooieiiiiiii i e e e e erre e e eaae e e e eareeas 94

Semester 2 Predicted Progress Gantt Chartoccveiiiiiie ettt 95

Semester 2 Recorded Progress Gantt Chartoccveeiiiiiie et 96
Management — Reflection and Analysis AgaINSt Plan........cccuuiiiiiiiiiiiiiieee e 97
Tale Yo I | I = 1 S [0 =1 AT PP 97
Redundant tasks and uncompleted taskscccveiiieiiiieciiee e e 99
Summary/Overview of the Smart Wireless Sensor Management...........ccceeeevereeieeeieeecveeceveeenne 100
POSSIDIE FULUIE WOTK ...eo ittt ettt et e e sar e s b e s nee e sabeeenes 100
Contribution — Comparison against Specification.......cccccueiiiciiiiiiciie e 102
SPECIfICAtioN OBJECHIVESviiiieiiee e e e s bee e e s ae e s e b ee e e e nareeas 102
Required Specification ObjJectives Table.........coi i e e earee e e 102
Bonus Objectives Tables (Not required by BEng specification)ccccceeeeciieeeeciieee e 103
D11y ol U E1 o o P RO PPUPTOT 105
CONCIUSION ..ttt ettt et e s e s bt e e s bt e s bt e e sabe e s bt e e sabeesabeesabaeesabeesabeesneeesaseeenans 106
Yo7 o 1=Y o Vo [T o] YRR 108
Appendix 1: 4-channel ADC measurements storing to MicroSD Card C++ program written in
=] 0 0 T= T =T i OO PP PP PPPTPPOPPN 108
Appendix 2: Arduino MCU Comparison Table ...t 111
Appendix 3: Raspberry Pi SBC Comparison Table........coooiiiiieiiii et 112
Appendix 4: Other Platforms Specificationscocciii e 113
Teensy 4.1 Development Board [29]oooiii ettt e et e e e e 113
ESP8266 (ESP32) [B0] ...eeverueeueerieeieetenieeitesteeiestesteete st este st sae e tesbeenbesbeestenbesbeentesbeeasesbeeneenbesaeenes 113
ESP32 [Bd] ceiieiieiieieeete ettt sttt b e s et r e h e e san e s n e e r e reenes 113
BEAGIEBONE Al [B32] ittt ettt e et e e e et e e e e et e e e e et e e e e e e bee e e enabaeaeeabaaeeearreeeennraeas 113
Appendix 5: Espressif ESP32-DevKitC Specifications [33]......ccccvieiiiiiieiieiiee e 114
Appendix 6: Adafruit ADS1115 ADC Breakout Specifications [34]cccceecveeeeeiieeecceee e, 115
Appendix 7: Adafruit MicroSD Card Breakout Board+ Specifications [35]cccceeevcieeiiiiiieeeennen. 116
Appendix 8: U-Blox Neo-6m GPS Breakout Board Specifications [36]ccceevuveeeeeciveeicciiee e, 117
Appendix 9: Final ESP32 Master C++ Code for ADC Readings, GPS, €tC.......cccccvuveeeecireeeciree e, 118

Appendix 10: Final ESP32 Slave C++ Code for storing to MicroSD card, hosting station and AP web
server, sending data to Spring Boot application pipeline for cloud website and storage, etc....... 125

Appendix 11: MATLAB simulation to validate the true frequency and vrms algorithms that are run

ON The MASTEr ESP32 ... et st ne e e s e e sne e e sare e e meeesareeesnnes 132
Appendix 12: Backend Spring Boot Java Application........cceeeeeieiiiciiee e 134
SeNSOrCONLIOllEr.Java fil@......ccocuiiie et e e e arae e 134
Yo T4 BF L= W = 17 I 1 (=SS 136
Appendix 13: React JS Website APPliCation.......cccoeeciiiiiiee ettt e e e e e ennens 137

index.js — The main React)S JavaScript filecoooieiiioiii e,

[T aTo 1= 011 0 1 N

1Yo 12 oy TN

References

Specification

The ongoing operation of interconnected power systems is established by real-time measurement of
network parameters, typically line voltage and current, frequency, power, protection battery voltage
and current and digital contacts, and other quantities including cable temperatures. Measurements
are typically derived from sensors, for example voltage and current transformers (VT and CT),
embedded on the network normally on the secondary side (protection level) of transmission or
distribution transformers. Traditionally embedded sensors are hard-wired and coupled to protection
and fault-monitoring instrumentation using copper and twisted-pair wiring. Innovation in sensor
technologies has explored alternative methods of coupling, including optical-fibres and wireless
sensors.

This project will investigate wireless sensing and develop a hardware and software approach to
measure low-voltage and current quantities by way of a proof-of-concept solution. The project will
require use of traditional VT and CT sensors coupled by wireless transmission (Bluetooth/Wi-Fi) to a
receiver (e.g. a PC or mobile phone) to send measurements in near-real-time for display and storage.
The solution will be used to evaluate the potential for wireless sensing as a basis for smart metering
(and billing) for single and potentially three-phase systems. Project outcomes may form a basis for
determining energy consumption or assessing quality of supply. The solution may be implemented
on a COTS (commercial-off-the-shelf) small-footprint platform (e.g. Raspberry Pi/Arduino/Teensy/Pi
Zero) or suitable alternative platform. Operating scenarios will typically include: remote
measurement of voltage, current, harmonics, transients, noise, and incomplete data. The project will
require excellent knowledge of C/C++ programming, analogue/digital hardware, basic digital signal
processing, wireless communications and power engineering.

Project objectives

Objectives

1. Investigate power system measurement and wireless sensing

2. Design a near-real-time solution in hardware and software to measure low
voltage/current signals

3. Develop appropriate hardware/host software for wireless PC/laptop/GUI control and
interfacing

4, Write C/C++ software to implement the solution for near-real-time measurement

5. Write C/C++ software to implement near-real-time determination of other quantities
(e.g. power/energy)

6. Evaluate and test the smart sensors with different operating scenarios

Bonus MEng Extension
1. Develop appropriate hardware and software for bi-directional sensor measurement
interfacing
2. Develop a broad range of operating scenarios with different voltage/current attributes for
smart metering
3. Implement and evaluate final solution with simulated/measured/laboratory signals

Acknowledgements

| would like to express my special thanks of gratitude to Dr. Littler for his able guidance and support
in completing this project.

I would also like to extend my gratitude to Tony Boyle for his help with securing the required
components for this project.

Declaration of originality

| declare that this report is my original work except where stated.
Sam Ross

01/04/2023

List of Figures

Figure 1 - Block diagram to represent the requirements of the COTS solution that will facilitate the

power supply quality monitoring and external communicationsc.ccccveeeeevvveeeeiieeeeeiiireeeennns 16
Figure 2 - Signal conditioning gain @QUALIONccccueeeeeeueeeeesiiieeesiieeeesiiteeessetteeesssisesesssssesessssseaes 17
Figure 3 - Schematic diagram of the inverting op-amp attenuation Circuit.ccccocvvevecvveevsennnnn.. 17
Figure 4 - Voltage divider equation for calculating op-amp rl valuecccccvueeeeevveeeeecireneeicrnnn. 18
Figure 5 - Grapher image of the transient waveform produced by the schematic diagram in Figure 4.
This grapher image compares the maximum Vout value to the maximum Vin value........................... 19
Figure 6 - Grapher image of the transient waveform produced by the schematic diagram in Figure 4.
This grapher image compares the maximum Vout value to the minimum Vout value. 19
Figure 7 - Bill of Materials order that was sent on 28th November 2022...............cccccvvueeeecvvereeiennnnn. 23
Figure 8 - Updated block diagram of the COTS platform and breakout boards, along with each
breakout’s cOMmMUNICALION fOrMQOLoooeeeeeiieeiiieeeciee ettt ettt e e s e e s e aee e e s steaesasseaesassenees 24
Figure 9 - Flow diagram order for development of ESP32 platform and breakouts............................. 24
Figure 10 - Screenshot of the Arduino IDE Serial Monitor tool, displaying the ADC measurements for

11 013 Mol o T T 1= KSR 25
Figure 11 - Snippet of the program code to demonstrate how the writing and appending of text files
ON ENE MICIOSD WOIKSveveeeee ettt e e e ettt e e et e e ettt e e ettt aaeaasseaesaasseaeesassesasassseaasassenes 26

Figure 12 - Screenshot to show the contents of the MicroSD card after the program had been run...26
Figure 13 - Photo of the ESP32 + ADC Breakout + MicroSD Card Breakout circuit used to store the 4
analogue input measurements on the MircoSD COIdc.uuueeevuveieeeiiiiieeiiiieeesiieeeeciieeeeecveaessssenes 27
Figure 14 - Screenshot to show the content of the MicroSD card after the program had been run28
Figure 15 - A hand drawn circuit diagram for the ESP32 + ADC + MicroSD circuit that was used

PreVIOUSIY IN FIGUIE 13uoeeeeeeeeeeeeeee ettt e ettt e ettt e e ettt e e e et e e e e satsaa e e tsaaaeassaaeearssaeesassns 29
Figure 16 - Nyquist's Theorem sampling rate equation for UK mains frequency of 50Hz 30
Figure 17 - Line of code to initialise the secondary serial, for the GPS breakout UART communications
.. 33
Figure 18 - NMEA sentence response sent over UART to the ESP32, along with useful extracted
=2 1 4 (o SO PRSP PIPTOII 33
Figure 19 - Serial Monitor output of the GPS ADC benchmark programccceecevuveeeccvvvveeecnnnnn. 34
Figure 20 - ESP32, ADS1115 and NEO-6M Fritzing circuit diagram............cccceeeecveeeecciuveeesiveeessivnnnn 34
Figure 21 - C++ code used to set to ADS1015 sampling rate t0 3300SPS..........c.ceeeeeeeeeeeeciiieveeenaeeriasnns 35
Figure 22 - Serial monitor output of the final ADC benchmark speed testcccceeecvveeeeccvvneeccnnnnn.. 36
Figure 23 - C++ code used to set up the ESP32 interrupt timer at a sampling rate of 1200Hz (833us
10Tl o114 [0) BTSSRSOt 36
Figure 24 - Serial monitor output of the ADC sampling rate when the interrupt timer is set to 1200sps
.. 37
Figure 25 - ESP32 code that utilises the DacESP32 library to setup a DAC cosine waveform output (of
Supposed freqUENCY S50HZ) T0 iN 25 ..ottt ctte e e ettt e et e e e et a e e et a e e et e e e rees 37
Figure 26 - Serial plotter output of the ESP32 51Hz DAC waveform being read at 1200sps by the ADC
.. 38
Figure 27 - Analogue waveform with annotations pointing to the crucial true zero points of a
PArICUIAr CYCIE iN TNE WAVEeeeeeeeeeeeeeee ettt e ettt a e e e e e sttt e e e e e e s ssstsaaaaaeesssssssssanaaaeeas 39
Figure 28 - Analogue waveform with important true zero crossing sample points highlighted........... 39
Figure 29 - Sampling pair voltage scenario that the algorithm checks for............ccccuveveevvvvvveveeeeenaenn, 39
Figure 30 - Extrapolated triangle diagram of the two zero crossing pointscccceeeeevevvvvveeseeneesnns 40

Figure 31 - Trigonometry equation used to determine the exact time that the zero crossing occurs at

.. 40
Figure 32 - ESP32 C++ code for the true frequency algorithmcccoeeevveeeecciveeeeiiiieeeeciieeeeiiennn, 41
Figure 33 - Three possible equations for calculated VIDEaKoeeeeuveeeeciveieeiciiieeciieeeccvieeescvenn 42
Figure 34 - VRIMS @QUOTION ...ccooeeeeeiieieee ettt ettt e ettt e e e e e ettt s e e e e s sassasstaanaaaeesssaasns 42
Figure 35 - Sliding WindOoW ViSUGLISALIONcccveeeeecieiieeeieieeesieeeeeeceeeeestteeaestea e e s ssaaasasenasssssenaes 43
Figure 36 - VRMS sliding window algorithm ESP32 CH+ COUC.........uuuuureeriaeeeeeeciciiiiieaeeeeesciivvvaaaeeseesans 43
Figure 37 - VRMS t0 VPEAK @QUALIONccccueveeeeeeiiieessiiieeeeiiieeestteeestee e s sitea e sssteaassaseeasassaaessssenees 44
Figure 38 - Serial plotter waveform of the ADC readings, VRMS and frequency while the amplitude

and frequency are DEING FEAUCEUcoccueueeeeiieeeeeiiieeeeie ettt e s stte e s sttt eessteaessssaessssssesessssseaes 45
Figure 39 - MATLAB sine wave frequency Simulation VAlUES................ccueeeevueeeeecieeeeiiiereescireressisenan 46

Figure 40 - Rough frequency time plot of the expected varying frequency input analogue sine wave 46
Figure 41 - MATLAB code used to construct the input MATLAB analogue sine wave for the simulation

.. 47
Figure 42 - MATLAB code for the VRMS and frequency algorithmsccceeecvveeeecvveeescreeessinvennn. 48
Figure 43 - MATLAB output waveform zoomed (on y-axis) of the frequency section................c......... 49
Figure 44 - MATLAB output waveform of the algorithm validation simulation program..................... 49
Figure 45 - MATLAB output waveform zoomed (on y-axis) of the VRMS Section..............cccceeevvveeunns 50
Figure 46 - Serial plotter showcasing the live midpoint tracking.............cccccceeeeeevveveeecciereeicivereesivennnn 51
Figure 47 - Presentation table of CONtENTS SHEooeecueeeeeceieeeeeeeeecee e e et esevee e e saaena s 52
Figure 48 - Function generator and circuit used in the oral presentation democcccccuvveeeunnnn.. 53
Figure 49 - Oral presentation demo Circuit diQQram.................ooeccueeeeeciveeeeiiieeeeiiieeeesiseeeesiserassssenas 53
Figure 50 - Serial monitor OULPUL fOr I12C SCONNET...........uueeeecuieeeeeiiieeeeiiieeeciieeeeseteeeesiveaesssseaessssseaes 54
Figure 51 - ESP32 code t0 iNitiQliS@ the ADCS...........cceecueeeeeeiiieeeiiiiseesiieeeessisesasssseaessssesssssssesasssssesees 55
Figure 52 - Flowchart of the first proposed master slave architeCture...............ccccueeecvvveeeescvrvreesevennn. 56
Figure 53 - Communication protocol comparison tabBIE...............ccueeeeevuereeeiirireeiiiiireeiiirieeesisieessisenens 57
Figure 54 - Fritzing circuit diagram for connecting the ESP32 master and slave via I12C....................... 58
Figure 55 - Second proposed external communications QrehiteCture............uueeeeeceeeeecceeeeesciiereeaevennn. 58
Figure 56 - Arduino IDE Serial Monitor output of the 12C Scanner programcceccceeeeecvveeesevnnnn. 59
Figure 57 - 12C transfer code written for the MASter ESP32.............ueeeceueeeeeieeeeeiiieeeeeccieeeesivereeassenann 60
Figure 58 - Flowchart for the ESP32 GS G SEALIONcccuveeeeeiieieesiiieeesiiieeeeieeeeseteaeescteaessseaasssssenas 62
Figure 59 - Flowchart for the ESP32 GS AN QCCESS POINT.........vveeeeeiiireeiiiieeeiiieeeesctieessiseeessseeesssssenes 62
Figure 60 - ESP32 SEIVer SELUD COUEcuuueeeeeieiiiieaeeeeeeeeeteee e e e eesttettetaaaaeses st sssseasaaeesssssssseaaaeessnsnns 63
Figure 61 - Command line output after the soft AP IP address has been pinged successfully.............. 63
Figure 62 - Some of the AP and station web server SetUp COUe.............cuweuivvureeiiiereeiiiireesiirireeaisenan 64
Figure 63 - Laptop connected directly to the ESP32 ACCESS POINt..........ccoueeeeeeecieeieaaeeeeeiiiiiieeaaeeeeeinns 64
Figure 64 - Laptop connected to the same local Wi-Fi network that the ESP32 was connected to...... 65

Figure 65 - the ESP32 successfully hitting the ping endpoint in the backend Spring Boot application. 66
Figure 66 - Architecture that was decided on for the cloud data flow from the ESP32 through to the

cloud web-hosting and database StOIAGE.uueeeecuveeeeiiiieeeeitieeeccteeeessteseeseseeeessseseessseeeessseeaes 67
Figure 67 - The Java code for the getValues() endpoint in the Spring Boot application....................... 67
Figure 68 — HTTP response returned from GCP Backend ping endpoint.............cccccveeevvveeeccveverssnnnnn. 68
Figure 69 - React website in live action on Google App Engine ROStingccceeeeeeeeccvvvevenaeeneasnns 69
Figure 70 — React WebSIte deImMO MOUE............ccoccuveeeeeeiiieeeeiieeeeetieeeectea e e stteaessesaeaesssesasssaeasasssenas 69
Figure 71 - Full folder and file structure of the MicroSD Card...............cooueeeviuereeciiueeeeiiirieeesciieeeesisennn 71
Figure 72 - Screenshot of the 12 useful live measurements being stored one of the MicroSD card text

L= USSR 71
Figure 73 — ESP32 Nt SEIVer SELUD COUEnnuuereeeaieeeeeieeeeee e eeeetcttaaa e e e e e et ctaeaaaaaeeesssssasaaaaeeseasanns 72

Figure 74 — ESP32 code used to create the skeleton pre-formatted string for the 12 useful live

IMEASUIEIMEBIITS ...ttt e et ettt e e s e e ettt e s s e s e et taasa e e e s e e eeeassasessaeeannsaaanns 72
Figure 75 - Code used for the time and microSD card functionality in the main loop of the slave ESP32
.. 73
Figure 76 - The line of code that initialises the GPS breakoutcccceeeevveeeeeiieeeeiiiieeesiiieessisenn 74
Figure 77 - GPS interrupt SYNCING COUEuuuimeireeieeeieieeeeiieeeeeeeeeesiteeeestseeaeseseseesssesasasssesasasssenas 74
Figure 78 - Serial Monitor output of the GPS interrupt sync testing............ccccceeeeevvveeescvveesscieeersivnnnn 75
Figure 79 - SEMESLEr 1 OP-QIMP CIFCUIT ...ccoveeeeeiiiieeee ettt ettt e e e ettt e e e e s s sabtaeeaaeeesssaanns 75
Figure 80 - The transient output waveforms produced by the Figure 79 Circuit............cccceccvvveeeeunnnn.. 76
Figure 81 - Voltage diVider @QUATION.............c...eeeecueeeeesiiieeeeiieeeestee e stee e s stteeesstaeessseeesssseaessassenes 76
Figure 82 - Fixed voltage diVider @QUALION.ccccuveeeeciueeeeeciiieeescieeeesieeeeseteeeesisesasasseeasasssenas 77
Figure 83 - Newly-fixed inverting op-amp circuit with the correct voltage divider circuit containing the
N =X L o] PSPPI 77
Figure 84 - The transient waveform output of the fixed op-amp circuit shown in Figure 83................ 78
Figure 85 - Non inverting op-amp iNPUt @QUALIONcc..euvvveeeeieeeeeiiiiiieeeeeeeeesiieteeeeeessssiiiveeeeseensssnns 78
Figure 86 - Circuit diagram of the op-amp circuit wired up to the ESP32 Circuit...........ccccceeevvveeecuvenn.. 79
Figure 87 — Physical op-amp circuit hooked up to ADC 1, as shown in circuit diagram in Figure 86....80
Figure 88 - Rapid Electronics 12V DC power supply that was used for this circuitcccceeeeuuvn... 81
Figure 89 - Serial Plotter output waveform of the resultant signal being fed into the ADC from the
V=T o o] o Rto T] oIl oV | PPN 81
Figure 90 - Code used to scale the voltage value to the 11kV primary side simulated value............... 82
Figure 91 - Voltage divider equation to determine function generator resistor value for split............ 83
Figure 92 - Multisim circuit schematic diagram for the voltage and current op-amp attenuation
circuits being fed the 5V function generator SigNQl..................oocccueeeeeiveieeeiiiieeesiiiieeeecieeeeescieressiseees 84
Figure 93 - Transient waveform outputted by the circuit shown in Figure 92..............cccceeeeevuvveeecunnnn.. 85
Figure 94 - Fritzing circuit to represent the final smart wireless sensor circuit, which includes the full
double 0p-AMP QEEENUALION CITCUITeeeeeeeeeeecteeeeeceee e e eee e e et e e e st ee e ettt e e s st s e e ssssesasassesasassenas 86
Figure 95 - Serial Plotter output taken for the 1200sps ADC readings for the outputs from the voltage
op-amp circuit and the simulated current 0p-amMP CirCUItcc.ueveeecvereeeiiieeeeciieeeecieeeeseieeesssseees 87
Figure 96 — Serial monitor screenshot of voltage and CUIrTeNt..............cceeeecvveeeeccceeeeeiciieeeeecieeeesisenn 88
Figure 97 — SCAlING @QUOTIONc...veeeeeeeiiee et estee e ettt e e ettt e e ettt a e e et aasaasteaessssseassanssesassnsseaes 88
Figure 98 — POWET @QUALIONccoeeeueiiiiieeeeeeesciiiietes e e eeesiitteeee s esssssstttaesessssssasstsesassssssssssstssnessssnssssss 89
Figure 99 - ENEIQY @QUATIONuuuvueeeeeeeeeiieeeeeetsesissstatsssesesssesssssssesssssssssssssssssssssssssssssssessnsssssnsnsnsnsnnnnns 89
Figure 100 = POWEE CH4 COUR........uveeaeeiieeeeeiieeeetieeeeettteeeeetteeaeatteaaestseaasassesasasssesasssssessssnsssssssnsseses 89
Figure 101 - ENEIGY CH4 COU....ccuaanniiieaee e ettt e e e e e ettt a e e e e e sttt aaaeeessssssssaaaeessssssssssnasaeensnsnns 89
Figure 102 - 18 metrics calculated by the MAStEr ESP32cuuuoeeeeeeeeeeeeeeesccieieeea e eeesciiveeeaaaeeeesans 89
Figure 103 - ESP32 portable battery bank CilCUILoeeevuveeeeeeiiieeeiiieeecceeeeescieeeeciveeeesereaesssseeas 90
Figure 104 - 8 x AA battery holder to achieve the 12V SOIULION............coeeeeeeeeecccieiieiaeeeeeciciiieeeaeeeeeians 91
Figure 105 — Fault detection ESP32 COUEouuuuuiimeiiiieeeeieeeeeetteeeeiteeeesttteaesstteaaesssessssssasasasssenaes 92
Figure 106 - the final smart wireless sensor circuit — with the addition of the VT and CT transformers
.. 93
Figure 107 - Gantt chart to show the project progress made in semester 1cccecevvveeecvvveeicrnnnnn. 94
Figure 108 - Gantt chart to show the project progress that is expected to be made in semester 2.....95
Figure 109 - Gantt chart to show the project progress that was actually made in semester 2............ 96
Figure 110 - Bonus Objectives Tables (Not required by BEng specification).............ccccccvcveeeevvveeennen. 102
Figure 111 - MENG BONUS OBJECLIVES.......ccccceeeeieieeaaeeeeesciieeeeeeeeesettteeaaaeeesstsssssasaaesassssssssssaeeesssnns 103
Figure 112 - Further Bonus Objectives (only SOme listed)...........cccoueeeecuvveeeciiiieesciieeeciieeeeciiea e 103

11

Figure 113 - Table used for comparing the Arduino MCU models. The Arduino Nano RP2040 Connect
was found to be the most suited Arduino MCU for thiS Project...........cceeceueeeeeviveessivieressiieressivennnn 111
Figure 114 - Table used for comparing the Raspberry Pi SBC models. The Raspberry Pi Zero 2 W was
found to be the most suited Raspberry Pi SBC for thiS Projectceccvueeeecveeeeeciieeeeeiiieeeeciivnaanns 112
Figure 115 - Photo to show the specifications and pinouts of the ESP32 devkit used in this project [33]

Figure 116 - Photo taken of the ADA ADS1115 ADC being used in the project prototype breadboard
circuitFigure 117 - Photo to show the specifications and pinouts of the ESP32 devkit used in this

Jo T [=Tor 1 1 SRS 114
Figure 118 - Photo taken of the ADA ADS1115 ADC being used in the project prototype breadboard

Lo o) PP PPPRPPPPPPPPPPPPRE 115
Figure 119 — Photo taken of the ADA MicroSD breakout being used in the project prototype

[Jg=e o] o oTo o ol /ol | PP RRSR 116
Figure 120 — Photo taken of the ADA MicroSD breakout that will be used in the project prototype

[Jg=e o] o oTo g ol 4ol | PP PRTR 117

12

Introduction

Introduction Overview

In power substations, a single electrical fault can cause power outages that cause millions of pounds
worth of damage if not dealt with correctly. The circuit breaker/protection relay systems detect
when there is a fault on the line and provide alternative voltage support to maintain the required
voltage to the load. Digital fault recorders are used to record events before, during and after a
disturbance to figure out what has happened on the grid and they facilitate a post-fault analysis to
be made in order to make improvements to overall reliability. In Distributed DFR systems, the
individual DFRs around the plant are hardwired to a Data Concentrator via Serial or Digital
communications.

This architecture leads to two main flaws with DFRs. The DFR recordings and other useful live
measurements — such as the number of faults, voltage, current, energy consumption, power
consumption, etc. — can only be acquired by physically accessing the DFRs units themselves. This is
impractical and may even be physically impossible. Secondly, due to the large size of the DFRs and
their requirement for hardwired external communication connections, there may be scenarios
within a substation where it would be electrically impossible to physically place the DFRs without
breaching the electrical integrity of the system.

This project aims to develop an optimal hardware and software smart wireless sensor solution to
solve these two stated problems that individual DFRs have in a distributed DFR system.

This project researches into power systems and wireless sensing and then utilises this knowledge to
form the requirements needed for an optimal solution. Research is conducted into various platforms
and breakouts, which are then analysed and compared to determine the optimal embedded circuit
solution along with a signal conditioning attenuation circuit. The embedded circuit is then developed
and algorithms are written (and validated through simulation in MATLAB) to calculate the 12 final
useful near-real-time measurements, which are then made available to users via 4 different forms of
external communications.

Background

What are electrical faults on power lines and what causes them?

In electrical power systems, faults are any abnormal electrical currents. Faults on power
transmission lines are caused by anything that can cause conductors to clash and hence short circuit
(current maximises and voltage drops) e.g. strong winds, lightning, bird strike. [1]

Why are electrical faults undesirable?

In the scenario of an automated factory, undealt with faults on the power line would cause a voltage
drop in factory machines and hence would cause them to malfunction/shut down. This would result
in the whole factory line having to be reset, potentially costing millions. Therefore, it is crucial that
the faults are detected and dealt with accordingly as well as prevented in future.

13

How are faults detected and dealt with in power systems?

A Protection Relay (PR) and Digital Fault Recorder (DFR) are coupled to the secondary side
(protection level) of the transmission and distribution transformers, using copper and twisted-pair
wiring. [1]

The Protection Relay is a relay device that trips a circuit breaker when a fault is detected i.e. when
the voltage drops by a specified amount (e.g. voltage drops by 10%) or if the current increases by a
specified amount. Voltage support (e.g. using a Static VAR Compensator) will then be relied on to
supply additional power to the loads to ensure that the required voltage is maintained.

A Digital Fault Recorder is a multi-channel, Intelligent Electronic Device (IED) that uses
communications to retrieve fault, disturbance, and sequence of event records that are captured by
the protection relays distributed throughout a substation. [2]

DFRs have two main purposes:

e Recording of system events, such as faults — these can be analysed later in a “post mortem”
methodology to assess the performance of protection relays and circuit breakers during the
fault

e Monitoring of system protection performance and quality of supply

Modern industry DFR systems

DFR systems have evolved over time — the utility industry progressed from using a needle and paper
to more complex systems [3]. The utility industry is currently split between two types of DFR
systems: Distributed DFRs (DDFR) and Distributed Recording (Virtual DFR). [4]

Distributed DFRs involve having a separate DFR installed in each Protection Relay panel whereas
Distributed Recording makes use of the fault recording functionality that is already built into the
Protection Relays. Both of these systems are connected to some sort of Data Concentrator by means
of serial or digital communication, which is used to then collect, synchronise, and store the event
records [4].

A dedicated Distributed DFR system will be better at recording than a virtual DFR system (higher
sampling rate and resolution, etc.), but a virtual DFR system has a much lower installation cost.

Flaws of both DFR systems
For consistency, this project will talk about improving the individual DFR units in a DDFR system but
the same improvements can be made for the protection relay units in a Virtual DFR system.

As described earlier, both the DDFR and Virtual DFR systems must be hardwired to a Data
Concentrator by means of serial or digital communication. This leads to two flaws in both systems.

Problem 1 —Inaccessible Live Measurements

The DFR recordings and other useful live measurements — such as number of faults, voltage, current,
energy consumption, power consumption, etc. — can only be acquired by physically accessing the
DFR units (or protection relay units in Virtual DFR systems) themselves. This is extremely impractical
(especially in large substations) and it may even be physically impossible to access the individual
DFRs to acquire these near-real-time measurements.

14

Problem 2 — Breach of electrical integrity

Due to the size and mass of DFRs and their reliance on hardwiring for external communication, this
leads to scenarios where it would be electrically impossible to physically use DFRs for fault
recording. For example, putting in large DFRs up at the mastheads of transformers and hardwiring
them up will completely breach the electrical integrity of the system.

Smart Wireless Sensor solution to solve DFR problems

The high sampling rates, large memory capacity, flexible triggering, and improved datasets of
standalone DFRs make them the optimal solution for studying network performance and fault
analysis [4]. However, DFR systems have a couple of problems, as described. The DFR systems can
be augmented with a smart wireless sensor to provide solutions to these problems.

Easily accessible live measurements — Once a user comes within close enough proximity to the
sensor, the user will be able to read useful live measurements — such as number of faults, voltage,
current, energy consumption, power consumption, etc. — via wireless communications through the
platform wireless communications (Wi-Fi/BLE server). By using the sensor in combination with the
DFR, this will provide both accessible live measurements from the platform and optimal fault
analytics for later use from the DFR.

An electrically-safe solution — It’s a non-invasive solution, the voltage and current connections just
need to be connected with a clamp. The sensor is battery-powered, wireless, portable, and low
maintenance, hence making it the perfect solution to be clamped on almost anywhere that it would
be electrically impossible to do so with a DFR. [1] In these scenarios where it is electrically impossible
to use a DFR, the fault records produced by the smart wireless sensor will be adequate, although
they are inferior in terms of sampling and hence resolution for analysis, etc. compared to that of a
DFR. [5]

15

Smart Wireless Sensor COTS Platform solution

Augmenting DFRs with COTS small-footprint platforms should solve all the DFR problems previously
described. As an end goal, the platform should be able to asynchronously read the 8 analogue
channels from the 3-phase system for smart metering (and billing) then use wireless transmission
(Bluetooth/Wi-Fi) to a receiver (e.g. a PC or mobile phone) to send measurements in near-real-time
for display and storage. It should have some form of local storage for the readings too and the
samples should be taken in sync, regardless of the geolocation.

6 functionalities required of the final COTS Platform Circuit, as shown in Figure 1

Wi-Fi and Bluetooth: These wireless transmission forms are needed for wireless transmission of the
useful near-real-time measurements to nearby smart devices. If a Wi-Fi network is available, these
values could be transmitted via a local Wi-Fi/BLE server or even to cloud storage in future.

8 channel ADC: The 8 analogue inputs from the star 3-phase power system need to be
asynchronously measured so that faults can be detected and recorded. Useful live measurements
can be calculated and shared to users — such as voltage, current, number of faults, energy, and
power consumption.

MicroSD card: The useful ADC measurements and calculations will be stored on the microSD card.

GPS: Needed as a clock to discipline the interrupt timings. Works to 1PPS accuracy, regardless of the
geo-location

Battery: The platform should have a low enough realistic power consumption to run sufficiently on
external battery cells

MicroSD card

8 channel ADC > < Wi-Fi

COTS Platform

GPS > <€ Bluetooth

Battery

Figure 1 - Block diagram to represent the requirements of the COTS solution that will
facilitate the power supply quality monitoring and external communications

16

Signal Conditioning

In a power station the secondary side of the distribution transformer can be expected to be around
110V [6]. 110V is much a greater potential difference than what a standard COTS Platform ADC
module can take as an analogue input. Most standard ADCs are unipolar and take analogue inputs of
a range between 0 — 5V roughly.

This means that the 3-phase AC voltage inputs will need attenuated down to between 0 — 5V
(depending on the ADC). Since the analogue inputs are AC waveforms, the inputs will also need to be
shifted so that both the positive portion and the negative portion of the transient wave fit within the
0 — 5V range. The midpoint of the waveform should sit at 2.5V so that the wave sits perfectly in the
center. The input signal is set at 1kHz for now — it will be set to the mains freq (50Hz) in semester 2.

The amplitude of the attenuated signal must be less than 2.5V and hence, a nice VRMS value of 1
would give a Vpeak value of sqrt(2) = 1.414V, which fits perfectly within the bounds.

To attenuate the analogue input signal down from 110V to 1.414V, an inverting op-amp circuit
would be the perfect choice. The resistor values can be worked out as follows:

. Vout Rf L . . :
Gain = ——= — — «————— Gainis negative for the inverting
Vin Rin .
op-amp as it produces a
. V2 1 negative output voltage
Gain = 110 Rin compared to the input due to it
110 being 180 degrees out of phase.
Rin = —
V2

) Rf set to 1k() as a baseline to
Rin = 77.78kQ ~ 78kQ find value for R2 from there

Figure 2 - Signal conditioning gain equation

In Figure 3, shown below, the 78k() resistor is used for Rin and a 1K(Q resistor is used for Rfb, as
proven in the calculation previously. This theoretical 741 op-amp is being powered by positive and
negative 12V supplies.

—AAA—
1.00kQ
et
T 120V
all
78.0kQ
@110v L
gf%HZ UA741CPT— 120V
.
I—A— —AAA—
1.00kQ 3.80kQ

Figure 3 - Schematic diagram of the inverting op-amp attenuation circuit.

17

To obtain the 2.5V offset as required for the ADC range, a voltage divider circuit was coupled to the
741 positive supply voltage so that 2.5V is being supplied to the non-inverting input of the 741 op-
amp. This will hence offset the output voltage by 2.5V. The resistor values needed for this voltage
divider circuit were worked out using the calculation, as shown below in Figure 4.

Vout = Vi k2
out= Y T rR2
Vout (R1+ R2) = Vin X R2
Vin X R2
Rl = ——""_R2
Vout
o1 — 12x1 .
25
R1 = 3.80kQ

Figure 4 - Voltage divider equation for calculating op-amp r1 value

Shown below in Figures 5 and 6, are two grapher images of the transient waveforms outputted by
the schematic. The green line represents the AC waveform for Vin, which has a Vp of 110V. The blue
line represents the AC waveform for Vout which has a midpoint of 2.5V, a maximum voltage of 3.84V
(3sf), and a minimum voltage of 1.03V (3sf). This gives a Vpp value of 2.81 which is approximately 2 x
V2. Therefore, the schematic circuit output is as expected — it produces a Vout signal of Vpeak = v/2
with an offset (and hence midpoint) of 2.5V. Figure 5 captures both the Vin and the Vout waveforms,
whereas Figure 6 is magnified on the y-axis to give a more clear view of the Vout waveform.

18

Interactive 1 @

100
50
=
- 4
=) 0 A &
S
g
-50
-100
0 200p 400u 600p 800p 1m 1.2n
Time (s)
W Cursor 1 ‘ M Cursor 2
255.26 ps, 109.63V 757.36 s, 3.8379V

Figure 5 - Grapher image of the transient waveform produced by the schematic diagram in Figure 4. This grapher image
compares the maximum Vout value to the maximum Vin value.

Interactive 1 0 @

5
45
4
35
3
)
©
=) 25
2
£
2
15
1
500m
0
0 200p 400 600u 800y im 12
Time (s)
M Cursor 1 | M Cursor 2
249.13 ps, 1.0269V 757.36 s, 3.8379V

Figure 6 - Grapher image of the transient waveform produced by the schematic diagram in Figure 4. This grapher image
compares the maximum Vout value to the minimum Vout value.

19

Choosing the optimal COTS platform

There does not exist a single COTS Platform on the market that has all of the 6 required
functionalities already built in. Therefore, external breakout boards can be used to facilitate any
needed functionality.

At a bare minimum, the platform must be powerful enough to process all the various inputs,
communications, calculations, and processes that will be needed as part of the project. It must also
have enough pins to support all the various inputs. To narrow down the platforms a bit further, it
would be ideal to use a board that already has Wi-Fi and Bluetooth connectivity built in. This is not
essential but is an added bonus as it reduces unnecessary complexities.

A crucial decision had to be made between using a microcontroller (MCU) or a single board
computer (SBC) for this project. The best-suited MCU and best-suited SBC were finalised upon and
then compared.

The best-suited single-board computer (SBC) option

Out of the Raspberry Pi SBC platforms, the Pi Zero 2 W was found to be the most suitable platform
for this project. This is thanks to its best-suited processing potential per size ratio (compared to the
other models), which will be able to handle all the inputs/processing/outputs required as part of this
project. It also includes a built-in MicroSD card module which is an added bonus as it would remove
the need for an external MicroSD card module.

The CPU in the Pi Zero 2 W is 5 times faster and has 40% faster single-core performance [7] than the
Pi Zero W so it would be worth the extra £7 to go for the Zero 2 W over the old model Zero W.

The comparison table of the different Raspberry Pi SBC model specifications can be seen in Appendix
3, Figure 114.

The best-suited microcontroller option

Microcontrollers from Arduino, Teensy, Espressif Systems, Beaglebones, and other manufacturers
were deeply reviewed. After thorough research, the best-suited MCU from Arduino came out to be
the Arduino Nano RP2040 Connect. Out of all the other manufacturers, the best microcontroller
came out the be the ESP32.

Both of these 2 microcontrollers would be great options for the project due to their extremely good
power/size ratio, however, there are a couple of key differences that set them apart:

e The Nano RP2040 has a slightly lower clock speed but it has a higher processing power due
to the latest ARM architecture

e The Nano RP2040 came out in 2021 compared to the ESP32 coming out in 2016. Therefore,
the ESP32 has extensive support available and is less buggy because of this

e The Nano RP2040 has a RAM of 264KB and ROM of 16MB compared to the ESP32 RAM
320KB and ROM 448KB

e ESP32is much more power efficient — it also has ultra-low power management features

20

ESP32 is more suited to applications that require:
e Wi-Fi/BLE
e Some GPIOs
e Lower processing power
e Battery power source

Nano RP2040 is more suited to applications that require:

e Slightly higher processing power
e Multiple input peripherals

e Higher memory

e Wearable applications

Both of these MCUs have adequate processing power for this project and would make a great
platform choice. Overall, the ESP32 would be a more suitable MCU for the project due to its much
lower power consumption (which is crucial for this battery-powered sensor), extensive support
available since it has been out for 6 years, its lower cost, and the fact that it doesn’t have all the
unneeded sensors onboard such as the microphone, etc. [8]

The comparison table of the different Arduino model specifications can be seen in Appendix 2,
Figure 113.

Best MCU vs best SBC — (ESP32 vs Raspberry Pi Zero 2 W)
Both the ESP32 and Raspberry Pi Zero 2 W are the best possible MCU and SBC options respectively.

The ESP32 is a dual-core microcontroller that generally runs sequential code in a do-while loop
whereas the Pi Zero 2 is a quad-core general-purpose computer that runs under an operating system
(0S) and hence can have interrupts due to OS priority suspensions. The overlaying operating system
found in SBCs adds complexity but allows multiple tasks to be run at once due to the concurrent
nature, whereas the MCUs are mostly sequential in nature and are intended to run one program
repeatedly. [9]

To reduce complexities and to be as efficient as possible with available resources eg. battery power
— it would make sense to use the more powerful, complex, and resource-intensive SBCs only if it is
absolutely necessary i.e. if the MCU couldn’t handle the required load. Therefore after detailed
research, a powerful MCU such as the ESP32 should be more than capable of handling the ADC
sampling, Wi-Fi, BLE, MicroSD card storage, GPS interrupt timing syncing, etc. that is required by the
chosen platform. If one ESP32 is insufficient to handle all of these processes at once, a second ESP32
could be used in tandem, with one for ADC sampling and the other for the rest of the processes.

ESP32 Devkit model choice

ESP32 chips are created and developed by Espressif but a range of different companies produce
ESP32 devkits (using Espressif’'s ESP32 chip) such as Adafruit, Sparkfun, and a range of other
companies [10]. Since Espressif actually create the ESP32 chip, a devkit directly developed by
Espressif was the best option for this project as it guarantees the best reliability, best
documentation, largest userbase, and hence will keep complexities to a minimum.

21

The ESP32-DevKitC-32UE (ESP32-WROOM-32UE) was the devkit of choice due to its ease of use,
built-in pinout, and low footprint — which is important for preserving battery life. The UE model was

specially chosen compared to the E model so that an external U.FL antenna could be connected
rather than relying on the E board’s weak internal antenna.

The full specifications and pinouts of this ESP32 devkit can be seen in Appendix 5, Figure 18.

22

Choice of breakout boards
The specifications for each of these breakout boards can be found in Appendices 6 - 8, along with
photos of each board in Figures 19 — 21.

8-Channel Analogue to Digital Converter Breakout
The ESP32 and most other MCUs have a built-in ADC. The ESP32 has 18 possible ADC channels,
however, the ESP32 only has one actual hardware ADC so the channels must be multiplexed rather
than read asynchronously [11]. An external multi-channel ADC could be used to measure multiple
channels both asynchronously and accurately, as required.

A 16-bit ADC has 15 usable bits — which is a great resolution. There aren’t very many 8-channel 16-
bit ADCs on the market, so the best option found was to use two Adafruit ADS1115 4-channel ADCs
and then connect them both up over 12C at a maximum sps of 860 samples/second. This ADC is
unipolar and has an input voltage range of -0.3 — 5.3V (when powered by a 5V supply) which is
perfect for the conditioned signal inputs.

MicroSD Card Breakout
The Adafruit MicroSD card breakout board+ came out to be the best option for the MicroSD card
module due to its renowned reliability and available open-source software. The software was
originally designed for SDHC MicroSD cards, however, an SDXC MicroSD card was ordered to use
with the breakout initially by mistake. The maximum size of SDHC cards is 32GB so a 32GB card was
ordered at a later stage. This MicroSD card breakout board communicates with the ESP32 via SPI
communications, which offers a much faster solution than “bit-banging” using other pins. [12]

GPS Breakout

The U-Blox NEO-6m was the best available GPS breakout board on the market due to its size,
popularity, and renowned reliability. This particular GPS module communicates with the ESP32 using
the TX and RX serial communication pins.

Individual Price

adapter

B Wholesal N
rand Component olesaler (inc VAT) otes
. ESP32-DevKitC-32UE Free shipping over
E £10.
spressif Systems (ESP32-WROOM-32UE) Mouser 0.56 £33
. MicroSD adapter breakout Free shipping over
£7.92
Adafruit board — 254 (485-254) Mouser 79 £33
ADS1115 16-Bit ADC—-4
Adafruit Channel with . Coolcomponents | £14.89 ExF:ques £2.99
Programmable Gain shipping
Amplifier
GPS Module GY-NEO6M Excludes £2.00
U-Blox NEO-6M + Antenna 247Geek £6.99 shipping
Ultra microSDXC UHS-I
SanDisk memory card 128 GB + Amazon UK £12.99 Free shipping

Figure 7 - Bill of Materials order that was sent on 28th November 2022

23

https://www.mouser.co.uk/ProductDetail/Espressif-Systems/ESP32-DevKitC-32UE?qs=GedFDFLaBXFguOYDKoZ3jA%3D%3D&mgh=1&vip=1&gclid=Cj0KCQiAgribBhDkARIsAASA5bttWdpIZwvi2HZl3oz9BN0UFew6SIiwc4gEvi22KQ5EbyinbJqq_wQaAttsEALw_wcB
https://www.mouser.co.uk/ProductDetail/Espressif-Systems/ESP32-DevKitC-32UE?qs=GedFDFLaBXFguOYDKoZ3jA%3D%3D&mgh=1&vip=1&gclid=Cj0KCQiAgribBhDkARIsAASA5bttWdpIZwvi2HZl3oz9BN0UFew6SIiwc4gEvi22KQ5EbyinbJqq_wQaAttsEALw_wcB
https://www.mouser.co.uk/ProductDetail/Adafruit/254?qs=GURawfaeGuAkwqCF4BmPzA%3D%3D
https://www.mouser.co.uk/ProductDetail/Adafruit/254?qs=GURawfaeGuAkwqCF4BmPzA%3D%3D
https://coolcomponents.co.uk/products/ads1115-16-bit-adc-4-channel-with-programmable-gain-amplifier?_pos=1&_sid=2226a59cd&_ss=r
https://coolcomponents.co.uk/products/ads1115-16-bit-adc-4-channel-with-programmable-gain-amplifier?_pos=1&_sid=2226a59cd&_ss=r
https://coolcomponents.co.uk/products/ads1115-16-bit-adc-4-channel-with-programmable-gain-amplifier?_pos=1&_sid=2226a59cd&_ss=r
https://coolcomponents.co.uk/products/ads1115-16-bit-adc-4-channel-with-programmable-gain-amplifier?_pos=1&_sid=2226a59cd&_ss=r
https://247geek.co.uk/gyneo6m?srsltid=AYJSbAdfGS0__eDO-W7I6yAhwa-dPLNbZw_2H8nlPXeacDKnloa3RqJoCBg
https://247geek.co.uk/gyneo6m?srsltid=AYJSbAdfGS0__eDO-W7I6yAhwa-dPLNbZw_2H8nlPXeacDKnloa3RqJoCBg
https://www.amazon.co.uk/SanDisk-microSDXC-Adapter-Performance-SDSQUA4-128G-GN6MA/dp/B08GYKNCCP/ref=sr_1_3?crid=1Q4DKVZEQTQKK&keywords=micro+sd+card+sandisk&qid=1668187539&sprefix=micro+sd+card+sandisk%2Caps%2C98&sr=8-3
https://www.amazon.co.uk/SanDisk-microSDXC-Adapter-Performance-SDSQUA4-128G-GN6MA/dp/B08GYKNCCP/ref=sr_1_3?crid=1Q4DKVZEQTQKK&keywords=micro+sd+card+sandisk&qid=1668187539&sprefix=micro+sd+card+sandisk%2Caps%2C98&sr=8-3
https://www.amazon.co.uk/SanDisk-microSDXC-Adapter-Performance-SDSQUA4-128G-GN6MA/dp/B08GYKNCCP/ref=sr_1_3?crid=1Q4DKVZEQTQKK&keywords=micro+sd+card+sandisk&qid=1668187539&sprefix=micro+sd+card+sandisk%2Caps%2C98&sr=8-3

Plan of action for development

On arrival of all the separate components, there were many possible orders of development that
could have been taken when working on this project. The most logical and efficient way to work
through this project would be to go through, component by component, and get them all working
individually before trying to combine their functionalities together. This builds the understanding of
each component better, allows more room for trial and error, and makes debugging/problem-
solving exponentially easier. Figure 8 shows an updated block diagram of the COTS platform and
breakout boards, specifically for the ESP32 MCU. (The specific battery model will be chosen at a later
stage in the project).

2 x Adafruit ADS1115 126 SRl Adafruit MicroSD card
> <«
4-channel ADC breakout board+
ESP32-DevKitC-
32UE
Built-in Wi-Fi
Built-in Bluetooth
U-Blox NEO-6m TXIRX Batter
GPS breakout board ~ h y

Figure 8 - Updated block diagram of the COTS platform and breakout boards, along with each breakout’s communication
format

Logically, it made the most sense to start the development with the ESP32 devkit since all the other
components need to be connected to the MCU before they can actually be used and tested. From
there, the breakout boards can be tested individually, then they can be tested in combination with
each other as shown in the flow diagram order in Figure 9, below.

ESP32 with built-in
Wi-Fi and Bluetooth ——>» ESP32 + ADC —>» ESP32 + MicroSD

working as intended

ESP32 + ADC ESP32 + ADC +
MicroSD + GPS | € B« MicroSD

Figure 9 - Flow diagram order for development of ESP32 platform and breakouts

24

ESP32 Development
The ESP32 can be used with the Arduino IDE so the first goal was to get a simple LED flickering circuit
working in the Arduino IDE.

To test the Bluetooth functionality of the board, a simple BLE server was set up on the ESP32 to
allow data to be transferred to a smartphone in range.

To test the Wi-Fi functionality and antenna range of the board, a simple program was used to scan
for nearby networks and display them in the serial monitor. A simple Wi-Fi server for turning on and
off an LED was run on the board to test the loT server functionality. An external antenna had to be
connected to the U.FL port on the board to facilitate a strong enough connection to the local router
to set up the server.

Once the ESP32 had been tested thoroughly, the next logical step involved getting the ADC breakout
working with the ESP32.

ESP32 + ADC Breakout

The Adafruit ADS1115 was connected via I2C to the respective 12C pins on the ESP32. 12C normally
operates at 100-400kHz which is far beyond the samples per second (sps) needed for this project
and hence the sps will not be limited by 12C, but by the maximum sps of the ADC. [13] The circuit
diagram can be seen in Figure 15.

The ADS1115 can be powered by either a 3V or 5V supply. Since the analogue input range of the
ADS1115is-0.3 — (Vdd + 0.3), then a 5V supply must be used as a 3.3V supply would not provide a
great enough range (-0.3 - 3.6V) for the conditioned analogue signals (which need a range of 1 —4V).

A program was then engineered to take single-ended readings roughly once per second for all of the
4 channels, which were then printed out in the serial monitor. In the example shown below, the 3.3V
DC output from the ESP32 was connected to pins A0 and A2 and the 5V DC output from the ESP32
was connected to pins Al and A3, for demonstration purposes. The serial monitor output can be
seen below, in Figure 10

& COM3

AINO: 17e&l 3.31V

AIN]1: 25825 4.84V

AIN2: 17659 3.31V

ARIN3: 25825 4.B4V

AINO: 17865 3.31v

ATN1: 25380% 4,84V

AINZ: 17e6d4 3.31V

AINI: 23807 4.84V

L4 > ’
[Ausnseroll [show tmestamp Hevdine s 0e00 baud wr Clear carsput

Figure 10 - Screenshot of the Arduino IDE Serial Monitor tool, displaying the ADC measurements
for the 4 channels

25

ESP32 + MicroSD Card Breakout

The Adafruit MicroSD card breakout was connected via the hardware SPI pins on the ESP32. The
hardware SPI pins offer a much faster solution than “bit-banging” the interface code by using
another set of pins. [12]

The MicroSD breakout board has proper 3V level shifting built in. The board is native at 5V so, to
avoid unnecessary level shifting, a voltage of 5V from the ESP32 was supplied to the MicroSD card
breakout.

The board itself can be used for tasks such as creating directories, listing directories, removing
directories, writing files, appending files, reading files, renaming files, deleting files, and testing files
10. [14] This functionality of the board was all manually tested to ensure correct functionality.

A program was then engineered that creates a file then appends values to it. This functionality will
be needed later for storing the ADC measurements. Figure 11 shows a snippet of the program and
Figure 12 shows a screenshot of the MicroSD card contents that were created once the full program
was run.

writeFile (SD, "/hello.txt"™, "Hello World!\n\n"):
int counter = 0;
while (counter++ < 3) {
appendFile (SD, "/hello.txt", "Appended message\n");
}

Figure 11 - Snippet of the program code to demonstrate how the writing and appending of text
files on the MicroSD works

This PC SDHC (D2)
Name . Date modified Type

B hello Text Document

. hello - Notepad

File Edit Format View Help
Hello world!

Appended message
Appended message
Appended message

Ln 1, Col 1 100% Unix (LF)

Figure 12 - Screenshot to show the contents of the MicroSD card after the program had been run

Figures 11 and 12 demonstrate the basic MicroSD card functionality needed for storing the ADC
measurements working as intended. The next logical step was to combine the functionality of the
ADC and the MicroSD card breakouts.

26

ESP32 + ADC Breakout + MicroSD Card Breakout

Once the individual ADC and MicroSD breakouts had been tested individually, their functionality was
combined together into one single program. This program was engineered to take 4 single-ended
voltage measurements from the ADC and then append these values to a text file on the MicroSD
card. To simulate voltage signal inputs, the 3.3V output from the ESP32 was connected to A0 and A2
of the ADC and the 5V output from the ESP32 was connected to Al and A3 of the ADC.

The full C++ code can be seen in Appendix 1. As the project progresses, the GPS module will be used
as a clock for disciplining the timing interrupts to specify when the samples should be taken from the
ADC. For now, however, this current program implementation doesn’t consider timings. It takes the
4-channel readings and appends them to the text file on every loop iteration (averaging around
16sps). This program is a good step towards the later functionality of storing useful values on the
MicroSD card, such as vrms/frequency/power/energy consumption, etc.

Figure 13 shows the breadboard circuit developed for use with this program. The MicroSD card
breakout is shown on the left, the ESP32 in the middle, and the ADS1115 ADC on the right.

Figure 13 - Photo of the ESP32 + ADC Breakout + MicroSD Card Breakout circuit used to store the 4 analogue input
measurements on the MircoSD card

27

Figure 14 shows a screenshot of the text files contained on the MicroSD card. It also shows the
contents of the ADS1115_voltage_measurements text file, which contains the appended
measurements outputted from the program, after the program had been run for a few minutes.

apr > SDHC (D)
Name Date modified Type

B Apsi11 15_voltage_measurements Text Document

B hello Text Document

. ADS1115_voltage_measurements - Notepad

File Edit Format View Help
%051115 Voltage Values

. 278063V
773188V
.302625V

.272438V
. 765875V
.312937V

L 27225V
. 763625V
.313125V

. 272063V
.761188V
.3135eeV

oaoaaTu

Ln 1, Col 1

Figure 14 - Screenshot to show the content of the MicroSD card after the program had been run

28

Circuit Diagram

Figure 15, as shown below, shows the circuit diagram for the ESP32 + ADC + MicroSD circuit that was
used previously in figure 13 — except for 1 slight change. Earlier, the ADC took 4 analogue inputs
directly from the 3V and 5V output supplies of the ESP32. The ADC in this circuit diagram, however,
uses the output voltage signal from the inverting op-amp attenuation circuit. In this signal
conditioning circuit, the 741 op-amp is powered by a positive and negative 12V supply, however, this
is not very practical due to size and power constraints. This will be fine-tuned at a later stage in the
project.

The address pin of the ADS1115 is currently being set to GND. This address pin is used to set the
address of the 12C connection (to 0x48), to allow up to 4 ADCs to be used simultaneously on the 12C,

i.e. the second ADS1115 will need to have a different address set for it to be used in tandem with the
first ADS1115 over the 12C interface..

—3213 SNpD
A=n N 3 — N
b %% \ o e
::7 Y vok _____JGND \i\
= § & er————-ssé% = |
¥ g & 7w 8
. 27 > =t 4o U |
~ \ =g =4l
12 N 4t -A2 .
dewp 8 o <Az]
h = A 2
-2 ! T
402 j ol
4+ Mmoo ook

'*/‘ k\ <LK

H—T 1+
(/<2 Beslkd

Figure 15 - A hand drawn circuit diagram for the ESP32 + ADC + MicroSD circuit that was used previously in Figure 13

29

ADC Sampling Rate Problem

The UK mains frequency is around 50Hz [15]. Following Nyquist’s Theorem [16], when sampling the
analogue inputs with the ADC, 24 samples per cycle should be an adequate number of samples to
calculate accurate VRMS values, frequency values, etc.

fs =N Xfo
£, =24 x50
f. = 1.2kHz
1
tS—FS
1
ts = 1200
ty = 833us

Figure 16 - Nyquist's Theorem sampling rate equation for UK mains frequency of 50Hz

Shown above, in Figure 16, are the calculations for determining the required frequency and time
period of the ADC samples. It was calculated that the ADC should take 1200 samples per second
(sps), i.e. it should take samples every 833s.

The ADS1115 has a high resolution of 16-bits (15 usable bits) but as a result, it only has a maximum
sample rate of 860sps. This maximum sampling rate of 860sps is not high enough to be able to take
the 1200sps readings that are required for this project and hence a faster sampling rate ADC is
needed.

The ADS1015 ADC has a slightly lower resolution of 12 bits (11 usable bits) but has a much higher
maximum sampling rate of 3300sps, hence facilitating the 1200sps measurements that are needed
for the 50Hz signal. Two Adafruit ADS1015 ADC breakouts were researched and then ordered.

30

Future work to be completed in semester 2

The ESP32 circuit is at the stage where 4 single-ended inputs measurements are read and then
stored on the MicroSD card.

The next step will be to wire up the GPS breakout individually with the ESP32, to grasp how the
breakout works and to test that the desired functionality works as expected separately

After that, the GPS breakout should be included in the ADC & MicroSD circuit then use the GPS’s
1PPS timing functionality as a clock to discipline the timing interrupts for taking the readings, at
1sps to begin with.

The circuit should then be amended to use the ADS1015 instead of the ADS1115 then try to get
1200sps readings working successfully — as needed for a 50Hz signal with 24 samples per cycle.
The program should be altered to work out the VRMS from those measurements, then store the
values to the MicroSD card at appropriate regular intervals.

Using the samples taken and basic trigonometry, the two true zero points within each cycle
should be calculated and then used to work out the true frequency of each cycle.

Using these frequency measurements, the energy consumption and power can be worked out
and stored on the MicroSD card too. The frequency should be roughly 50Hz but the true
frequency must be worked out to determine accurate energy consumption and power statistics
as required for metering/billing.

The signal conditioning circuit currently takes in a voltage input of 110V, to simulate the
secondary side of the distribution transformer. In the development process, using a lower
voltage input such as 1/2V would be more practical so the signal conditioning circuit should be
amended to facilitate this lower voltage input

Once all the desired useful measurements are being read, calculated, and stored correctly locally,
the external communications should be set up.

First, a Wi-Fi server should be set up on the ESP32 to host a static web page for displaying the
near-live-time useful measurements.

Hosting a Wi-Fi server requires a constant/stable Wi-Fi connection so this may be unsuitable for
many substation scenarios. A BLE server doesn’t need a separate network, can communicate
with most modern smartphones, and has a very low energy usage [17]. Users in the substation in
close enough proximity to the ESP32 could access the near-real-time readings through their
smartphone using BLE. This may be a superior alternative to a Wi-Fi server — this will need
further research into to compare and decide on the best solution.

Hosting a Wi-Fi/BLE server while taking the ADC readings at a high frequency may require too
much processing power for a single ESP32 to handle. If so, a second ESP32 could be used solely
for taking the high-frequency ADC measurements while the other ESP32 focuses on the
measurements and external communications.

Once the external communications of the smart wireless sensor have been set up successfully, there
is additional bonus functionality that could be implemented to further improve the functionality of
the smart sensor.

31

A suitable battery solution could be designed and developed to support the portable
functionality of the platform and signal conditioning circuit

The useful measurements could be stored in a suitable cloud database storage provided by
services such as Amazon Web Services (AWS) or Google Cloud Platform (GCP), etc.

Even further, a static website could be hosted on these cloud platforms to display the readings
online, to be accessed worldwide.

Rather than using a breadboard, a more semi-permanent solution such as Veroboard Stripboard
could be used

A suitable model case could be designed in CAD modeling software and 3D-printed to hold all of
the circuitry and components

32

Semester 2

ESP32 + GPS Breakout

After the ESP32, ADC and MicroSD breakout circuit was working as intended, the next logical step
was to get the ESP32 working with the GPS breakout. The U-Blox NEO-6m was hooked up to the
ESP32 via UART (TX/RX). UART is a very simple communication form, however, a bug was found with
the ESP32 devkit - if the GPS breakout was connected to the ESP32 default tx/rx pins then the code
would fail during the upload process to the MCU.

This was solved by manually setting-up the UART serial communications with different tx/rx pins
than the default ones. Figure 17, as shown below, showcases the line of code used to set up the GPS
serial communications using pins 16 and 17 as the RX and TX pins of the ESP32, respectively. The
ESP32 general serial communication line with the PC was set up with a baud rate 2000000Hz, then
communications with the GPS breakout were set up at a baud rate of 9600Hz, as shown below.

Serial2.begin(9600, SERIAL 8N1, 16, 17);

Figure 17 - Line of code to initialise the secondary serial, for the GPS breakout UART
communications

What data does the GPS breakout send to the ESP32?

The GPS breakout sends National Marine Electronics Association (NMEA) sentences [18] to the
ESP32 via UART. Each of these NMEA sentences start with a “$S” symbol and the data fields are
separated by commas. The TinyGPSPlus library [19] was utilised to easily extract usable data from
these NMEA sentences. Figure 18, as shown below, showcases the serial monitor output which
includes 5 NMEA sentences and some corresponding extracted data from those sentences — time,
latitude and longitude.

SGPRMC,122351.00,A,5435.17211,N,00556.24568,W,0.588,,060423,, ,R%67
SGPVTG, ,T,,M,0.586,N,1.088,K,A*27

SGPGGR,122351.00,5435.17211,N,00556. 248658,W,1,068,1.53,62.8,M,52.5,M,,*7C
5GPGSR,R,3,04,25,28,31,29,05,18,20,,,,,2.73,1.53,2.26%0B
5GPGsSV,4,1,13,02,51,0

Time: 12235100
Lat: 54.59
Long: -5.94

Figure 18 - NMEA sentence response sent over UART to the ESP32, along with useful extracted metrics

33

GPS breakout for ADC timing disciplining

Using a GPS breakout for disciplining/syncing the ADC interrupt may seem like a strange choice at
first, however, GPS breakouts are unique in the fact that the 1PPS signal sent from them is perfectly
synced, no matter the geo-location. The NMEA sentences are send via UART to the ESP32 perfectly
at the start of each GMT second. This in-sync 1PPS signal of the GPS breakout can then be utilised to
ensure that multiple smart wireless sensors will be taking readings perfectly in sync, as will be
explained in more detail later.

When working with the GPS breakout, a mistake was made of trying to utilise the actual extracted
NMEA time for the ESP32 timing interrupt disciplining. After some self-education on timing
interrupts, it then became clear that the 1PPS signal itself coming from the GPS should be utilised for
the interrupt syncing.

To test and validate the 1PPS interrupt timing functionality of the GPS, a timing interrupt was set up
on the ESP32. This timing interrupt was set up to take ADC readings on every falling edge of the
signal hitting that pin. The TX line of the GPS breakout was connected to pin 25 (yellow wire) so that
a burst of falling signal edges would hit the interrupt pin once every second, hence causing an ADC
reading to be taking every second. This circuit can be seen below, in Figure 20.

ESP- WROOM-32

(€
@ @zus-(cru;e

FCC 9D:2AC72-ESPWROOM 32

clelelelcleleleleIolCIoInICIoICINICIC)

o ¥
STTTSQV

0L2/G58LZZYE
100-0-NS-03N

®O

GY-GPS6MU2

Start time: 60033
Current time: 90033
Time taken: 30000

Samples per second: 1.00

Figure 19 - Serial Monitor output of the GPS ADC benchmark
program

34

The Serial Monitor screenshot, as shown above in figure 19, shows that the GPS timing interrupt
circuit was able to successfully achieve 1PPS ADC sample readings. In the end-goal circuit, the GPS
won’t be used in this exact way but this circuit proved that the GPS 1PPS signal is extremely accurate
and will facilitate the disciplining of the ADC timing interrupts perfectly.

The full details of how the GPS breakout is used for interrupt timing in the final circuit is explained in
later sections.

ADS1015 for 1200sps readings

As explained in the Semester 1 section, the UK mains frequency is roughly 50Hz and 24 samples
should be taken per cycle (following Nyquist’s Theorem). [16] This calculates to 1200 samples
needing to be taken every second (1200sps). As explained previously, the ADS1115 only has a
maximum sampling rate of 860sps.

Two Adafruit ADS1015 ADCs were ordered and the ADS1115 in the circuit was swapped out for one
of the ADS1015s. When setting up the 1200sps interrupt timer, duplicate readings could possibly
have been taken if the ADC was unable to keep up with the 1200sps sampling, therefore, it was
deemed necessary to thoroughly benchmark the ADC1015 to try to achieve its maximum sampling
rate.

Single-ended readings are used by the MCU to take ADC readings every so often, however, they are
inefficient and slow as it was later found that they have an in-built delay that cannot be overridden.
Continuous mode is the ADS1015’s fastest mode. Once the ADC has taken a new reading, the alert
pin on the ADC sends out a high signal — if this alert pin is hooked up to an interrupt pin on the
ESP32, the alert signal will tell the ESP32 when the ADC is ready to take another reading. Using
continuous mode in this way ensures that the fastest possible rate of unique values can be read
from the ADC at one time.

The ADC was thoroughly tested in continuous mode with the alert pin hooked up to an interrupt on
the ESP32 to achieve the maximum sampling rate possible for the ADC. The ESP32 was timed for
how long it took to take 30,000 samples and the results were printed in the serial monitor. In this
testing period a maximum rate of 1700sps was achieved with ease, but it took a substantial effort
investment to achieve the final sampling rate.

The first limiting factor of the continuous measurements was the default data rate. By modifying
Adafruit’s ADS1015 library to include useful additional functions, this default value could now be set
using the simple line shown below, in Figure 21.

ads.setDataRate (RATE ADS1015 3300SPS);

Figure 21 - C++ code used to set to ADS1015 sampling rate to 3300sps

35

The second main limiting factor of the ADS1015 was eventually found to be the 12C bus frequency.
The ESP32 12C bus clock speed is set to 100kHz by default, however, through modifying the Adafruit
library, the 12C clock speed was increased to 400kHz which facilitated the ES32 and ADC to reach
their final maximum speed.

| Send

I v = = [y I = A

Time taken: 8934

Samples per second: 3357.96
ADS1015 data rate: 192
Start time: 1382801

Current time: 1391735
Samples to be taken: 30000
Time taken: 8934

Samples per second: 3357.9¢6

W

Autoscroll [_] Show timestamp Mo line ending -~ 2000000 baud ~~ Clear output

Figure 22 - Serial monitor output of the final ADC benchmark speed test

Shown above, in Figure 22, is the serial monitor output of the final ADC speed test. It can clearly be
seen that a sampling rate of 3356sps was consistently taken through the continuous readings.

As shown in the previous program, the ADS1015 can successfully take readings at a sampling rate of
up to 3300sps. This proves that the ADC will be able to take unique readings at 1200sps without any
duplicate readings — ensuring that the ESP32 only retrieves new readings rather than re-reading the
same ADC reading twice.

The next step was try to achieve the desired ADC sampling rate of 1200sps. To do so, interrupts were
again utilised but this time the interrupts were to be triggered by ESP32 built-in clock. The ESP32 has
four 64-bit timers [20]. The timer interrupt was specified at 1200sps by passing the specified time
period as a parameter to one of the function calls, as shown in Figure 23 below.

The interrupt ADC reading code was then updated from previously using the alert pin from the ADC

timerAlarmWrite (My timer,| 833,) true);

Figure 23 - C++ code used to set up the ESP32 interrupt timer at a sampling rate of
1200Hz (833us time period)

for interrupts to using the ESP32 interrupt timer, as shown above in Figure 23. In summary, this
meant that the ESP32 should take readings from the ADC every 833us, hence achieving 1200sps. This
was tested thoroughly and a benchmark screenshot can be seen below in figure 24.

36

| Send
o T oS S S T S .
Time taken: 8330
Samples per second: 1200.48
ADS1015 data rate: 192
Start time: 166634
Current time: 1749c4
Samples to be taken: 10000
Time taken: 8330
Samples per second: 1200.48
v
[«] Autoscroll [_] Show timestamp Mo line ending ~ | 2000000 baud -~ Clear output

Figure 24 - Serial monitor output of the ADC sampling rate when the interrupt timer is set to 1200sps

ESP32 Input Analog Signal

Now that 1200sps ADC readings were being consistently taken, it was time to find an analogue signal
input source. Up until this point in the project, the ESP32 5V and 3.3V DC outputs were being used as
inputs into the ADC. Since these signals are DC signals, the output waveforms plotted by the ADC
were horizontal lines. The end goal AC source was intended to use a mains supply/function
generator, however, in the meantime the ESP32 digital to analogue converter (DAC) was set up and
utilised as an input into the ADC. The external DacESP32 library [21] was utilised to obtain a
consistent sine/cosine waveform with just a couple of function calls. The DAC output pin was set at
pin 25 and the analogue output signal was set to a cosine wave with 50Hz frequency. Some of this
code can be seen below, in Figure 25.

DacESP32 dacl (GPIO NUM 25);
vold setup(void)
{

dacl.outputCwW (50);

Figure 25 - ESP32 code that utilises the DacESP32 library
to setup a DAC cosine waveform output (of supposed
frequency 50Hz) to pin 25

The library was extremely valuable to this portion of the project, however, the frequency of the
output waveform was not as precise as it was made out to be. When setting a frequency of 50Hz,
the actual frequency of the analogue waveform was tested and calculated to be around 51Hz, which
is a substantial difference. Setting an accurate frequency with this, however, was not quintessential

37

as the frequency algorithm would be later be validated through simulated waveforms in MATLAB, as
will be shown at a later point in the project.

Figure 26, as shown below, showcases the Serial Plot output (in the Arduino IDE) of the ESP32 DAC
51Hz cosine analogue waveform. These ADC readings were taken at 1200sps and the plot shows a
lovely, consistent cosine waveform being sampled from the ADC. Through thorough testing, it was
validated that there were no duplicate values or random zero values being read from the ADC.

o4zl 70521 TOEZL 70721

2000000 baud ~ Send

Figure 26 - Serial plotter output of the ESP32 51Hz DAC waveform being read at 1200sps by the ADC

True Frequency

To work out the frequency of an analogue (sine/cosine) waveform, the time period must be
calculated. The time period of a waveform is the time it takes for the wave to complete one full
cycle. To determine the exact times when a cycle both starts and finishes, a voltage value should be
chosen. Once the waveform crosses from the negative side to the positive side (or vice versa), the
cycle can be concluded as having completed.

With non-shifted waveforms, it would make sense to use 0V as the defined crossing voltage,
however, since the wave has to be shifted due to the unipolar nature of the ADC a different
midpoint value must be chosen. The midpoint of 2.5V is a good starting point, however, what
happens if the midpoint of the waveform shifts to 2.6V? Later in the project it will be proven that the
zero crossing voltage value does not necessarily have to be the midpoint of the wave, it could
technically be anywhere between Vmin and Vmax (e.g. 1.1V and 3.9V) and the frequency values will
remain unaffected. Later in the report, there is a section to show additional functionality that was
added to calculate a running midpoint (as required for the VRMS).

Therefore, the initial zero crossing voltage value can be set to 2.5V to begin with —as it is a safe
value at roughly the expected midpoint of the wave. Figure 27, as shown below, showcases an
analogue waveform with annotations pointing to the true zero points that need to be accurately
measured.

38

Voltage (V) 1
o /\ /\
2.5V

AT

True zero points

Figure 27 - Analogue waveform with annotations pointing to the crucial true zero points of a particular cycle in the wave

The ADC takes samples of the input analogue signal, with almost exactly 24 samples per cycle. This
can be visualised in the analogue waveform plot, as shown below, in Figure 28.

>

Voltage (V) 1

3.9V

2 5V » Time (s)

1.1V

Figure 28 - Analogue waveform with important true zero crossing sample points highlighted

To find these true zero points, the frequency algorithm checks for scenarios where any two
consecutive samples match the following criteria, as shown in figure 29 below:

previous sample voltage < zero crossing voltage < current sample voltage

Figure 29 - Sampling pair voltage scenario that the algorithm checks for

When this scenario occurs, then the algorithm will know that the analogue waveform has just
crossed the zero crossing. Knowing this, the algorithm will then multiply these two voltage values

39

then use some basic trigonometry to determine the exact time of the crossing. This can be visualized
by extrapolating these two values into their linear triangle formation, as shown below, in Figure 30.

1s y 4 t=1.1s

Figure 30 - Extrapolated triangle diagram of the two zero crossing points

Figure 30, as shown above, is the extrapolated triangle of the two zero crossing points, as explained
previously. The “y” voltage value of 2.8V is the current sample reading and the “x” voltage value of
2.4V is the previous sample reading. The true line between these two sample points will have a very
slight bend, however, this bend is so miniscule that a straight line is assumed between the points
instead. “m” is the defined zero crossing voltage value of 2.5V.

The key to this frequency algorithm is the fact that it’s trying to figure out the time when the zero
crossing value is crossed by the waveform, as defined by the value “z”. Since both the voltage and
time values of x and y are stored in variables, a trigonometry equation, as shown below in Figure 31,
can be utilised to determine the exact time of the zero crossing — “z”.

-m
z=t—<T><y)

y—X

2.8 —2.5)

=1.1 (01x03)
Z=4 %04

z=11 -0.075

z = 1.025 seconds

Figure 31 - Trigonometry equation used to determine the exact time that the zero crossing occurs at

40

As shown in the equation in Figure 31 above, the zero crossing time was calculated to be 1.025
seconds, which is a quarter of the time between the example samples — “x” and “y”. This is validated
by the fact that the zero crossing point, “m”, is a quarter of the way between the previous and
current values — “x” and “y” respectively. This has proven that the zero crossing time and the
voltages are directly proportional to each other in nature, hence validating that the triangle
trigonometry can be utilised for the calculations.

Figure 32, as shown below, showcases the true frequency algorithm C++ ESP32 code. The first
highlighted line is equivalent to the equation shown in Figure 31 and the second highlighted line is
equivalent to the frequency time equation. The lower half of Figure 32 contains code for the running
average frequency. The “i > 100” if statement is used as a precautionary warmup for the ADC
breakout to allow time for any unexpected values to be cycled through — as this is important for the
running averages. The ESP32 “micros()” function is used to obtain the current time in microseconds.
The timings must be very precise, therefore the micros() function was used over the millis() function.
The full code can be seen in Appendix 9.

————————————————————————— Frequency -———-—————————m—— e —m
s a v /=t—(T><y)
. , y—x
long currentTime = micros();
// if at zero crossing (zero crossing from negative to positive specifically) ‘//’//’
if (prevVoltage <= midPoint && voltage > midPoint) {
long trueZero = currentTime - ((currentTime - prevTime) * ((voltage - midPoint) / (voltage - prevVOltaqe)));J
[currentFrequency = 1000000.0 / (trueZero - prevPositiveZeroCrossing)] — 1
Frequency = —;
if (i > 100) { Time
avgFrequency = ((avgFrequency * cycleCounter) + currentFrequency) / (cycleCounter + 1);
cycleCounter++;

} else {

avgFrequency = currentFrequency;
prevPositiveZeroCrossing = trueZero;

}

Figure 32 - ESP32 C++ code for the true frequency algorithm

41

VRMS Algorithm

When using a voltage/time plot to work out the voltage of a sinusoidal waveform, this can easily be
done by working out the value of Vpeak (Vp) using one of the 3 equations shown in Figure 33, below.

Vpeak = Vmax - midpoint
Vpeak = - (midpoint - Vmin)
Vpeak = (Vmax - Vmin) / 2

Figure 33 - Three possible equations for calculated Vpeak

To use any of these methodologies for calculating the voltage of the input analogue signal, the Vmax
and/or Vmin values of each wave cycle have to be determined. (The midpoint of the input analogue
waveform could change but this is solved by using the running midpoint value, which is explained
later in the report). The problem lies with obtaining the Vmax or Vmin value — the analogue
waveform is sampled with around 24 samples per cycle so it’s unlikely that an individual sample will
be taken on either/both of the very peak and trough points of the analogue waveform. This presents
an issue where the calculated voltages using these values will likely be slightly less than the true
voltage due to the nature of the timings of the samples.

The first proposed solution to this described issue was to use the Vmin and Vmax values of the
previous “n” cycles (n=5 for example) and then find the voltage based on the highest Vmax value
and the lowest Vmin value of those previous “n” number of samples. This solution seemed to work
to a passable standard, however, the voltage values were not very accurate/precise (as they
depended on the exact timings of the max and min samples) and hence, the algorithm failed as a
whole.

The final solution found was to first work out the voltage root-mean-square value (VRMS) then
calculate the voltage from this VRMS value.

|+ X2 + X3+ o+ Xp,°
meS - 24

Figure 34 - VRMS equation

The VRMS equation is shown above, in Figure 34. This equation can be utilised to work out the VRMS
of the current cycle at each new sample point. At each new sample point, the current sample point
and the 23 previous sample points should each be squared, then summed, then divided by 24, then
square rooted. To store the 23 most recent sample readings into the ESP32 memory, a circular
buffer should be utilised. This can be performed by using an array of size 23, along with a simple
integer variable to hold the current position. On each new sample reading, the most recent reading
will replace the oldest reading.

On each new sample reading, the full circular buffer can be iterated over then processed using the
equation shown in Figure 34. Iterating over the circular buffer is fine in theory, however, in practice
it would be quite a computationally expensive process as all 24 values need to be iterated over on

42

each new sample reading (23 in circular buffer + 1 most recent sample reading). This comes out at
an algorithm time complexity of 240(N).

What if there was an algorithm that could be used instead of the circular buffer algorithm? An
algorithm that is more computationally efficient, more memory efficient, more readable and has
shorter overall code than the previously described circular buffer algorithm?

This wonder-algorithm is known as the sliding window algorithm. The sliding window algorithm
simply utilises a single variable for recalculating the VRMS, without having to iterate over the whole
circular buffer again each time. The premise of the sliding window algorithm is that on each new
sample value, the previous VRMS value is extrapolated out back to the sum square values then the
oldest squared sample voltage is subtracted from the sum square voltages and the newest sample
voltage is added to the sum square voltages. These sum square voltages are then divided by 24 then
square rooted again to obtain the new VRMS. This can be visualised using Figure 35, as shown
below.

[5, (7, 1, 4, 3, 6,/2, 9, 2]

Figure 35 - Sliding window visualisation

The sliding window algorithm has an identical output to the circular buffer algorithm, however, it is
much more efficient — with an algorithm time complexity of O(N) rather than 240(N). This
substantial increase in efficiency was a critical turning point for the project as the ESP32 taking the
1200sps ADC readings doesn’t have that much available time and computing power to spare
between taking each of the ADC sample readings (especially for 2 ADCs, as shown later).

o

= i % bufferSize;

float oldM = bufferM[pos]:
float oldv bufferv[pos]:
float oldcC bufferCpos];:

// midPoint

midPointAvg = ((midPointAwvg * bufferSize) + voltage - (0oldvV + oldM)) / bufferSize;

midPoint = midPointAvg;
bufferM[pos] = midPoint;

// vrms
sumSquareVoltages = (pow(vrms, 2) * bufferSize) - pow(oldv, 2) + pow(voltage - midPoint,
vrms = sqrt (sumSquareVoltages / bufferSize);

bufferV([pos] = voltage - midPoint:

Figure 36 - VRMS sliding window algorithm ESP32 C++ code

Figure 36, as shown above, showcases the ESP32 C++ code for the sliding window VRMS algorithm.
“M” represents midpoint, “V” represents voltage and “C represents current. The midpoint and
current functionality will be explained in later sections. Initially, the old buffer positions are found
using a modulus calculation then the old midpoint, old voltage (and old current values) are obtained

43

2);

from the three buffers. The midpoint has to be recalculated before obtaining the voltage, as will also
be explained in a later section. Once the midpoint has been calculated, it can then be utilised for the
VRMS code.

Firstly, the VRMS value is squared then multiplied by the bufferSize to extract out the
sumSquareVoltages value. Once the sumSquareVoltages value has been extrapolated out, then the
old value can be subtracted and the new value can be added to the sumSquareVoltages. The oldV
variable holds the oldest voltage value, which was just obtained from the buffer. The red line
highlights the oldest value in the sliding window that is being subtracted from the
sumSquareVoltages and the green line highlights the current value that is being added to the
sumSquareVoltages. The VRMS is then recalculated and the new value is stored in the first point in
the voltage buffer. The full code can be found in Appendix 9.

sz\/EXVrms

Figure 37 - VRMS to Vpeak equation

Once the VRMS has been recalculated for the new sample, the V-peak voltage value can then be
worked out by using the VRMS-to-voltage conversion equation, as shown in the equation in Figure
37, above.

Circular Buffer Size

The bufferSize variable is set earlier in the program. Altering the bufferSize value alters how the
circular buffer functionality works. The minimum bufferSize for a 50Hz wave is 24 (according to
Nyquist’s Theorem [16]), to allow for a full cycle to be used in the calculations. In practice, this VRMS
value will fluctuate slightly due to the analogue signal itself not being exactly 50Hz. These slightly
fluctuations can be smoothed out by increasing the bufferSize. Increasing the bufferSize to 1200, for
example, means that the VRMS of the new sample is calculated based upon the values taken in the
whole last second. This will produce a very accurate and smooth VRMS, however, it will also mean
that the VRMS has a slight delay when tracking the changing VRMS — as it is the antagonist to its
smoothness. The perfect bufferSize must be set depending on the use case of the smart wireless
sensor. If a 1Hz signal has to be measured, then a bufferSize of 1200 is the absolute minimum that
can be used at this 1200sps sampling rate — to ensure that at least one full wave is sampled. In the
UK mains scenario with a signal of frequency 50Hz, vigorous testing and analysis proved a buffer size
of anywhere between 24 and 1200 to be satisfactory — and should be tailored to the end user need,
whether they need a snappier or smoother VRMS value.

The ESP32 does have limited on-board memory and computational power so this must factored in
when determining the buffer size. Through testing and analysis, a total bufferSize of 1200 was found
to be computationally feasible and hence, when using three buffers (for midpoint, voltage and
current) a bufferSize of 400 each buffer was found to be optimal for this project in terms of
performance, smoothness and delay.

44

Frequency and VRMS in action

At this stage in the project, the midpoint, frequency, and VRMS were all being successfully measured
and calculated.

B ADCVoltageFeadings [l VENS B AvgVENS D FrequencyDiv10 |l AvgFrecquencyDivlO

Figure 38 - Serial plotter waveform of the ADC readings, VRMS and frequency while the amplitude and frequency are being reduced

Figure 38, as shown above, showcases a screenshot of the Arduino IDE Serial Plotter for a function
generator analogue sinusoidal signal. It’s very clear from the analogue input sine wave in the figure
that both the frequency and voltage of the sine wave are both decreasing rapidly. Hence, the
measured frequency and VRMS lines of the plot decrease accordingly, as shown by the yellow and
red line, respectively. A running frequency and VRMS average were also being calculated and
plotted, as can be seen by the pink and green lines, respectively. This wave had been running for
approximately five seconds prior to this screenshot so the running average lines can be seen to
decrease at a more gradual rate than the rate of the frequency and VRMS lines.

45

Frequency and VRMS Algorithms Validation in MATLAB

Up to this point in the project, all of the project code had been written for the ESP32 in C++ in the
Arduino IDE. The algorithms that were engineered seemed to work perfectly, however, there was no
way of validate the algorithms using the real analogue signals due to slight inconsistencies in both
values and timings, etc. The only way that the algorithms could truly be validated is through a
simulated scenario, where the inputs, timings, readings, etc. could be controlled down to pinpoint
accuracy and consistency.

MATLAB was chosen as the simulation program for the algorithm validation task as it was known to
be precise and consistent enough for the task. To actually validate the algorithms, the input
analogue sine wave had to be constructed then set at a certain frequency for a specified number of
cycles then the frequency would be altered slightly and the sine wave would run for another number
of cycles, and so on.

f = [49.97, 49.98, 49.97];
cycles = [50, 150, 70];

Figure 39 - MATLAB sine wave frequency simulation values

Figure 39, as shown above, showcases the finalised desired sine wave frequency values for the
validation program. The sine wave would run at 49.97Hz for 50 cycles, then its frequency would be
increased to 49.98Hz for 150 cycles then its frequency would be decreased back down to 49.97Hz for
the final 70 cycles.

Frequency (Hz)

r

49,98 = = = =

49,97

|
|
! Time (s)

1.0006 4.0018 5.4026

Figure 40 - Rough frequency time plot of the expected varying frequency input analogue sine wave

46

Figure 40, as shown above, showcases a rough frequency time plot used to represent the expected
varying frequency of the simulated input analogue sine wave. To validate the frequency algorithm,
both the input and output sine wave frequency waves should be plotted and compared. They should
be compared in shape and values to determine if the measured frequencies have met the required
frequency accuracy and precision. The desired frequency accuracy of this project was set out at +-
10mHz and the desired VRMS accuracy of this project was set out at +-10mV accuracy.

The expected VRMS and measured VRMS should be plotted against time and compared to validate
the VRMS algorithm, similar to validating the frequency algorithm.

MATLAB Sine Wave Population

Before being able to validate the frequency and VRMS algorithms, the sine wave specified in Figure
39 had to be constructed.

fs
dt

1200; % sampling frequency
1/fs; % seconds per sample

f = [49.97, 49.98, 49.97];
cycles = [5@, 150, 7@];

stopTimeTotal = 9;
totalSamples = 1;
for i = 1:1length(f)
stopTimes(i) = cycles(i) / f(i);
samples(i) = stopTimes(i) * fs;
stopTimeTotal = stopTimeTotal + stopTimes(i);
totalsamples = totalSamples + samples(i);
end

t = (@:dt:stopTimeTotal);

for 1 = 1:totalsamples
if (i <= samples(1) + 1)
y(1) = sqrt(2) * sin(2 * pi * (1) * t(1));
yTrue(i) = f(1);
elseif (i <= samples(1) + samples(2) + 1)
y(1) = sqrt(2) * sin(2 * pi * f(2) * t(1));
yTrue(i) = f(2);
elseif (i <= samples(1l) + samples(2) + samples(3) + 1)
y(1) = sqrt(2) * sin(2 * pi * f(3) * t(1));
yTrue(i) = f(3);
end
end

plot(t, y);

Figure 41 - MATLAB code used to construct the input MATLAB analogue sine wave for the simulation

47

Figure 41, as shown above, showcases the MATLAB code used to construct the input MATLAB
analogue sine wave. The sampling frequency, the specified frequencies and the cycles were set up in
a parameterised fashion to ensure that these values could easily be altered. The sampling rate was
set at 1200sps, as required for a 50Hz sine wave with 24 samples being read per cycle. The wave
VRMS was set at exactly 1V. The stopTimes and samples vectors were populated then they were
used to create the final sine wave vector, as specified by identifier “y”. This final sine wave was
plotted on the frequency time graph, in preparation for a later comparison. The full code for the
MATLAB algorithm validation can be found in Appendix 11.

for i = 1:1length(y)
voltage = y(i);
currentTime = t(i);

% VRMS
if (i > length(buffer))
pos = mod(i-1, length(buffer)) + 1;

old = buffer(pos);
new = y(i);

sumsquareVoltages = (vrms~2 * length(buffer)) - old*2 + new2;
vrms = sqrt(sumSquarevoltages/length(buffer));
buffer(pos) = y(i);
disp(round(vrms,2)); % 23dp
vrmsPlot (i) = vrms;
end

% Frequency
it (prevvoltage <= midPoint && voltage > midPoint)

trueZero = currentTime - ((currentTime - prevTime) * ((voltage - midPoint) / (voltage - prevvoltage)));

currentFrequency = 1 / (trueZero - prevPositiveZeroCrossing);
if (1 » 1e0)
currentFrequency = 1 / (trueZero - prevPositiveZeroCrossing);
disp(round(currentfFrequency, 3)); % 3dp
end
prevPositiveZeroCrossing = trueZero;
end

frequenciesPlot(i) = currentFrequency;

prevVoltage = voltage;
prevTime = currentTime;
end

Figure 42 - MATLAB code for the VRMS and frequency algorithms

Figure 42, as shown above, showcases the MATLAB code for the VRMS and frequency algorithms.
This code works by iterating over each voltage value in the sine wave vector “y”, as if the value was
being passed from the ADC to the ESP32. Since this signal is simulated, the midpoint of the signal is
set at 0, rather than 2.5V for the ADC breakout — due to the signal having to be shifted. The syntax of
the algorithm code in MATLAB is obviously slightly different to the ESP32 C++ code, however, the

overall functionality is kept to be exactly the same in both programs.

48

10 —

<0 \ \ \ \ \

Figure 44 - MATLAB output waveform of the algorithm validation simulation program

Figure 43, as shown above, showcases the MATLAB signal wave output of the algorithm validation
program. This image is very zoomed out to give a basic overview of the signal outputs. The blue
input sine wave can be seen at the bottom of the graph and the expected and actual frequency can
be seen plotted in yellow and orange, respectively.

and Window

49.9800
4990 — 49 _9800
49_9800
4998
4998600
49_.9800
4996 — 49,9800
49 9800

49.9600

49.9800

Figure 43 - MATLAB output waveform zoomed (on y-axis) of the frequency section

49

Figure 44, as shown above, showcases a zoomed in (with respect to the y axis) screenshot of
expected and actual frequency lines. The actual frequency output (orange line) clearly shows that
the measured frequency follows the expected frequency line extremely precisely. At the frequency
changes, the analogue sine wave is cut mid-way through the cycles, and hence causes the slight blip
in frequency at those frequency change points. These blip lines may look to be fairly significant,
however, this is due to this graph being zoomed in to such a high y-axis magnification. A goal of the
this project was to achieve a frequency measurement accuracy of +- 10mHz, however, after testing
and analysis using these MATLAB simulations, the frequency algorithm was found to have achieved
an even-better accuracy of +- 0.3mHz — which is over 33 times more accurate than originally
required! This accuracy can be seen in the command window frequency values to the right hand side
of figure 44.

1.03 —
1.02 —
1.01 —
X 1.75167 X 3.65333
Y 1.00013 Y 1.00003
1 & o b
0.99 —
0.98 —
0.97 —
0.96 —
0.95 —
1 2 3 4 5

Figure 45 - MATLAB output waveform zoomed (on y-axis) of the VRMS section

Figure 45, as shown above, showcases a very magnified (on the y-axis) screenshot of the sine
wave/VRMS section of the MATLAB algorithm validation output. The sine wave can be seen in blue
and the measured VRMS is plotted as the horizontal purple line. The VRMS line clearly shows that
the measured VRMS follows the expected VRMS of 1V almost perfectly. There are slight blips at the
sine wave frequency change points due to the sine wave being cut mid-way through the cycles,
hence causing the VRMS for that sample fluctuate very slightly. This blip fluctuation does not exceed
40mV, as shown in the plot. A goal of the this project was to achieve a VRMS measurement accuracy
of +- 10mHz, however, after testing and analysis using these MATLAB simulations, the VRMS
algorithm was found to have achieved an even-better accuracy of +- 0.3mV — which is over 33 times
more accurate than originally required! This accuracy can be seen in the command window voltage
values to the right hand side of Figure 45. These values have been rounded to 4 decimal places.

50

Overall, the MATLAB algorithm validation program has successfully proven that both the frequency
and VRMS algorithms are 100% valid. It has proven that the algorithms have achieved an accuracy
that is has greatly exceeded expectations — at 33 times more accurate than originally required!
Knowing that the frequency and VRMS algorithms were completely valid and extremely accurate,
the MATLAB simulation route was complete and the project moved back to focusing on the ESP32
program and functionality.

Midpoint

In an ideal scenario, the ADC would be bipolar and hence, would be able to measure both the
positive and negative voltage. However, the ADS1015 is unipolar so the analogue signal has to be
shifted by 2.5V to ensure that the signal lies between the ADC input range of 0-5.3V.

For a non-shifted signal, the midpoint would simply be at 0V, however, the midpoint of the shifted
signal will lie approximately at 2.5V. Due to the nature of the voltage attenuation and shifting op-
amp circuit, the midpoint is very unlikely to lie at exactly 2.5V. This fact is crucial, as the midpoint
being slightly off of the expected 2.5V could throw off the VRMS very slightly. Therefore it is
guintessential to this project to accurately track the midpoint. The final solution formulated for
doing so was to use a sliding window circular buffer, similar to the implementation for the VRMS.
This can be clearly seen in the VRMS ESP32 C++ code shown earlier, in Figure 36. As shown in Figure
36, the midpoint buffer (bufferM) is set to the same size as the VRMS buffer to ensure that the
midpoint value is updated via the sliding window algorithm in exact sync with the VRMS buffer
(bufferV). This ensures that the midpoint and VRMS maintain their accuracy and precision down to a
perfect degree.

Figure 46, as shown below, showcases the live midpoint tracking, in action, for a waveform of
varying DC offset. It’s clear to see from the screenshot that the DC offset is being increased
dramatically by adjusting the DC offset knob of the function generator. As a consequence, the
ADC1Voltage readings shift vertically upwards in response. The yellow line, representing the tracking
midpoint, can be seen very precisely tracking the midpoint of the waveform, with a very slight delay
due to having a buffersize of 400 (hence 0.333s delay).

.o+ MADCLlVoltage ll FrequencyDivl1O |l VRMS B MidPoint

AWANWATFA AN ANV AW
WJ/ \//\\/ 7 \/ \/ o W

0.0

-3.0 —+ —+ —t —+ —
£4595 €4£95 £4795 £4895 £4995 5095

Figure 46 - Serial plotter showcasing the live midpoint tracking

51

Figure 47 most importantly shows that both the frequency and the VRMS are completely unaffected
by the varying midpoint. This is a crucial point to having the tracking midpoint algorithm and hence,
has been proven to work successfully.

The midpoint of the analogue input wave should not vary much at all, however, the midpoint
algorithm successfully tracks the midpoint in a very similar way to the VRMS being tracked, thanks to
the same buffer size. The smoothness and delay can be fine-tuned by respectively increasing or

decreasing the shared buffer size.

Oral Presentation and Demo

Queen’s University Belfast

Smart Wireless Sensor
School of Electronics, Electrical Engineering and Computer Science

Table of Contents

Background
. DFR Problems

. Solution —Smart Wireless Sensor

3.

4.

5.

6. Choice of Platform
7. Arduino Comparison Table

8. Arduino Nano RP2040 Connect vs ESP32

9. Devkit and Breakout Boards

10. Signal Conditioning Circuit

11. Plan of Action for Development

12. ESP32 + ADC Breakout

13. ESP32 + MicroSD Card Breakout

14. ESP32 + ADC Breakout + MicroSD Card Breakout

15. Circuit diagram for previous circuit

16. ADC Sampling Rate Mistake (whoops)

17. Christmas break...

18.ESP32 with GPS Breakout

19.ADS1015 with 12005PS readings

20. ESP32 DAC for creating an analogue waveform
21.True Frequency

22.True Frequency

23.True Frequency

24.True Frequency

25.True Frequency

26.True Frequency

27.True Frequency

28.True Frequency in the C++ ESP32 Code
29.VRMS Algorithm

30.VRMS in the C++ ESP32 Code

Figure 47 - Presentation table of contents slide

31. True Frequency and VRMS Serial Plot
32. Algorithms Validation in MATLAB

33. Algorithms Validation in MATLAB Code
34. MATLAB Plot

35. MATLAB Plot zoomed true frequency
36. MATLAB Plot zoomed VRMS
37.0utstanding Work

38. Condlusions

39. Thanks for listening!

40. Any Questions?

41.-52. Bonus Questions Slides

On Friday 24™ March, a presentation was delivered on the Smart Wireless Sensor project to two
senior lecturers in the EEECS faculty. The presentation covered the following topics, as shown above
in Figure 47. A successful demo was given at the end of the presentation.

The demo set-up included a function generator, the ESP32 and the microSD card breakout. The
function generator analogue signal was fed into one of the ADC analogue inputs and readings were
taken at 1200sps. At this stage in the project, the midpoint, VRMS, average VRMS, voltage,
frequency, average frequency and a few other measurements were shown with live-measurements
from the function generator analogue input signal. The function generator analogue signal
amplitude, frequency and DC offset were varied as part of the demonstration — to showcase the

minimal effects that exaggerated fluctuations would have on the measurements.

A photo of the circuit and function generator used in the demo can be seen below, in Figure 48. The
function generator can be seen with a frequency set to around 49.6Hz. This was hooked up to the
breadboard via 2 lead cables, which were then fed into the red and black leads ports of the
breadboard then into the ADC and ESP32 ground, respectively. The demo included a brief showcase
of how varying the signal frequency, amplitude and DC offset affected the waveform. The ADC

52

voltage readings, as well as the useful live measurements, were plotted on the Serial Plotter and
then printed in the Serial Monitor, for demonstration purposes. The demo also showcased the smart
wireless sensor taking readings from the function generator signal outputted as a square wave and a
triangular wave. The sensor was able to take these readings with ease and was unaffected, no
matter the type of function wave being read.

y

Figure 48 - Function generator and circuit used in the oral presentation demo

The Fritzing circuit diagram for the demo circuit can be seen below, in Figure 49.

®

ESP- WROOM-32

(€

= [R] 205- 000519
FCC 9D:20C72.ESPWROOM 32

"i
=fs|=]=]==

ifiidfGRaaEAEESE
“1
<
=

STOTSAV

5V ready Micro-SD
Breakout board+

P
1mnl

x
{ [
il

© V9d+24a¥ D21 3ITd2T

OCEALECAEECAEAOBBBEG

(@]

=
adafruit.com

Figure 49 - Oral presentation demo circuit diagram

53

Two ADS1015 ADCs

To recap — at this stage in the project, readings were being taken from one ADS1015 ADC at a
sampling rate of 1200sps. Through some minor tweaks to the Adafruit ADC library earlier, the
maximum sps rate achieved was 3300sps. Since the ADS1015 was being used in continuous mode,
only one analogue input could be used on that ADC at one time. The first ADC was being used for the
voltage measurements and hence it was critical to this project to get the second ADC working in
tandem, to facilitate voltage measurements (representing current) to be taken simultaneously.

The ADS1015 comes with an address pin, which facilitates the ADC 12C address to be changed,
depending on what is hooked up to the address pin.

For ADC 1, the GND signal was hooked up to the address pin, giving ADC 1 an I12C address of “0x048”.
For ADC 2, the Vin signal was hooked up to the address pin, giving ADC 2 an 12C address of “0x049”.

Send

(‘;‘ Lal
I2C Scanner

Scanning. ..

I2C device found at address 0x48

I2C device found at address 0x49

done

i2c dewvices found:2

Autoscroll DShowtimestamp Mo line ending | | 2000000 baud ~ | |

Figure 50 - Serial monitor output for 12C Scanner

An 12C Scanner program was run on the ESP32 to check that both ADCs were being picked up by the
ESP32 over the 12C communication interface successfully. Figure 50, as shown above, clearly shows
that the ESP32 was able to detect the two ADCs over the 12C interface. To differentiate between the
two ADCs in the ESP32 code, the ADS1015 objects were initialised with their 12C device addresses, as
showcased previously.

54

// ADS1015 ADCs
adsl.setDataRate (RATE ADS1015 3300SPS)»
ads2.setDataRate (RATE ADS1015 3300SPS):

if (l'adsl.begin(0x48)) {
Serial.println("Failed to initialize ADS1015 1.");
ESP.restart () :

if (l'ads2.begin (0x49)) {
Serial.println("Failed to initialize ADS1015 2.");
ESP.restart () :

// Start differential conversions.
adsl.startADCReading (ADS1X15 REG CONFIG MUX SINGLE O, true);
ads2.startADCReading (ADS1X15 REG CONFIG MUX SINGLE O, true);

Figure 51 - ESP32 code to initialise the ADCs

The code to initialise the ADCs can be seen in Figure 51, above. Initially, both ADCs are set to a
sampling rate of 3300sps then the two ADCs are initialised with their 12C address passed as the
begin() argument. If both ADCs are successfully initialised, then the continuous readings for both
ADCs are started.

The ESP32 was previously reading samples from ADC 1 at 1200sps and then the coded was updated
to take samples from both ADC 1 and 2 at 1200sps each. This means that the number of samples
that the ESP32 had to handle and compute with was doubled. Through some program efficiency
improvements, the ESP32 was successfully able to handle voltage readings and calculations from
both of the ADCs simultaneously. This is thanks to the strong computing power of the ESP32 and its
large amount of memory — this was a significant reason behind choosing the ESP32 as the MCU of
choice originally.

External Communications — Introducing a slave ESP32

As discussed in the last section, the ESP32 can handle 1200sps readings from two ADCs
simultaneously, but the desired functionality of the project involves further functionality — microSD
card storage, GPS, Wi-Fi/BLE server, cloud storage, etc. It is clear that, no matter how strong the
ESP32 is, it will not be able to handle the ADC readings and Wi-Fi tasks simultaneously. Therefore, a
second ESP32 was sourced and the potential architecture between the two ESP32s was theorised.

Architecture Requirements:

e The first desired requirements of the interlinking architecture followed the fact that the
master ESP32 should take the ADC readings and transfer them to the slave ESP32 by
whatever means, which in turn will use those readings for Wi-Fi-related purposes.

e The GPS interrupt timing disciplining is required to be wired to the master ESP32 as it is the
one actually taking the readings.

e Storing the values on the microSD card breakout could potentially be completed by either of
the ESP32s

55

The first theorised attempt at communication between the master and slave ESP32s involved the
master sending the useful live measurements to the MicroSD card via SPI then the slave would in
turn read those values from the MicroSD card. This would mean that the master would only have to
store the values to the MicroSD card, without having to directly transfer them to the slave ESP32,
hence allowing the master to dedicate more processing potential to the ADC readings. Since the
master is already storing the readings to the microSD card in a suitable long-term format, the slave
ESP32 would only have to read from the microSD breakout. Essentially, this proposed architecture
would cover two essential bases, with only one process.

2 x Adafruit ADS1015 Wi-Fi/BLE External
4-channel ADCs Communications
12C
SPI L SPI
ESP32 Master y\dairuit MicroSD card| ¢ ESP32 Slave

breakout board+

Figure 52 - Flowchart of the first proposed master slave architecture

Figure 52, as shown above, showcases a flowchart of the first proposed master slave architecture.
This architecture would have been ideal, however, on deeper research it was found that SPI
communication protocol can only have one master. This proposed architecture, however, had both
ESP32s set up as masters to the microSD card breakout slave. Due to the nature of SPI — particularly
the CS timing [22] — this architecture was found to be infeasible.

56

Protocol UART 12C SPI
Complexity simple Easy to cha.m multiple Complgx a_f, number of
devices devices increases
Speed Slowest dl.Je tono clock Faster than UART Fastest
signal
Number of wires 1 2 4
Number of devices Up to 2 devices Up to 127, but gets Many, but gets very
complex complex
Number of masters and . . Multiple slaves and 1 master, multiple
Single to Single
slaves masters slaves

Figure 53 - Communication protocol comparison table

To decide on the optimal communication protocol, the three types of possible communication
protocols were researched thoroughly. Figure 53, as shown above, showcases a comparison table of
the 3 protocols.

Since the microSD card could not be used as a passthrough for the data, it was decided that the slave
ESP32 should be the MCU that actually stores the values to the microSD card, to relieve the master
ESP32 from additional functionality — as the master has to allocate a lot of computational power to
the ADC readings. Since the slave will then be using SPI to store the values to the microSD card, it
became clear from the research that using SPI directly between the master and slave as well would
not be feasible, due to the nature of the clock timings requiring one clock signal only. This may be
possible to do, however, this project is limited in terms of time, so it is crucial to reduce complexities
where possible.

That leaves 12C and UART as the other possible communication protocols to be used between the
master and slave. As shown in Figure 53, it is clear that 12C is faster than UART. This is partly due to
the fact that UART does not have a clock signal [22]. In this project, it is quintessential that the speed
of the data transfer between the master and slave is as high as possible, to reduce delays from
affecting the ADC readings and Wi-Fi/BLE functionality of the master and slave, respectively.
Therefore, the next proposed architecture was to utilise the 12C communications interface to send
data from the master ESP32 to the slave ESP32.

Figure 55, as shown below, showcases the second proposed architecture, as discussed. The first step
towards engineering this architecture was to wire the master to the slave and see if the master
could detect the slave on the 12C bus.

Figure 54, as shown below, showcases the Fritzing circuit diagram for connecting the ESP32 master
and slave via I2C.

57

2 x Adafruit ADS1015
4-channel ADCs

12C
Y
Wi-Fi/BLE External
”l Communications
12C
ESP32 Master > ESP32 Slave
SPI « IAdafruit MicroSD card
breakout board+

Figure 55 - Second proposed external communications architecture

®

S @

ESP32 Slave

) (

ESP- WROOM-32

(€

= [R] 205-000519
FCC 9D.2AC72.ESPWROOH 32

YR EC

5V ready Micro-SD
Breakaut boardt ()

+
Imnr

- 3.)

®E @ (

G

I | =

adafruit-com

®

)

@ O

|
B ESP- WROOM-32 =® Iﬁl@
CEQE- w5
ESP32 Master BH - = o o EEE
FCC $D0:2AC 72 ESPWROOM 32 E% B % EE
[T b =
e o %, F
- Il a [:]@ 2

@

D EEOG®

€]

e
n
w
e
of
.
h
el
>
=
~
A

h]
o
>

Figure 54 - Fritzing circuit diagram for connecting the ESP32 master and slave via I12C.

| Send

I2C Scanner

Scanning. ..

I2C device found at address 0x04
I2C device found at address 0x48
I2C device found at address 0x49
done

i2c devices found:3

L

[] Autoscroll [_] Show timestamp Mo line ending ~~ 2000000 baud -~ Clear output

Figure 56 - Arduino IDE Serial Monitor output of the 12C Scanner program

Figure 56, as shown above, showcases the Arduino IDE Serial Monitor output of the I12C Scanner
program. 0x48 and 0x49 are the two ADS1015 ADCs and it’s clear from the Serial Monitor that the
slave ESP32 is under the address 0x04.

The next goal was to get simple data transfers working from the master ESP32 to the slave ESP32. A
small library called “ESP32_12C_Slave” [23] was utilised to get some very basic data transferring
between the master and slave. This library was archived in 2021 and it isn’t very popular, so the
library was used with skepticism initially, however, the functionality of the library worked perfectly
and hence, didn’t warrant the need to use a different library.

Figure 57, as shown below, showcases the 12C transfer code written for the master ESP32. It is key to
note that most of the values have been excluded from this screenshot. For demonstration purposes,
only “signalVoltage” and “currentFrequency” are included in this example. The full code can be
found in Appendix 9.

Once the master ESP32 has taken readings from the ADCs and calculated all the useful live
measurements, it will check if it has been more than a second since the last set of values was sent to
the slave. The WirePacker class will be utilised to store a string of characters as a char array. The
packet will then be read and written to the 12C bus by utilising the Wire class.

The slave code is a bit simpler. The slave essentially checks the 12C bus repeatedly for new updates.
If the master has sent data to the slave via 12C, then the slave will parse over that data to extract the
values into variables, then will use those variables in the code. The slave I12C code can be seen in
Appendix 10.

The ADC readings were then thoroughly tested and analysed to ensure that the new 12C
communications, between the master and slave, had no effect on the ADC readings themselves.

59

// Tries to send new data to the slave once per second
if ('new data && millis() - lastWireTransmit > 1000 && i > 100)
// first create a WirePacker that will assemble a packet

WirePacker packer;

// then add data the same way as you would with Wire
char values[200];

dtostrf (signalVoltage, -10, 3, values):

packer.write (values):

packer.write (", ");

dtostrf (currentFrequency * 10, -10, 3, wvalues);:
packer.write (values):
packer.write (", ");

// after adding all data you want to send, close the packet
packer.end () ;

// now transmit the packed data
Wire.beginTransmission (I2C_SLAVE ADDR) ;
while (packer.available()) { // write every packet byte
int content = packer.read():
Wire.write (content) ;
}
Wire.endTransmission () s // stop transmitting
lastWireTransmit = millis():

}

Figure 57 - 12C transfer code written for the master ESP32

{

60

MicroSD Card writing from the slave ESP32

The slave ESP32 was wired to the MicroSD card breakout via SPI, in the same format as shown in
semester 1 of the project. The values being received over 12C from the master are parsed into
variables and then they are sent to the microSD card via SPI. To format these variables, the C++
snprintf function was utilised. Initially, these values were being written to a singular microSD card
text file called Smart_Wireless_Sensor_Readings.txt. This file could very quickly become populated
with data and hence reach an impractical size. A suitable solution to this problem was solved later in
the project.

External Communications Overview

Now that the master was sending data to the slave — which was in turn sending formatted data to
the microSD card — it was time to connect the slave ESP32 to the internet. The UE model of this
ESP32 devkit comes with a U.FL antenna port, to facilitate an external antenna to be connected to
the board. It was found that the built-in internal antenna had very poor signal and wall penetration,
therefore an external antenna was connected via the U.FL port. The slave could successfully scan for
nearby wireless networks, however, it struggled to connect to a Wi-Fi network. This was solved by
swapping the master ESP32 board with the slave ESP32 board. The ADC circuit functionality was re-
tested to ensure that swapping the boards had no effect on the readings and communications
between the boards and breakouts. The now-swapped slave board was successfully able to connect
wirelessly to the local network via a nearby router.

Now that the slave was able to connect to the internet, it was time to design the external
communications architecture. Throughout the project, the type of server had been described as
potentially either being a Wi-Fi server or a BLE server. Through some brief research, it was found
that the ESP32 cannot run Wi-Fi and Bluetooth server capabilities simultaneously [24]. Having access
to the internet for this project was decided as an essential component, due to future functionalities
such as cloud uploads and updating the board time to be in sync with GMT+1. Therefore, the idea of
using a BLE server was eradicated.

A goal of this project is to have easily accessible readings for the smart wireless sensor in all
scenarios. If the ESP32 was set up as a station for a web server, this means that a user connected to
the same network as the ESP32 would be able to access the ESP32 web page through the ESP32 Ip
address. This was seen as a valid potential option, however, if the smart wireless sensor was in a
scenario where it would not have access to a local network or the internet, then this solution would
be totally useless.

First, a solution was needed for this scenario where the smart wireless sensor would not have access
to a local network/the internet. The initial solution found was to have the ESP32 act as an access
point, rather than as a station.

61

A (@

\ Wi-Fi Client - Wi-Fi Client
N =" (STATION) (STATION)
________ . .

tog‘@l 57 R ~) : .s'
) outer SN (r
ESP32 Web server (ACCESS POINT) - (. D ESP32 Web Server “~~. (D
(STATION) N Wik Client (ACCESS POINT) ~< WiF Client
(STATION) (STATION)
Figure 58 - Flowchart for the ESP32 as a station Figure 59 - Flowchart for the ESP32 as an access point

Figure 59 shows the flow chart for the ESP32 as a station (hotspot) and Figure 58 shows the flow
chart for the ESP32 as a soft access point. With the access point architecture, this removes the need
for clients to connect to the router to access the ESP32 web server — the clients can directly connect
to the 2.4GHz Wi-Fi signal being transmitted from the ESP32 itself if they are within the 2.4GHz
signal range. Using the ESP32 as an access point was found to be optimal solution for those scenarios
where the smart wireless sensor would be unable to connect to the local network, however, it was
found that the ESP32 can be in both access point mode and station mode simultaneously by using
the “WIFI_MODE_APSTA” mode. It was also found that it would take no real extra computing power
to set up the ESP32 web server over the local network too — so the ESP32 was set up as both an
Access Point and a Station, simultaneously.

This meant that users would be able to access the ESP32 readings via the ESP32 Web Server by both
of the architectures shown in Figures 59 and 58. The users will be able to access the Web Server
from anywhere in the substation, either by standing nearby to the ESP32 and connecting to its own
network or by connecting to the local Wi-Fi network and accessing it that way.

However, what if someone wanted to read the sensor values from anywhere outside the substation,
or, even, from a different country? The solution is to utilise the ESP32 Wi-Fi features to send the
useful live measurements to a cloud-hosted website, thus enabling users to access the website and
measurements worldwide, at any time and any geo-location. The live measurements can then be
easily stored in cloud data storage, for later access.

In summary, users will be able to read the useful live measurements through multiple different
ways, as explained in these two following sections:

e First half: The ESP32 Web Server which can be accessed via the ESP32 Station and/or the ESP32
Access Point
e Second Half: The cloud-hosted website and cloud web storage

External Communications First Half — Simultaneous Access Point and Station Wi-Fi
Web Servers

A simple asynchronous web server was set up and tested in semester 1, however, this would type of
web server would be inadequate for this external communications architecture. The way the web
server in semester 1 was set up, was where a client would directly connect to the ESP32 via means

62

of TCP, then the ESP32 would repeatedly send html code to the client via HTTP requests so that a
web page would be displayed on the client device.

The slave ESP32 has a lot of functionality to deal with. It has to constantly check the 12C interface for
new readings from the master ESP32, it has to take those readings then parse them and store them
in the microSD card, it has to connect to the Wi-Fi to obtain the current time for the file/folder name
system and in future it will be uploading the sensor measurements to a cloud website and data
storage. This is clearly a lot functionality weighing on the slave ESP32 already. The web server that
was set up in semester 1 needs the ESP32’s full attention due to the nature of the greedy TCP
connection — as the ESP32 is constantly sending new html code the client to up the asynchronous
properties on the page —and hence, the ESP32 would not be to perform its other required tasks
while its greedily connected to the client.

The solution found is to still use an ESP32 web server, however, the web server will not function as
an asynchronous web page, but rather as a simple HTTP endpoint that will return the useful live
measurements to the user in the HTTP response body.

WiFi.mode (WIFI MODE APSTA) ;
WiFi.softAP(soft ap ssid, soft ap password);

WiFi.begin(ssid, password):;

Figure 60 - ESP32 server setup code

Figure 60, as shown above, showcases some of the ESP32 setup code. The ESP32 was setup in
“WIFI_MODE_APSTA” mode to specify that the ESP32 should be able function as both a station and
access point. The WiFi.softAP() method sets up the soft access point with a custom ssid and
password. The WiFi.begin() method then sets up the station with the local network ssid and
password that were defined in the code earlier. Once the three lines of code in Figure 60 have run,
the access point and the station should be up and running, however, there has not been an web
server functionality defined for those points so they must be health-checked in a specific way, as
shown below.

-7

C:\Users\samro>ping 19:

Pinging 192.168.4.1 with
Reply from .168.4.1
Reply from]

Reply from

Packets: S
mate round trip times
Minimum = 1ms, Maximum =

Figure 61 - Command line output after the soft AP IP address has been pinged
successfully

63

The AP and the station IP addresses can be pinged at this stage, to ensure that they are up and
running. Figure 62, as shown above, showcases the command line output after the soft AP IP
address has been pinged successfully.

if (ON_STA_FILTER(:Qq:est)) {
request->send (200, "text/plain", message);

return;

} else if (ON_AP FILTER(request)) {
request->send (200, "text/plain", message):
return;

}

Figure 62 - Some of the AP and station web server setup code

Figure 62, as shown above, showcases some of the AP and station web server setup code. This code
is part of the server.on() function call. This code essentially specifies what the ESP32 should do
whenever an HTTP request in the correct format is sent to either the network IP address (through
the station) or to the ESP32 IP address (through the access point). In both cases, the HTTP response
should be the same. A HTTP 200 “OK” response is returned with the 12 useful live measurements
returned in the HTTP body, as earlier defined by the “message” variable.

@ 192.1684.1/readings X + SmartWirelessSensorAP

c c e | 192.168.4.1 No Internet, secured
Properties

Smart Wireless Sensor Measurements

Disconnect
Voltage: 10.592kV
Current: 18.579A
Frequency: 48.375Hz
Power Consumption: 196.795kW
Average Voltage: 16.681kV
Average Current: 18.774A
Average Frequency: 48.747Hz
Average Power Consumption: 2@@.831kW TP-LINK AP 40C8
Energy Consumption: 102.535kWh 7
Number of Faults: ©
Time Elapsed: 1838s TP-Link_4D3A _5G
Voltage Offset/Midpoint: 2.235V

VYMO0190593

BoratMyWifi

Figure 63 - Laptop connected directly to the ESP32 Access Point

Figure 63, as shown above, showcases a screenshot of a laptop connected directly to the ESP32
Access Point through the laptop’s Wi-Fi peripherals. It then shows the HTTP request sent to the
ESP32 in the chrome browser to “192.168.4.1/readings”. Finally, it shows the HTTP body response in
the chrome main page, which was returned directly from the ESP32 to the laptop. All 12 readings are
returned in a clear, concise format for easy readability.

64

@ 192.168.0.251/readings * -+ VMO0190593

Connected, secured
= C A No e | 192.168.0.251 ‘ i

Properties

Smart Wireless Sensor Measurements

Disconnect
Voltage: 16.648kV
Current: 18.939A
Frequency: 48.225Hz
Power Consumption: 201.518kW
Average Voltage: 10.622kV
Average Current: 18.781A
Average Frequency: 48.520Hz
Average Power Consumption: 198.927kW BoratMyWifi
Energy Consumption: 78.245kWh
Number of Faults: @
Time Elapsed: 1416s TP-LINK_AP_40C8
Voltage Offset/Midpoint: 2.229Vv

SmartWirelessSensorAP

TP-Link AP _3DE4

Figure 64 - Laptop connected to the same local Wi-Fi network that the ESP32 was connected to

Figure 64, as shown above, showcases a screenshot of a laptop connected to the same local Wi-Fi
network that the ESP32 was connected to. It then shows the HTTP request sent in the chrome
browser over the local Wi-Fi network to the ESP32 to the “192.168.0.251/readings” address, which is
a different IP address from the ESP32 access point as the ESP32 was hosting the web server as a
station on a different IP address to that of the access point. Finally, it shows the HTTP body response
in the chrome main page, which was returned directly from the ESP32 to the laptop. All 12 readings
are returned in a clear, concise format for easy readability.

65

External Communications Second Half — Cloud website and storage flow

To send the data from the slave ESP32 to a cloud-hosted website and to cloud bucket storage, there
are a few different hoops that the data must jump through to reach its end destination.
React.js/html/css was chosen as the most suited framework for the website functionality due to
React’s lightweight, yet asynchronous nature. This will facilitate asynchronous measurement
updates to the website.

The facts were then laid on the table. The ESP32 can send and receive HTTP requests across the local
network or through the access point mode. The React.js side of the website can also send HTTP
requests, however, the React.js website cannot directly send or receive HTTP requests to or from the
ESP32, and hence, cannot receive HTTP requests from the ESP32. This fact specified the need for a
suitable back-end. A possible back-end choice for the React.js website could be Node.js, since React
is native to Node, however, a Java/Spring Boot backend application was chosen due to its familiarity.
Spring Boot is a backend Java-based framework used for creating microservices [25].

Before setting up the more-complex endpoints for transferring values between the ESP32 and the
backend, a simple “ping” endpoint was set up in the Spring Boot application. This simple endpoint
returns an “OK” (200) HTTP response with a body containing the string “pong”. This is a very useful
endpoint to test the APIs to ensure that they can communicate as expected. Figure 65, as shown
below, showcases the ESP32 successfully hitting the ping endpoint in the backend Spring Boot
application.

Send

pong
http://192.168.0.26:8081/ping
HTTP Response code: 200

pong
http://192.165.0.26:8081/ping
HTTP Response code: 200

pong
http://192.168.0.26:8081/ping
HTTP Response code: 200

pong
http://192.168.0.26:8081/ping
HTTP Response code: 200

pong

W

[] Autoscroll [] Show timestamp Mo line ending -~ 2000000 baud - Clear output

seEntity<!

Figure 65 - the ESP32 successfully hitting the ping endpoint in the backend Spring Boot application

66

HTTP Spring Boot Backend HTTP React.js website -

ESP32 Slave p{=PrNg < Hosted on GCP App

setValues() getValues() Engine
endpoint endpoint

GCP Cloud
Bucket
Storage

Application

Figure 66 - Architecture that was decided on for the cloud data flow from the ESP32 through to the cloud web-hosting and database
storage

Spring Boot Backend

Figure 66, as shown above, showcases the architecture that was decided on for the cloud data flow
from the ESP32 through to the cloud web-hosting and database storage. The ESP32 sends an HTTP
POST request to the setValues() endpoint of the Spring Boot application. This POST request contains
the 12 useful live measurements and the Java app then parses those variables into local Java
variables. Since the Spring Boot/Java app is continuously running in Google App Engine, whenever
the React.js website sends an HTTP GET request to the getValues() endpoint Spring Boot backend
application, the values of the variables in the Spring Boot app (that were last set by the ESP32
through the setValues() endpoint) will then be returned to the React website in JSON format as part
of a “SensorData” object, which contains the 12 values.

onsumption(

Lbuild()

nseEntity.

Figure 67 - The Java code for the getValues() endpoint in the Spring Boot application

Figure 67, as shown above, showcases the Java code for the getValues() endpoint in the Spring Boot
application. The endpoint functionality is very basic — whenever the endpoint is called by the React
app, it builds a SensorData object (using the local variable values) then returns the SensorData
object to the React app. When instantiating Plain Old Java Objects (POJOs) in Java, each field must

67

be set manually after instantiating the object. The Lombok library [26] was utilised with the
SensorData class to facilitate the use of builder() methods for instantiation and value assigning of
SensorData objects, as shown in Figure 67, above. The full Java/Spring Boot code can be seen in
Appendix 12.

The URL of the getValues() endpoint is set at “{baseUrl}/getReadings”. When running the
application locally, either of the following URLs can be used to hit the getReadings() endpoint:

e “localhost:8081/getReadings”
o “http://{ipAddress}:8081/getReadings”

In the Google Cloud Platform (GCP) App Engine production instance however, the URL would be
“https://smart-wireless-sensor-backend.nw.r.appspot.com/getReadings”. This URL can only be
called by the React App as a cross origin specification was set up to only allow API calls from the
React App to work. This was set up using the @CrossOrigin Spring Boot annotation and was done so
to prevent anyone from maliciously spamming the website, hence, messing up the readings.

To test the sending of API calls to the production instance, the “ping” endpoint has the cross origin
API calls set to any origin, therefore, the ping endpoint can be called directly by using the following
link:

https://smart-wireless-sensor-backend.nw.r.appspot.com/ping

The ping endpoint should return an “OK” (200) HTTP response with body containing the string
“pong”, as shown earlier. This can be validated be visiting the link and the response will be similar to
Figure 68, shown below. This ping endpoint is useful to test if the Spring Boot instance is up and
running in the GCP App Engine cloud.

@ https://smart-wireless-sensor-ba X +

< C & smart-wireless-sensor-backend.nw.r.appspot.com

pong

Figure 68 — HTTP response returned from GCP Backend ping endpoint

React JS Website

The React website sends a GET request to the getValues() endpoint of the Spring Boot application
every two seconds. The GET request returns the SensorData object to the React app in JSON format.
The React app then extracts the useful live measurements from the SensorData JSON format then
updates its local variables, hence causing the values displayed on the website to update,
asynchronously — which means that the web page doesn’t have to refresh to do so.

If for some reason the ESP32 is not sending data to the Spring Boot application, then the React App
will detect that none of the values have updated for the past 5 seconds and hence it will enter a
demo mode. This demo mode is used to demonstrate how the website normally functions when the
ESP32 is turned on and is sending data.

Website link: https://smart-wireless-sensor.nw.r.appspot.com/

68

https://smart-wireless-sensor-backend.nw.r.appspot.com/ping
https://smart-wireless-sensor.nw.r.appspot.com/

The full React website code can be seen in Appendix 13. Figure 69, as shown below, showcases a

screenshot of the React website in live action.

Voltage:
10.595kV

Avg Voltage:
10.954kV

Energy Consumption:

26.441kWh

Current:

18.614A

Avg Current:

19.126A

Number of Faults:

0

Smart Wireless Sensor Readings

Frequency:

48.225Hz

Avg Frequency:

49.231Hz

Time Elapsed:
452s

Power:

197.215kW

Avg Power:

210.591kW

Offset/midpoint:

2.225V

Figure 69 - React website in live action on Google App Engine hosting

Figure 70, as shown below, showcases the website in demo mode. The following sentence of text
can be seen displayed at the bottom of the page to inform the user that the website is currently in
demo mode. “Demo on: ESP32 pipeline is currently not sending any data to the backend”

Voltage:
10.582kV

Avg Voltage:
10.651kV

Energy Consumption:

32.518kWh

Current:

18.499A

Avg Current:

18.596A

Number of Faults:

6

Smart Wireless Sensor Readings

Frequency:

49.058Hz

Avg Frequency:

49.705Hz

Time Elapsed:

598s

Demo on: ESP32 pipeline is currently not sending any data to the backend

Power:

195.759kW

Avg Power:

198.182kwW

Offset/midpoint:

2.484V

Figure 70 — React website demo mode

69

Google Cloud Platform Bucket Storage

The history of the 12 useful live measurements are being stored on the local MicroSD card every
second. However, in an industry scenario, this MicroSD card may be unfeasible or impossible to
access. Therefore, to solve this problem, the history of the useful live measurements should be
stored in a suitable cloud storage system. The most suitable solution was found to be Google Cloud
Platform Storage (similar to AWS simple storage solution (S3)). GCP Storage uses buckets to store
the data — the buckets are basic containers used to store data in the cloud and can store most types
of files.

A triggering service was setup so that when the React webpage calls the getValues() endpoint of the
Spring Boot API, the 12 useful live measurements returned to the React web page are stored in a
structured text file/folder format very similar to the structure that can be seen on the MicroSD card
(this microSD card format can be seen in the next section, in Figure 71). Google’s bucket storage
system is simple, cheap and effective, making it the ideal solution for cloud data storage of the
useful live measurements.

MicroSD Card Smart Folder Structure and File Names

At this point in the project, the useful live measurements were being stored on the MicroSD card
into the Smart_Wireless_Sensor_Readings.txt file. This file had no structure, the new values were
just appended to the end of the file. There was no way for a user to see at what time the useful live
measurements were stored. A possible solution could have been to print the time above the set of
measurements, however, having all the measurements in one text file is very poor practice. This file
would be hard and painful to try to navigate through, it would become too large in file size and
hence eventually corrupt, it would be limited in terms of size due to the data partitions of the
MicroSD card.

To solve these problems, a solution was formulated which involved finding the current date and
time, then using this date and time as the file name of the text file. Once the time changes past a
certain degree, then a new text file will be created. The next decision to be made was how often a
new text file should be created, and the structure of file names and folders. The final decisions made
were as follows:

o The useful live measurements should be appended to a separate text file for each new
minute

e The text file name should be the full date and time

e The folder structure should be as follows:
“Smart_Wireless_Sensor_Readings/year/month/date/time/datemonthyear_time.txt”

e Eg: “Smart_Wireless_Sensor_Readings/2023/April/12/0847/2023April2023_0847 .txt”

The folder structure makes it very easy to navigate to the desired year, month, date, and hour. The
file name includes the date and time too. Even though the text files are organised in folders based
on the date, the text file names themselves include the date too to ensure that if these text files are
copied to a location outside of the folder structure — eg. for analysis, or by accident — then it will be
easy to determine the origin of those files.

70

SmartWirele

Name 2
B USApIZUZ3_1815.0¢ 5/ B9 Xt Document 21 KB

05 = 05April2023_1816.b¢ 5/04/ 8:16 ext D 21 KB
E 05April2023_18 4 5/04/ f ext Dot 20 KB
E 05April2023_18 4 5 : e 21 KB
Queen's Univ B 05April2023_1819.txt 5 :19 e 21KB
E 05April2023_1820.txt 5 2 & 21 KB
E 05April2023_1821.txt 5 ext Docume 21 KB
= 05April2023_1822.t¢ : ext Docume 20 KB
= 05April2023_1823.b¢ /04, 3 18: xt Docume 21 KB
= 05April2023_1824.t¢ /04, 3 18: docume 21 KB
= 05April2023_1825.b¢ /04, 25 20 KB
B 05April2023_1826.tx 5/04, 5 Text Document
B 05April2023_1827.tx 5/04, Text Document
B 05April2023_1828.tx 5/04, 28 Text Document
B 05April2023_1829.tx¢ 5/04, :29 Text Document
= 05April2023_1830.bxt 5 3 Text Document
. 05Aprl2023_1831.bd 5/ 3183 Text Document
. 05Aprl2023_1832.bdt 5/ Text Document
lessSensorRs E 05April2023_1833.bxt 5/ Text Document
. 05Aprl2023_1834.bet 5/ 3 Text Document
. 05Aprl2023_1835.bd 5/ 3 Text Document

Personal

Figure 71 - Full folder and file structure of the MicroSD card

The full folder and file structure of the MicroSD card can be seen in Figure 72, as shown above. It
demonstrates the comprehensive structure to both the text files and their overlying folders.

. 16April2023_1425.1xt - Notepad

File Edit Format View Help

Voltage: 10.569kV

Current: 18.074A

Frequency: 45.746Hz

Power Consumption: 191.@33kW
Average Voltage: 10.600kV
Average Current: 18.194A
Average Frequency: 45.589Hz
Average Power Consumption: 192.854kW
Energy Consumption: 7.871kWh
Number of Faults: @

Time Elapsed: 132s

Voltage Offset/Midpoint: 2.237V
Voltage: 10.639kV

Current: 18.315A

Frequency: 45.380Hz

Power Consumption: 194.866kW
Average Voltage: 10.601kV
Average Current: 18.195A
Average Frequency: 45.586Hz
Average Power Consumption: 192.872kW
Energy Consumption: 7.126kWh
Number of Faults: ©

Time Elapsed: 133s

Voltage Offset/Midpoint: 2.244V

Ln 765, Col 20 120% Unix (LF) UTF-8

Figure 72 - Screenshot of the 12 useful live measurements being stored one of the MicroSD card text files

71

Figure 71, as shown above showcases a screenshot of the 12 useful live measurements being stored
one of the MicroSD card text files. The reason and choice behind each of these live measurements
will be explained in a later section.

An accurate and updated date and time are needed to be able to create the correct microSD card
text files and folders. When the ESP32 is reset or loses power, the current date and time are lost.
Therefore, on each initialisation/reboot of the ESP32, the current date and time should be acquired
and synced. To update the date and time, a valid internet connection must be secured. Therefore,
the slave ESP32 will first connect to the internet then try to acquire the updated date and time via
an ntp server via the internet. [27]

configTime (gmtOffset sec, daylightOffset sec, ntpServer);

Figure 73 — ESP32 ntp server setup code

Figure73 as shown above, showcases the line of code used in the setup section of the ESP32 code to
synchronise the ESP32 time with an ntpServer (“pool.ntp.org”). This line of code only needs to be ran
in the setup section when initialising the ESP32. Once the ESP32 time has been synchronised here,
the ESP32 time stay up to date for the remaining period that the ESP32 is running.

const char * format =

"Voltage: %.3

"Current: %.3fA\n"
"Frequency: %.3fHz\n"

"Power Consumption: %.3fkW\n"
.3fkVAn"
.3fA\N"

"Average Frequency: %.3fHz\n"

"Average Voltage:

ol? ol@

"Average Current:

"Average Power Consumption: %.3fkW\n"
"Energy Consumption: %.3fkWh\n"
"Number of Faults: %.0f\n"

"Time Elapsed: %.0fs\n"

"Voltage Offset/Midpoint: %.3fV\n";

Figure 74 — ESP32 code used to create the skeleton pre-formatted string for the 12 useful live measurements

Figure 74, as shown above, showcases the ESP32 code used to create the skeleton pre-formatted
string for the 12 useful live measurements. The “format” variable is then fed into an snprintf()
function, where the 12 measurements are passed in place of the skeleton placeholders defined by
the percentage symbols. This skeleton code format can be seen in multiple other places in the code,
including the HTTP response body return string of the station and AP web server.

72

struct tm timeinfo;

char dateTimeString[] = "/Smart Wireless Sensor Readings.txt";
if (getLocalTime (&timeinfo)) {
strftime
dateTimeString,
100,
"/Smart Wireless Sensor Readings/%Y/%$B/%d/%H%M/%d%B%Y %HSM.txt",
&timeinfo
)i
} else {
Serial.println("Failed to obtain time, appending tc Smart Wireless Sensor Readings.txt file"):

const char * path = dateTimeString;
appendFile (SD, path, message):

Figure 75 - Code used for the time and microSD card functionality in the main loop of the slave ESP32

Figure 75, as shown above, showcases the code used for the time and microSD card functionality in
the main loop of the slave ESP32. The “getLocalTime(&timeinfo)” line calls the getLocalTime()
function and passes a reference to the memory address of the timeinfo variable as a parameter. This
means that the getLocalTime function will be able to directly access and make changes to the
timeinfo variable without having to return a separate variable. The timeinfo variable is assigned a
string value containing the updated date and time. This string is then formatted to the specific folder
and file name format. The string is then used as the path when appending to the text file. The
“appendFile()” microSD card function will even create a new text file if the specified file and folder
path does not already exist.

73

GPS breakout for ADC timing disciplining - Solution

As shown in the previous GPS section, the 1PPS signal coming from the GPS breakout was passed
into the ESP32 interrupt pin and caused the ESP32 to take ADC readings accurately once every
second. The next task was to use this 1PPS signal to discipline the interrupt timer of the ESP32, i.e.
no matter the geo-location or the number of smart wireless sensors, the ADC readings in every
sensor should be taken at exactly the same time — perfectly in sync. This is crucial for the smart
wireless sensors, to ensure that the readings and useful live measurements of the sensors are taken
at exactly the same time.

Since the ADC readings will be taken at a very high sampling rate of 1200sps, it would be unwise to
try to sync the ESP32 every second. An optimal solution was formed of disciplining the timing
interrupts initially then relying on the ESP32 clock, from then on, to maintain the 1200sps readings
and hence, maintain the in-sync interrupt ADC reading timings. When the master ESP32 is initialised
or rebooted, it will wait in a loop until it receives the 1PPS signal from the GPS breakout via UART.
Once the signal is received, the ESP32 interrupt timer is kicked-off and the ESP32 begins taking
readings from the ADC, following the timings of the ESP32 interrupt timer (at 1200sps).

// GPS serial setup
Serial2.begin (9600, SERIAL 8N1, 16, 17);

Figure 76 - The line of code that initialises the GPS breakout

Figure 76, as shown above, showcases the line that initialises the GPS breakout. This line is ran in the
setup section of ESP32 master program.

/o gps syncing ————————————~
// clear the serial
while (Serial2.available() > 0) I
Serial2.read():
delay(1l):

// wait for the start of a new second
while (Serial2.available() == 0) {

Figure 77 - GPS interrupt syncing code

Figure 77, as shown above, showcases the GPS interrupt syncing code that runs at the start of the
main ESP32 master code loop, after the ESP32 setup code has already ran. The first while loop clears
the serial in preparation for the second while loop. Once the serial has been cleared by the first
while loop, the second while loop waits for the first byte of the NMEA sequence sent from the GPS
breakout to the ESP32. The first byte will be transferred at the exact start of a new second and

74

hence, the while loop will break at this exact moment then the ADC readings will begin to be taken —
following the 1200sps interrupt timings of the ESP32 clock. This interrupt disciplining ensures that
the master ESP32 always starts off its timings at the exactly the start of a new second, and thanks to
the ESP32 clock precision, the timing interrupts will stay in sync from this point forward.

& COMS - O

Send

i ~
Restarted

Start

Finish

Time: 14

Start
g
Restarted
Start
Finish
Time: 423

sStart
g
Restarted
Start
Finish
Time: &9

Start

[Autoserall [] Show timestamp No line ending ~ 2000000 baud ~ "Clear output

Figure 78 - Serial Monitor output of the GPS interrupt sync testing

The GPS interrupt timing was thoroughly tested to ensure that the functionality worked as expected.
Figure 78, as shown above, showcases the Serial Monitor output of the GPS interrupt sync testing.
The millis() function was utilised to test how long the second while loop (shown in Figure 77) would
have to wait for the exact start of a new second. This could be anywhere between 1 —999ms. Figure
78 shows waiting times of 14ms, 423ms and 69ms, proving that the GPS interrupt timer disciplining
functionality works as expected. The GPS breakout as part of the circuit can be seen later, in Figure
87.

Signal Conditioning Circuit Problem Fix
In semester 1, there was an issue with the signal conditioning circuit. To shift the output voltage
signal by 2.5V, a 2.5V signal was passed into the non-inverting pin of the op-amp.

N
1.00kQ l
vin T 120V
,o _AM out
O +—
3.50kQ
¥ } -
C’b) 5.00v —
0 /o
| MW M

1.00kQ

Figure 79 - Semester 1 op-amp circuit

75

Figure 79, as shown above, showcases the op-amp circuit in semester 1 that was having the circuit
issues. The problem lay with the value of the voltage divider 3.80k(2 resistor value as highlighted in
red.

6Transient 1 @ @

—Vout: V(3)
5 —Vin: V(1)
| —Shift: V(4)
4 \
3
o
-
2 (10.641 ms, 2.4999 V)
1
(B 0
4]
S
’ 1
2
3
-4
-5
-6
0 5m 10m 15m 20m 25m 30m 35m ADm
Time (s)
M Cursor 1 | W Cursor 2 ‘ AX 1/AX
15.065 ms, 4.6406 V 24.935ms, 1.7893V 9.8701 ms 101.32 Hz

Figure 80 - The transient output waveforms produced by the Figure 79 circuit

Figure 80, as shown above, showcases the transient output produced by the Figure 79 circuit. The
dark blue “Shift” line shows the 2.5V non-inverting input voltage being fed into the op-amp,
however, the Vout signal has been shifted much further than 2.5V, as shown in the transient wave.
Using the C1 and C2 wave cursors, the midpoint of the wave can clearly be found as (4.6406 +
1.7893) / 2 =3.215V when it should actually be equal to 2.5V.

R2
" R1+R2

Vout (R1+ R2) = VinX R2

Vout = Vi

Vin X R2
1=———R2
Vout
. 12 x1 1
25
R1 = 3.80kQ

Figure 81 - Voltage divider equation

76

The original voltage divider calculation used to obtain this 3.80k{} resistor value can be shown
above, in Figure 81. The problem with this voltage divider calculation is that it does not account for
the gain of op-amp itself.

R2

= inXVin X ———
Vout = Gain X Vin R1TR2

Vout (R1+ R2) = Gain X Vin X R2

_ Gain X Vin X R2

R1 = -
Vout
1
1+ 5=)x12x1

2.5
R1 =5.17kQ =~ 5.20kQ)

Figure 82 - Fixed voltage divider equation

Figure 82, as shown above, showcases the fixed voltage divider equation — with the gain included in
the equation. As shown in the equation, the correct value of R1 in the voltage divider circuit was
found to be 5.17k{}, which can be rounded up to 5.20k(} for the physical circuit later.

AW
1.00kQ 1
Vin T 120V
_ o | II
3.50kQ ’
+ o+
~) 5.00V L
T 49.98Hz 1d944v UA741CPT— 120V

0° 0

— W\ ——

1.00kQ 5.17kQ

Figure 83 - Newly-fixed inverting op-amp circuit with the correct voltage divider circuit containing the 5.17k{)
R1 resistor

Figure 83, as shown above, showcases the newly-fixed inverting op-amp circuit with the correct
voltage divider circuit containing the 5.17k() R1 resistor.

Figure 84, as shown below, showcases the transient waveform output of the fixed op-amp circuit
shown in Figure 83. It’s clear from using the C1 and C2 wave cursors in Figure 84, that the midpoint
of the Vout waveform is equal to (3.9263 + 1.0748) / 2 = 2.501V which is almost exactly 2.5V, as
expected.

77

Transient 1
6 @ (c1_

—Vout: V(3)
—Vin: V(1)

2 10944V VI(4)
—205V:V(6)

4

-
/v (10.811ms, 1.9448V) 4——
1]

Voltage (V)
o

60 25m 5m 7.5m 10m 12.5m 15m 17.5m 20m
Time (s)
W Cursor 1 | M Cursor 2 | iV 4 1/AX
15.015 ms, 3.9263V 49852 ms, 1.0748V -10.030 ms -99.704 Hz

Figure 84 - The transient waveform output of the fixed op-amp circuit shown in Figure 83

Nom i "] . Desired Of f set
r =
on inverting op amp inpu Cain
; . . 2.5
Non inverting op amp input = —

Non inverting op amp input = 1.944V
Figure 85 - Non inverting op-amp input equation

Figure 85, as shown above, showcases a different equation that is used to validate the voltage
divider voltage shift section of the op-amp circuit. The equation shows that the non-inverting op-
amp input pin requires an input of roughly 1.944V to obtain the Vout voltage shift of 2.5V. The
purple “10944V” line on shown in Figure 84 (and its source in Figure 85) shows a DC value of
1.9448V being fed into the non-inverting pin of the op-amp, which is very close to the calculated
value of 1.944V, hence validating that the voltage divider shift circuit is splitting the voltage by the
correct amount and hence, is functioning as expected.

78

Signal Conditioning Physical Circuit

After fixing the signal conditioning circuit with the correct resistor values, as shown in the previous
section, it was time to build the physical circuit. The following parts were acquired for the circuit:

e 5.2k resistor (5kQ + 200Q)) (rounded up from 5.17k()
e 3.5k resistor (3.3kQ + 20012)

o Two 1kQ resistors

e Function Generator

e UA741 Op Amp

e 12V DC Power supply for the 741 op-amp

e Breadboard jumper wires

o Testleads

ESP- WRGOM-32

(ER

T [E) 205000519
FCC 90:24C T2-ESPWROOM 32

FI) ESP- WROOM-32

(€

= [R]205-000519
FGG 3D:28G T2ESPWROON 32

——‘Wv
1.00kQ J_
ver [SICH .:J
= ey
12.0V % 25
—AA i EE
,__“, om-,
3.50kQ Bug &
5.00V) E— .. K:@fﬂg
z(;)z.%Hz UA741CPT— 120V < -
1l AN M
1.00kQ 5.20kQ

Figure 86 - Circuit diagram of the op-amp circuit wired up to the ESP32 circuit

79

Figure 86, as shown above, showcases the circuit diagram of the op-amp circuit wired up to the
ESP32 circuit. The output of the op-amp circuit is connected to the A0 analogue input pin of the first
ADS1015 ADC. The function generator amplitude was set at 5V and the frequency was set at
49.98Hz, to simulate a mains signal frequency — which will be extremely close to 50Hz. A photo of

the physical circuit can be seen below, in Figure 87.

Figure 87 — Physical op-amp circuit hooked up to ADC 1, as shown in circuit diagram in Figure 86

80

OPERATE
.

Figure 88 - Rapid Electronics 12V DC power supply that
was used for this circuit

Figure 88, as shown above, showcases the Rapid Electronics 12V DC power supply that was used for
this circuit. This was later replaced by a 8 x 1.5V AA battery holder.

The function generator feeds a non-shifted 5V analogue input signal to the signal conditioning
circuit, which inverts the signal and attenuates it down to the 1VRMS Vout. This 1VRMS output

signal was then fed into an analogue input of the ADS1015.

4 WADCVoltags lMVENS B AvgVENS D FrequencyDivI0OMl AvgFrequencyDivI1 Ol HidPoint @ Voltags

W W W

NANAAAANAAAANAANAANAAAANDAAAAAANAAAANANAAN
AR A A A ATAAAAT A AVATAVATAYAVAVAVAVATATATA

0.0

-3.0 t t t t |
100064 100164 1002 64 100364 100464 10056+

2000000 baud Send Mo line ending

Figure 89 - Serial Plotter output waveform of the resultant signal being fed into the ADC from the inverting op-amp circuit

81

Figure 89, as shown above, showcases the Serial Plotter output waveform of the resultant signal
being fed into the ADC from the inverting op-amp circuit. The waveform was very clean after coming
through the inverting op-amp circuit, this is thanks to the high impedance of the op-amp itself. This
signal was used to represent the voltage coming from VT in the three phase system.

Voltage Scaling

The smart wireless sensor measures the signal conditioning attenuation circuit Vout signal. The Vin
value of the circuit was set to 5V, however, the secondary side voltage of the VT transformer is
actually 110V. This 110V would be unsafe and unfeasible to work with in practice, and hence, 5V was
used as Vin, for demonstration purposes.

Since this project is not working with the true VT values, this project is therefore used to simulate
these values. The primary side voltage of the VT transformer is the voltage value that the smart
wireless sensor is actually trying to measure, therefore, this primary side voltage must be calculated
through scaling the simulated value. A suitable primary side voltage would be around 11kV.

The full V-peak value of the primary side is set at 11kV. Therefore, when the secondary side voltage
is at the V-peak value of 110V, the voltage value in the program should be scaled to this full V-peak
value. In the signal conditioning circuit, the 110V is scaled down to 1VRMS (1.414V) and hence,
whenever the voltage being inputted into the ADC is of 1.414V, then the scaled voltage should be
calculated to be 11kV for the primary side and 110V for the secondary side.

This is a simple ratio — if the value being fed into the ADC is was halved, i.e. 1.414 / 2 =0.707V, then
the scaled primary side voltage will be halved down to 5.5kV and the scaled secondary side voltage
will then be halved down to 55V.

scaledVEMS = (vrms * primarySideVoltagePeak) / sqgrt(2)
scaledVoltage = (scaledVRMS * sqgrt(2)); // 11000V == 1.414V

o

Figure 90 - Code used to scale the voltage value to the 11kV primary side simulated value

Figure 90, as shown above, showcases the two lines of code used to scale the voltage value to the
11kV primary side simulated value. To find the voltage of the analogue input signal, the VRMS has to
be worked out first, as explained in the VRMS section. The primarySideVoltagePeak float variable
was set to 11000.0, earlier in the code. The VRMS value is scaled by calculating the ratio of the
measured voltage value compared to the full scale ADC voltage value of sqrt(2) (= 1.414) which is
then multiplied by 11000. In summary, an input signal of voltage 1.414V will equate to the
scaledVoltage variable value (shown on the second line) being set to 11kV, as expected.

82

Current

The current can’t actually be measured, so it is instead being simulated. A simulation was made that
represents a full fault current generator for the three-phase current transformer (CT). The peak fault
current of the simulation is set to a value of 200A, however, most of the time the actual load current
will be around 10% of that, i.e. at roughly 20A. The current will only reach 200A if there is short
circuit fault in the circuit.

In this simulation circuit, the current is represented by the voltage output coming from the function
generator. Since the load current is around 10% of the full 200A peak fault current, this must be
accounted for when using the function generator to simulate the current signal (with voltage). There
are two possible options to obtain this signal of 10% amplitude:

1. Use two function generators — one for the VT voltage and one for the CT voltage

2. Use one function generator in combination voltage divider circuit to split the signal between
the voltage op-amp circuit and the “current” op-amp circuit. The current simulation signal
will be dropped to a voltage of roughly 10% of the voltage simulation signal

The first option is wasteful as it requires two separate function generators and this set up will also
produce two waveforms that are randomly out of phase — which is unrealistic as the VT and CT
signals will be in phase in the real-world scenario. Therefore, the optimal choice is to use one
function generator in combination with a simple voltage divider circuit.

Figure 91, as shown below, showcases the simple voltage divider equation used to determine what
size of resistors were needed for the voltage divider circuit to split the function generator signal
between the voltage and current simulation signal conditioning circuits.

R2
" R1+R2

Vout (R1+ R2) = VinX R2

Vout = Vi

Vin X R2
- Vout
:5x1_1
0.5
R1 = 9kQ

R1

Figure 91 - Voltage divider equation to determine function generator resistor value for split

83

1.00kQ
12,0V
bR2
AN . - o °—||'
3.50kQ
+ -
UA741CPT™ 120V
.]
PR1 | AN A
I () |9 1.00kQ 5.17kQ
ANN
5.00V
49.98Hz g 1.00kS2 1
0° 9.00kQ —
—_— 12.0V
PR3
—— A s - o t—
3.50kQ
S - =
1.00kQ UA741CPT— 12.0V
. 2 *
1f AN ‘ AAA
1.00kQ 5.17kQ

Figure 92 - Multisim circuit schematic diagram for the voltage and current op-amp attenuation circuits being fed the 5V function generator
signal

Figure 92, as shown above, showcases the Multisim circuit schematic diagram for the voltage and
current op-amp attenuation circuits being fed the 5V function generator signal split by the voltage
divider.

84

Transient 1 @ @

—Vin: V(1)
—Vout1: V(3)
5 —\Vout2: V(10)
4
. 3
=
% /- “+
3 (0.0000s, 2.5005 V) <
2
1
0 /
0 2m 4m 6m 8m 10m 12m 14m 16m 18m 20m
Time (s)
W Cursor 1 W Cursor 2 AX | /AKX
5.0213 ms, 2.3527/V 15.030 ms, 2.6342V 10.009 ms 99.915 Hz

Figure 93 - Transient waveform outputted by the circuit shown in Figure 92

85

Figure 93, as shown above, showcases the transient waveform outputted by the circuit shown in
Figure 92. The light blue waveform labelled “Vout” showcases the voltage output waveform and the
dark blue waveform labelled “Vout2” showcases the simulated current output waveform. The dark
blue current (“Vout2”) waveform can be seen to have a Vp-p value of (2.6342 - 2.3527) / 2 =
0.141Vp, which is exactly 10% of the PR2 voltage waveform (Vp = 1.414V), which is as expected. By
using the current waveform cursor values again, the midpoint can also be proven to be (2.6342 +
2.3527) / 2 = 2.493V which is almost exactly 2.5V, as expected.

ESP- WROOM-32

q3)

& ® w5000

FOC 9D:ZAGTZESPWROOM 32

1.00kQ
‘-.L)= @ESF-WROOM-EZ)
— ®) w.
T 120v EEPREIES) i
= [Ras- o
MA— 0——| |I Fec un:zmzczsn:w::::':z E H
3.50kQ - 2
/’ﬂ UA741CP| 120V
| AN AAN

| (:) 1.00kQ 5.17kQ
A"

5.00V

49.98Hz 2 1.00ke 1
0° T 9.00kR —
T 120v
. AAA »—“l
3.50kQ
: J._
1 1.00kQ uazaice| 120V

— WA

1.00kQ2 5.17kQ

Figure 94 - Fritzing circuit to represent the final smart wireless sensor circuit, which includes the full double op-amp attenuation circuit

86

Figure 92, as shown above, showcases the Fritzing circuit to represent the final smart wireless
sensor circuit, which includes the full voltage and simulated current function generator double op-
amp attenuation circuit connected to the ESP32 master slave circuit. The second physical inverting
op-amp circuit was then put together on a breadboard, exactly the same as the voltage signal
conditioning circuit. The physical voltage divider circuit was added to the function generator input to
split the signal to between the voltage and simulated current op-amp circuits.

S RADCIVoltage [l ADCICurrent [l MidFoint

 AUAWAWAWARAWAWAWAWAWAWAWA

YAYAVAVAVAVAVEVAVAVEVAVE

‘32481 32581 32681 32781 32881 32981

2000000 baud ~ | || Send No line ending

kv

Figure 95 - Serial Plotter output taken for the 1200sps ADC readings for the outputs from the voltage op-amp circuit and the simulated current
op-amp circuit

Figure 95, as shown above, showcases the simple Serial Plotter output taken for the 1200sps ADC
readings for the outputs from the voltage op-amp circuit and the simulated current op-amp circuit. It
is clear that both waveforms are very clean in nature and the simulated current voltage signal is
small fraction of the first voltage signal. It is not clear from Figure 95 if the current value is 10% of
the voltage value, however, this will be proven below.

Once the simulated current signal was being read from the ADC successfully, it was time to actually
calculate the “current” value from this second voltage signal. The solution was exactly the same as
the first signal — to work out the IRMS using the sliding window technique then the current value is
just sqrt(2) multiplied by the IRMS value.

Now that the “simulated current” value was successfully being calculated, the value being roughly
10% of the voltage value is further proven in the Serial Monitor screenshot in Figure 96, as shown
below. The calculated voltage and current signals were included in this screenshot to demonstrate
the ratio, as highlighted by the red and green rectangles. The frequency of the current waveform did
not need to be calculated in the code as the frequency of this waveform is exactly the same as the
voltage waveform, due to them coming from the same function generator signal.

87

| Send
P R S o g T e TS e e T ~
ADC1Voltage:3.33 ADC2Current:2.57 MidPoint:2.49|Voltage:l CurrentZ:0.13
BEDC1Voltage:3.4% ADC2Current:2.59 MidPoint:2.49%|Voltage:1 currenth:0.13
ADC1Voltage:3.63 ADC2Current:2.61 MidPoint:2.49|Voltage:1l Currenta:0.13
ADC1Voltage:3.73 ADC2Current:2.62 MidPoint:2.49%|Voltage:l currenth:0.13
ADC1Voltage:3.79% ADC2Current:2.62 MidPoint:2.50|Voltage:1 current&:0.13
ADC1Voltage:3.83 ADC2Current:2.63 MidPoint:2.50|Voltage:1l Currenta:0.13
ADC1Voltage:3.85 ADC2Current:2.63 MidPoint:2.50|vVoltage:1l currenth:0.13
ADC1Voltage:3.81 ADC2Current:2.62 MidPoint:2.50|Voltage:1. Currentk:0.13
ADC1Voltage:3.76 ADC2Current:2.62 MidPoint:2.50|Voltage:l CurrentZ:0.13
ADC1Voltage:3.67 ADC2Current:2.61 MidPoint:2.50|Voltage:1 Currenth:0.13
ADC1Voltage:3.54 ADC2Current:2.60 MidPoint:2.49|Voltage:1l Currenta:0.13
ADC1Voltage:3.38 ADC2Current:2.58 MidPoint:2.49|vVoltage:l currenth:0.13
ADC1Voltage:3.19% ADC2Current:2.56 MidPoint:2.49%|Voltage:1 current&:0.13
ADC1Voltage:3.05 ADC2Current:2.54 MidPoint:2.49|Voltage:1l Currenta:0.13
ADC1Voltage:2.84 ADC2Current:2.52 MidPoint:2.4%|voltage:l currenth:0.13
ADC1Voltage:2.61 ADC2Current:2.49% MidPoint:2.4%|Voltage:1 Currentf:0.13 v
[+] Autoscroll [] Show timestamp No line ending *~ | 2000000 baud Clear output

Figure 96 — Serial monitor screenshot of voltage and current

Current Scaling

Now that the simulated current signal readings were coming through successfully and the current
was being successfully calculated, it was time to scale the current. This was done in exactly the same
manner as the voltage was scaled.

The full peak fault current value of the primary side of the CT transformer was set at 200A,
previously. Therefore, a calculated simulated current voltage of 1.414V being calculated from the
current op-amp circuit readings would equate to a primary side current of 200A. As explained
previously, the load current of the circuit normally sits at around 10% of the full peak fault current
value and hence the voltage divider circuit from the function generator signal was used to drop the
voltage of the signal being fed into the simulated current op-amp circuit to 10%.

It was then proven, in Figure 96, that the “simulated current” voltage coming through was around
(0.13V) 10% of the voltage value, as expected. Therefore, the primary side current shown in Figure
96 can be worked out using the following equation:

Simulated Current Signal Voltage

. . _ N
CT primary side current = Peak Fault Current Full Scale Current Value

0.13
CT primary side current = 200 X —

V2
CT primary side current = 18.3854

Figure 97 — Scaling equation

The scaling equation, shown in Figure 97, was then implemented into the code to scale the current
values to their full CT primary side current values.

88

Power and Energy Consumption

Now that the scaled voltage and scaled current values were being calculated from the two op-amp
circuit outputs, the power and energy consumption values could finally be calculated by
implementing two algorithms in the code. The power equation can be seen below, in Figure 98.

Power = Current X Voltage

Figure 98 — Power equation

The energy consumption could then be calculated by using the energy equation in Figure 99, as
shown below.

Energy(kWh) = Power(kW) x Time(h)

Figure 99 - Energy equation

The C++ code implementation of the power and energy consumption equations can be shown
below, in Figure 100 and Figure 101, respectively. The scaledPower and avgScaledPower variables
are later converted to kW by the slave ESP32 whenever it parses the 12C message from the master.

scaledPower = scaledVoltage * scaledCurrent; /S W

avgScaledPower = ((avgScaledPower * i) + scaledPower) / (i + 1); // W

Figure 100 - Power C++ code

timeElapsed = (millis() - startTime) / 1000; // s
energyConsumption = avgScaledPower * timeElapsed / 3600000; // kWh

Figure 101 - Energy C++ code

The power and energy consumption were the final metrics that were calculated as part of the smart
wireless sensor project. The full list of 18 metrics being measured/calculated can be shown in the
list, in Figure 102, below. Both the scaled and non-scaled values can be found in the master ESP32
program, in Appendix 9.

e ADC1 voltage readings e Average scaled current
e ADC2 “current” readings e Frequency

e Scaled VRMS e Average frequency

e Scaled IRMS e Scaled power

e Average scaled VRMS e Average scaled power
e Average scaled IRMS e Energy Consumption

e Scaled voltage e Number of Faults

e Scaled current e Time elapsed

e Average scaled voltage e Midpoint

Figure 102 - 18 metrics calculated by the master ESP32

89

Out of the 18 above metrics listed in Figure 102, the 12 underlined metrics are the metrics that are
being sent to the slave ESP32, and hence, being sent to the smart wireless sensor cloud-hosted
website and cloud data storage. Screenshots of the final website and website demo can be seen in
the External Communications section, in Figure 69 and Figure 70, respectively.

Battery-powered Solution

A portable power bank was utilised to provide power to both the ESP32s. This allows the double
ESP32 circuit to be used in any scenario or location, regardless of whether there’s a mains supply
nearby. A photo of the power bank connected to the ESP32 circuit can be seen below, in Figure 103.
The “Anker” portable power bank seen in this photo was chosen for its small cylindrical form factor
and decent battery capacity. Multiple power banks could be used in future to improve the power
bank longevity.

Figure 103 - ESP32 portable battery bank circuit

90

To power the 12V op-amps, a 12V car battery would obviously be an infeasible solution. Therefore, a
small and lightweight 8 x AA battery holder was purchased to achieve the 12V solution. Each AA
battery is 1.5V, and hence, having 8 of these batteries in series achieves the desired +-12V solution
that is needed to power the op-amps. The battery holder was wired up to both of the two op-amps
and was able to power them both successfully. A photo of the 8 x AA battery holder was taken after
filling it up with fresh batteries and can be seen below, in Figure 104.

2 Rt W /)
|| .-;nua_g.{h-m::u %A PC1500 '.‘!‘ f

Professional Alkaline Batt
.' Pile :w:-ln-o pM.ll’bllnl:;y ‘ .
2 . L
S —— e —

Figure 104 - 8 x AA battery holder to achieve the 12V solution

Since both of the ESP32s and both of the op-amps are now being fully powered by batteries, the
smart wireless sensor can now be taken and used in any location or scenario without breaching the
electrical integrity of the circuit.

If this smart wireless sensor project was to continue, the next step would be to improve the battery
functionality so that the two op-amps and the ESP32s could run off of the same supply. Through
simulation, it was found that the op-amps functioned as expected, when being powered by a 9V
supply. Using a single 9V lithium-ion battery would be a much smaller and neater solution than the
current solution. 9V is too high for the ESP32s as they need a 5V supply. Therefore, a simple voltage
divider circuit could be set up to provide 9V to the two op-amps, while also supplying 5V to the two
ESP32s.

Research could be done into using a rechargeable 9V battery instead of the 9V alkaline battery, with
the possibility of using solar power to recharging the battery — depending on the scenario of the
sensor use-case. At the very minimum, it should be very easy and accessible for the user to replace a
long-lasting the 9V battery in the circuit, every so often.

91

Fault Detection Measurement

In the substation scenario, when there is a fault on the power line, this causes a short circuit and
hence, the circuit rises quickly. A trip point is set up so that if the current exceeds this trigger point
value, then the protection relay device will trip the circuit breaker, which knocks off the power line
supply and switches to the voltage support. In this project, the primary side CT load current is
around 20A. A trip point was set to 100A for this project so that whenever the current exceeds 100A
for at least one reading, the number of faults will be incremented by one. This was implemented in
the code, however, what if the fault stayed above 100A for an extended period of time?

The solution to this problem was solved in the code implementation — the fault is only declared as
having finished once the current falls down below 40A again.

/) Fault Detection -———-——--—---——-

if (scaledCurrent >= 100.0) { // trip point set at 100A
faultOccuring = true;

} else if (scaledCurrent < 40.0) { // fault finished walue boundary set at 40 to ensure fault
faultOccuring = false; // has truly finished, rather than recounting the same fault twice

// checks for the very start of a fault

if (prevFaultOccuring == fzalse && faultOccuring == trues) {
faultCounter++;

}

prevFaultOccuring = faultOccuring;

Figure 105 — Fault detection ESP32 code

Figure 105, as shown above, showcases the fault detection code in the C++ master ESP32 program.
The code checks if the scaledCurrent is detected at being over 100A. If the scaledCurrent was read as
below 40A more recently than when it was read at above or equal to 100A, then the faultCounter
will be incremented. This ensures that the faultCounter is only incremented once on each new fault,
rather than being incremented multiple times during each fault. A value of 40A was chosen as the
fault-finished value to ensure that the fault has truly finished occurring — when the scaledCurrent
value lowers below 40A it can be safely concluded that the fault has finished occurring.

92

Final Circuit

Figure 106, as shown below, showcases the final smart wireless sensor circuit — with the addition of
the transformers. The VT and (simulated) CT transformers fed into the two op-amp attenuation
circuit, with the rest of the circuit unchanged. The voltage outputs of these two signal conditioning
circuits are then fed into the first analogue input of each of the two ADS1015 ADCs which take the
1200sps readings from the signals. The readings are run through the various algorithms and the 12
useful live measurements are then outputted via external communications means to the users.

ESP- WROOM-32

(€&

= (] 205 000513
FCC 9D:2AC T2 ESPWROON 32

GilifdaadadEas
@

IAORHOE

& 28c2e
1.00kQ 1 &
VT — F1) ESP- WROOM-32 Eél
— T 120v cex; 3
3 ‘ E W “——“I Fcﬁn.u%!:::u;::::':z E
3.50kQ] =
11kV 110V L
= ¢
ua741cp| 120V ®
4
®
1l AN AN
1.00kQ 5.17kQ
Simulated WV
1.00kQ 1
CT £
— T 120v
3 { AN~ s
3.50kQ]
20A 5A — 1VRMS
(11v) uA741cp| 120V
——wWA— AN~
1.00kQ 5.17kQ

Figure 106 - the final smart wireless sensor circuit — with the addition of the VT and CT transformers

£

93

Semester 1 Progress Gantt Chart

OCTOBER NOVEMBER DECEMBER JANUARY

Monday | Monday | Monday | Monday | Monday | Monday | Monday | Monday | Monday | Monday | Monday | Monday = Monday | Monday | Monday | Monday

Initial Project Research
Specification research before first meeting

Power System measurement research

Wireless sensing research
Signal conditioning opamp circuit design IIIIIII
Choice of platform research
Choice of breakout boards research
MCU and breakout connections finalised
Bill of Materials research and parts ordered
Development
Old ESP32 Wi-Fi and BLE servers
Breakout header soldering
ADS1115 ADC circuit reading 4 inputs
Signal conditioning circuit improvements
MicroSD card program for storing data

ADC measurements storing on MicroSD card

ADC sampling rate program alterations
Holidays
Project Interim Report
Future Dewvelopment
GPS breakout circuit
GPS 1PFS clock for discipling ADC interrupts at 1sps
Implement new ADS1015 ADC

Figure 107 - Gantt chart to show the project progress made in semester 1 T

Interim Report Submission

Semester 2 Predicted Progress Gantt Chart

FEBRUARY

Monday | Monday | Monday | Monday | Monday | Monday | Monday | Monday | Monday | Monday

Future Development

1200sps ADC voltage measurements IIIIII
50Hz WVRMS calculations and storage IIIIII

Use frue zero points o work out frue frequency IIIIIIIII

Energy consumption/power values from frequency

Signal condifioning circuit design improvements IIII
Full circuit testing with different signal-gen cases
Wifi server set up and fest
BLE server set up and fest
Presentation preparation
Bonus functionality
Battery solution
Cloud data storage
Cloud website hosting
3D-print an adesthefic sensor casing

Final report writeup

Figure 108 - Gantt chart to show the project progress that is expected to be made in semester 2 T /

Oral Examination Week Final Report Submission

Semester 2 Recorded Progress Gantt Chart

FEBRUARY

Monday | Monday | Monday | Monday | Monday | Monday | Monday | Monday | Monday | Monday

Rest of Development

1200sps ADC wvoltage measurements IIIIII II
50Hz VRIS calculations

([]]]
Use true zero points to work out frue frequency IIIIIIIIIIIIII

Energy consumption/power values from current
Signal conditioning circuit design improwvements

Full circuit testing with different signal-gen cases
Wi-Fi server set up and test
BLE server set up and test
Presentation preparation
Algorithm validation using MATLAB simulation
Tracking midpoint functionality
Second ESP32 Implement
Advanced MicroSD card storage functionality
GPS interrupt timer disciplining
Current circuit implementation
Voltage and current scaling
Bonus functionality
Battery solution - 1
Backend Spring Boot Java Application
Cloud data storage
Cloud website hosting
3D-print an assthetic sensor casing
Final report writeup

Figure 109 - Gantt chart to show the project progress that was actually made in semester 2 T 96 /

Oral Examination Day Final Report Submission

Management — Reflection and Analysis Against Plan

Figure 107 showcases the recorded progress Gantt Chart of Semester 1.
Figure 108 showcases the predicted progress Gantt chart going into the start of Semester 2.
Figure 109 showcases the recorded progress Gantt chart of Semester 2.

The progress of semester 1 was demonstrated in the Interim report. The following section will
reflect and analyse the semester 2 predicted Gantt chart to the measured Gantt chart (Figure 108
and Figure 109, respectively).

As shown in the predicted semester 2 progress Gantt chart in Figure 108, the chapters with green
text colour were tasks that were added in the recorded semester 2 Gantt chart. The chapters in with
the red text colour were tasks that were either no longer seen as necessary or they are chapters that
did not fulfill the predictions (weren’t completed for various reasons).

When visually comparing the predicted and recorded semester 2 Gantt charts, it’s very clear that the
predicted Gannt chart had a much more linear, waterfall-like flow compared to the actual recorded
Gantt chart. This is due to the fact that the order in which the semester 2 tasks were completed was
actually very different to the predicted order. This gives the recorded Gantt chart a very messy and
chaotic appearance, however, this is perfectly okay as the order of priority and dependency in
projects cannot always be truly predicted.

The second noticeable visual difference is fact that the predicted Gantt chart finishes the current
task before moving to multiple other tasks, whereas in the recorded Gantt chart, some tasks are
reopened up to 4 times — as seen in the “1200sps ADC voltage measurements” task. Reopening and
altering tasks is not ideal due to the inefficiency of context switching back to those old tasks,
however, reopening old tasks is sometimes a necessary process. This is due to more experience
gained further into project, meaning that in hindsight there are certain tasks that must be modified.
This is also due to the fact that certain tasks have a cyclical dependency — they depend on the nature
of the future tasks, which in turn depend on the past tasks. This leads to both tasks needing to be
altered multiple times each, e.g. “1200sps ADC voltage measurements” and “Use true zero points to
work out true frequency” tasks, as shown in the recorded Gannt chart.

Individual tasks analysis

For the individual tasks, the “1200sps ADC voltage measurements” task was predicted to take 8
days. In the recorded chart, it take 8 days initially, however, it had to be reopened 3 more times to
make appending changes after making progress with the frequency and VRMS. It had to be
reopened due to the fact that the way that the 1200sps sampling rate was achieved in the first 8
days was inadequate for the nature of the VRMS and frequency.

The second task completed was the “Use true zero points to work out true frequency” task. It was
predicted to take 8 days, but it actually took 14, due to the complex nature of the task and the fact
that the ADC measurements task had to be amended as part of the process.

The next task completed was the “50Hz VRMS calculations” task. The VRMS and frequency tasks
were completed in the opposite order to expected, which was fine as they didn’t rely on each other.
The VRMS task was expected to take 6 days, however, it actually took 16 days. This is due to the

97

overlapping changes with the ADC readings and frequency, hence causing a delay in getting the
VRMS functionality fully completed.

The next task was the “Algorithm validation in MATLAB simulation” task. This task was not predicted
in the predicted Gantt chart, however, it proved to be a quintessential step for the project. The
analogue signals themselves are not consistent enough for validating the algorithms so the analogue
signals were simulated in MATLAB then the algorithms were ran on the signals, proving that the
algorithms work as intended, and are valid to the required degree.

The next task completed was “Full circuit testing with different signal-gen cases”. This task was
expected to be done after the energy consumption task, which actually ended up being the last task
completed, which was poorly predicted. This task took the expected time of 4 days total, which is
half the time that it was expected to take. This task paid off well as it ended up facilitating a smooth
oral presentation demo.

The next task was the “Presentation preparation” task. The presentation date was marked as the
Monday on the predicted chart, however, the actual date was on the Friday. This allowed for more
time to prepare for the presentation, totaling at a respectable 9 days total.

The next task was the “Tracking midpoint functionality” task, which was completed on the day
before the presentation. This was a last minute edit which thankfully worked perfectly at tracking
the midpoint, even when varying the DC Offset. This functionality was not predicted and ended up
being a great addition to the project, allowing the VRMS to be smoothly calculated, no matter how
varying the DC offset is.

After the oral presentation, a lot more time was freed up for working on the project. The large
amount of the semester 2 functionality was completed in the next 2 weeks. The next task was an
unpredicted task, the “Second ESP32 Implement” task. This was a crucial task to be completed as the
subsequent task all relied on the second ESP32 to be in place before they could be attempted.

The next task completed was the “Wi-Fi server set up and test” task. The basic Wi-Fi server code had
already been set up in semester 1, however, to work in both station and AP mode there was a lot of
additional intricate complexity that needed added to the code. It took 2 full days in total, which was
great. This task was completed later than expected, as it was expected to be completed before the
presentation.

The next task completed was the “Advanced MicroSD card storage functionality”. This task was not
predicted in the predicted Gantt chart, however, it proved to be a vital addition to the project. It
only took 2 days to get the full, complex format working, thanks to the work done in semester 1.

The next 3 tasks were heavily overlapping over a 5 day period. This was the full cloud functionality
setup. The first task was unpredicted — the “Backend Spring Boot Java Application”. When creating
the prediction Gantt chart, the methodology of how the cloud functionality would be implemented
was completely unknown, so it was no surprise that this additional task had to be completed as part
of setting up the cloud apps. This backend app was needed as a middleman between the ESP32 and
the Google Cloud Platform (GCP) React IS website. Since the website calls the Spring Boot endpoints
before storing the sensor readings in the relational could database, the website hosting task was
started before the cloud data storage task — which was unpredicted.

The next task completed was the “GPS interrupt timer disciplining” task. This task was not predicted
in the predicted Gantt chart, however, this task was essential to ensure that smart wireless sensor

98

would only start taking readings on the exact start of a new second. This is crucial for working with
multiple smart wireless sensors, to have the readings exactly in sync.

The next task completed was the “Signal conditioning circuit design improvements” task. This task
took slightly less time than expected, at 4 days instead of 7. This task was predicted as the 5™ task to
be completed, however it was done towards the end, due to the fact that it was key to ensure that
the main ESP32 was all set up correctly to ensure that the signals coming from the signal
conditioning circuit would be as expected. The op-amp calculations were fixed and the voltage signal
conditioning circuit was built.

The next task completed was the “Battery solution” task, which was completed a bit later than
expected. It only took 1 day, whereas it was predicted to take 8 days. This is thanks to the simplicity
of the solution itself — a portable power bank to power the ESP32s and a 8 x AA 12V battery holder
to power the two op-amps.

The next task completed was the “Current circuit implementation” task. This task was somehow
overlooked in the predicted chart and hence came in towards the end of the project as additional
functionality. A second op-amp circuit was set up, exactly the same as the voltage op-amp circuit,
and a voltage divider circuit was added to the function generator input signal to obtain a simulated
current signal roughly 10% the amplitude of the main voltage signal. This signal was the passed into
the current op-amp circuit.

The next task completed was the “Voltage and current scaling” task. This task was an additional task
added into the recorded Gantt chart. This task essentially scaled the measured analogue input
voltage values to the VT and CT primary side full peak voltage and current values, respectively.

The final actual project task completed was the “Energy consumption/power values from current”
task. This task was meant to be completed as the fourth task in the predicted chart, however, the
current acquisition process was clearly overlooked on creation of that predicted chart. This final task
depended on a lot of tasks being completed first and hence ended being last. The scaled voltage and
scaled current were utilised to calculate the power, then the energy consumption was the final value
to be calculated and sent to the backend and cloud, tying off the project.

The “Final report writeup” task was predicted to take 16 days, however, it actually took 11 days. The
final bits of project functionality took slightly longer than expected, which delayed the starting of the
report. 11 days ended up being very sufficient for writing the report, thanks to the structure of the
Winter Interim report saving a lot of time.

Redundant tasks and uncompleted tasks

The “BLE server set up and test” task — shown in red — was uncompleted due to the fact that (during
semester 2 it was found that) the ESP32 cannot use both of its Wi-Fi and Bluetooth modules at once,
therefore, a choice had to be made between hosting a Wi-Fi server or BLE server. Since the ESP32
needed internet access for obtaining the GMT time for SD card file naming and also for cloud data
uploading, it was an obvious choice to choose the Wi-Fi server. The Wi-Fi server was set up both
Station mode and access point (AP) format, where the latter ended up acting very similar to how the
BLE server would have worked anyway. This task was therefore coloured red due to the fact that it
was made redundant by this technical limitation.

The “3D-print and aesthetic sensor casing” bonus task — shown in red — was uncompleted due to
other task prioritisations taking its place. As bonus functionality for the future, the smart wireless

99

sensor would be hosted on a neat stripboard/Veroboard, hence bringing down the total sensor size
and paving the way for a sensor casing to be a great addition.

Summary/Overview of the Smart Wireless Sensor Management

The project handbook suggested leaving 20% of the time reserved for unforeseen delays (extra
tasks) but this was not account for in the predicted semester 2 Gantt chart. In hindsight, this is a
good idea and shall be implemented in any future Gantt charts.

Overall, the predicted progress Gantt chart ended up being relatively accurate in terms of the task
completed, however, the ordering of the tasks was slightly off — which is okay. Due to other
university module assignments and responsibilities, the number of tasks completed from February
up until the oral presentation (on the 25" March) was lower than the number of tasks completed in
the few weeks following the presentation. Those tasks completed before the 25" March also took a
lot longer per task when viewed on the chart. This is simply due to the fact that the number of hours
per day being allocated to the tasks before the 25" March was a lot lower than the few weeks after.
From the 25" March until the 17" April (report submission date), this project was the sole focus for
those three and a half weeks, facilitating a lot of project work being able to be completed, thanks to
large time blocks and minimised context switching between various forms of university work.

Possible Future Work

If this smart wireless sensor project was to continue, the next step would be to improve the battery
functionality so that the two op-amps and the ESP32s could run off of the same supply. Currently the
ESP32s are being supplied by a portable power bank and the op-amps are being power by a 12V 8 x
AA battery holder. Through simulation, it was found that the op-amps functioned as expected, when
being powered by a 9V supply. Using a single 9V lithium-ion battery would be a much smaller and
neater solution than the current solution. 9V is too high for the ESP32s as they need a 5V supply.
Therefore, a simple voltage divider circuit could be set up to provide 9V to the two op-amps, while
also supplying 5V to the two ESP32s.

A 4G sim card breakout could be integrated into the circuit to ensure that the sensor will almost
always have internet access. This would maximise the scenarios where the sensor would have
internet access as the sensor will not always have a local network to connect to nearby. This would
be extremely beneficial in ensuring that the cloud-based website and cloud data storage is utilised as
much as possible, rather than the local Wi-Fi AP server having to be used every time.

The power consumption of the project should then be optimised to use the least amount of power
possible. Research could be done into using a rechargeable 9V battery instead of the 9V alkaline
battery, with the possibility of using solar power to recharging the battery — depending on the
scenario of the sensor use-case. At the very minimum, it should be very easy and accessible to
replace the 9V battery in the circuit.

The next step would be to migrate the project from the breadboard to a stripboard/Veroboard. This
is a more semi-permanent, smaller, and neater solution. After that, a the next step would be to 3D
print a suitable sensor casing, and attach suitable voltage and wire clamps.

100

Once the prototype has been sufficiently tested for possible improvements, these improvements
should be made then a PCB should be designed and produced. This would result in a much smaller
and more accessible solution, hence reaching the full project potential. An aesthetic casing to hold
the PCB and components should be designed and produced, while allowing easy access to the 9V
battery, should it need to be replaced.

101

Contribution — Comparison against specification

Specification Objectives

Objectives

1. Investigate power system measurement and wireless sensing

2. Design a near-real-time solution in hardware and software to measure low
voltage/current signals

3. Develop appropriate hardware/host software for wireless PC/laptop/GUI control and
interfacing

4, Write C/C++ software to implement the solution for near-real-time measurement

5. Write C/C++ software to implement near-real-time determination of other quantities
(e.g. power/energy)

6. Evaluate and test the smart sensors with different operating scenarios

Bonus MEng Extension Objectives
1.

Develop appropriate hardware and software for bi-directional sensor measurement
interfacing

Develop a broad range of operating scenarios with different voltage/current attributes for
smart metering

Implement and evaluate final solution with simulated/measured/laboratory signals

The full specification page can be seen at the start of this project report. The main 6 project
objectives are listed above, along with the 3 bonus MEng extension objectives. This project is a BEng
project, however, so these MEng extension objectives were not expected to be completed.

Required Specification Objectives Table

BEng Objectives Completed
1. Investigate power system measurement and wireless sensing
2. Design a near-real-time solution in hardware and software to measure low

[]

voltage/current signals

3. Develop appropriate hardware/host software for wireless PC/laptop/GUI
control and interfacing

4. Write C/C++ software to implement the solution for near-real-time
measurement

5. Write C/C++ software to implement near-real-time determination of other
quantities (e.g. power/energy)

6. Evaluate and test the smart sensors with different operating scenarios

Figure 110 - Bonus Objectives Tables (Not required by BEng specification)

102

Bonus Objectives Tables (Not required by BEng specification)

MEng Bonus Objectives

Completed

1. Develop appropriate hardware and software for bi-directional sensor
measurement interfacing

2. Develop a broad range of operating scenarios with different voltage/current
attributes for smart metering

3. Implement and evaluate final solution with simulated/measured/laboratory

signals

Figure 111 - MEng Bonus Objectives

Further Bonus Objectives (only some listed)

Completed

1. Backend Spring Boot Java Application system for relaying HTTP requests
between slave ESP32 and the cloud-side

2. Cloud website hosting to display up-to-date sensor readings that updates
asynchronously periodically

3. Cloud data storage to store the sensor readings in a clear and structured file and
folder relational format, for intuitive navigation of sensor readings

4. Validate the frequency and VRMS algorithms using simulated analogue signals
(MATLAB) to conclude if their precision is better than +-10mHz and +- 10mV

5. Advanced MicroSD card storage system with file and folder funneling based on
updated current GMT time.

6. Develop a suitable algorithm for varying DC offset tracking, without affecting
VRMS measurements

7. Develop consistent interrupt timer disciplining through the use of a 1PPS GPS
signal, facilitating multiple sensors to always take readings in sync

8. Maximise code sustainability (green code) — Use industry-leading data

structures and algorithms techniques to improve microcontroller algorithm
efficiency, hence reducing power consumption and improving code
sustainability — a worldwide recognised issue

Figure 112 - Further Bonus Objectives (only some listed)

This project is a BEng project, therefore, the only required specification objectives of this project can

be seen as the 6 objectives listed in Figure 110. These objectives were all completed and hence the
project specification was fulfilled.

Even though this project is only a BEng project, all 3 of the MEng Bonus Objectives were completed,
hence showing more added value, beyond the specification. This is shown in Figure 111

103

Figure 112 showcases the Further Bonus Objectives table. These 8 bonus objectives were self-
proposed and completed, bringing the project to an even higher standard.

In summary, all 6 required objectives were fulfilled and an additional 11 bonus objectives were
completed, hence adding very strong value beyond that resulting from just fulfilling the
specification.

104

Discussion

This project sought to develop an appropriate solution to compensate for the downsides of Digital
Fault Recorders. Individual large and heavy DFRs in Distributed DFR systems must be hardwired to a
Data Concentrator by means of serial or digital communication. This in turn leads to inaccessible live
measurements and a restriction as to where the DFRs can be placed without breaching the electrical
integrity of the system. A smart sensor was developed to augment DFRs to solve these problems.

The overall functionality required of the sensor was determined and was demonstrated in semester
1in Figure 1. For all the researched platforms, it was found that the built-in platform ADC inputs
would fail to provide asynchronous 8-channel measurements so this functionality had to be acquired
externally. Through detailed research, the most suitable platform was found to be the ESP32-
DevKitC-32UE due to its strong processing power, small form factor, reliability, pin inputs/outputs,
etc. To make up for missing functionality, suitable breakout boards were researched and narrowed
down to a final bill of materials order shown in Table/Figure 7 — the communication forms of these
breakouts are shown in Figure 8. The transmission side of the transformer is around 110V and the
ADC can only take in a range of roughly -0.3 — 5.3V (with a 5V supply) so a signal conditioning
inverting op-amp attenuation circuit was designed, with a voltage shift of 2.5V to ensure that the
negative half of the signal wave could be measured. It was found that the ADS1115 could
successfully store measurements on the microSD card but its maximum sampling rate was found to
be too low — at only 860sps, whereas 1200sps is needed for a 50Hz signal at 24 samples/cycle — so
the 3300Hz sampling rate model was ordered (ADS1015). 3300sps voltage readings were achieved
then a true zero point algorithm was implemented, to facilitate the true frequency to be measured.
Midpoint, VRMS and current algorithms were designed and implemented too. These algorithms
were then validated through simulation in MATLAB and found to be 33 times more accurate than
originally required. A GPS breakout was utilised for interrupt timing disciplining so that multiple
sensors could be used in sync. The sensor was tested thoroughly with a function generator before
designing the final op-amp circuits to facilitate the voltage and simulated current to be measured
and scaled to represent the primary side VT and CT voltages and currents, respectively. A second
ESP32 was added to the circuit to handle external communications and a battery solution was
implemented. An advanced local MicroSD card storage file/folder system was further refined for
storing the 12 measurements. A full backend cloud data pipeline was implemented — to facilitate the
12 useful live measurements to be asynchronously displayed on a cloud-hosted website and stored
in cloud data storage for later access. A local Access Point & Station Wi-Fi server was added on the
slave ESP32, so that readings could be read, even in absence of Wi-Fi.

The wireless sensor fault analysis functionality is inferior to that of the standalone DFRs — as DFRs
have higher sampling rate/resolution, higher memory capacity, improved datasets, etc. — as they are
specifically designed for fault analysis (among other purposes) and cost over 20 times the price [28].
The purpose of the smart wireless sensor is not to replace DFRs but to augment DFRs to make up for
their limitations. The sensor solution can be used in combination with DFRs to provide live readings
to any users, through the cloud-hosted website and cloud storage, while retaining the superior fault
analysis functionality of the DFRs. The smart wireless sensors can be placed in locations that were
previously electrically impossible for the DFRs due to the sensors’ wireless communications and their
lightweight, small form factor. In these locations where the DFR cannot be placed, the smart wireless
sensor provides an adequate solution for fault analysis, when this was previously impossible.

Many previous studies investigate the optimisation of DFR systems. This project takes already
optimised DFR systems and augments them with further functionality.

105

Conclusion

The project sought to develop a smart wireless sensor MCU solution to solve the problems that
industry-standard 3-phase Distributed Digital Fault Recorders currently face — inaccessible live
measurements and electrical-based restrictions for DFR placement. Research was conducted to
investigate the possibility of a smart wireless sensor platform solution to augment DFRs to
compensate for currently lacking functionality.

The end-goal specification was used to determine the requirements of the platform which included
Wi-Fi, Bluetooth, 1200sps ADC reading functionality, a 1PPS GPS signal for interrupt syncing,
MicroSD card storage, and a possible battery supply solution. The suitable platform had to be
chosen. An MCU was concluded as more suited to this project than an SBC. The ESP32 was
concluded as the optimal MCU for this project and it came with built-in Wi-Fi and Bluetooth but
lacked the rest of the additional functionality. The ADC of the ESP32 is incapable of the required 8-
channel asynchronous measurements so an external ADC, MicroSD card, and GPS breakout were
researched and ordered. The secondary side of the transformer is around 110V and the ADC can
only take in a range of roughly -0.3 — 5.3V, so a signal conditioning inverting op-amp attenuation
circuit was designed, with a voltage shift of 2.5V to ensure that the negative half of the signal could
be measured.

A circuit was created consisting of the ESP32, ADC, and MicroSD card breakouts and a program was
developed to take 4 singled-ended input voltage values and store them on the MicroSD card. A
higher refresh rate ADC was purchased then its library was optimised to facilitate the full 3300sps
readings to be taken. Consistent 1200sps readings were then set up, as required for a 50Hz mains
signal of 24 samples/cycle, by utilising the ESP32’s built-in interrupt clock. The GPS breakout was
implemented for interrupt timer disciplining. True frequency, midpoint, VRMS and current
algorithms were designed and implemented into the ESP32 code to facilitate all the required
measurements to be calculated for later use. These algorithms were then validated through a
simulation in MATLAB and found to be 33 times more accurate than originally required (+-0.3mHz
for true frequency and +-0.3mV for VRMS). The circuit was thoroughly tested with a function
generator before designing the final op-amp circuits to facilitate the voltage and simulated current
to be measured and scaled to represent the primary side VT and CT voltages and currents,
respectively. A second ESP32 was added to the circuit to handle external communications and a
battery solution was implemented, for portability benefits. An advanced local MicroSD card storage
file/folder system was refined, along with a full backend cloud data flow — for the sensor readings to
be asynchronously displayed on a cloud-hosted website and cloud data storage for later access. A
local Access Point & Station Wi-Fi server was added, so that readings could be read, even in absence
of Wi-Fi (via the access point).

In reflection, this project demonstrates the value provided and the potential that the smart wireless
sensor offers. It will be able to solve the two biggest problems of DFRs by augmenting them with
additional functionality. Users can read the useful live/near-real-time measurements — such as
number of faults, voltage, current, energy consumption, power consumption, etc. — via the cloud-
hosted website, cloud storage, and local station web server. However, if the sensor is in the absence
of a network connection, then the readings can still be accessed through the platform Wi-Fi AP
server — if the user is within the 2.4GHz Wi-Fl range of the sensor. It's a non-invasive solution, the
voltage and current connections just need to be connected with a clamp. The sensor is battery-
powered, wireless, portable, and low maintenance, hence making it the perfect solution to be
clamped on almost anywhere that it would be electrically impossible to do so with a DFR.

106

The DFR costs over 20 times the price of the smart wireless sensor [28] — as a result, the DFR has
superior fault analysis functionality. This is a limitation of the smart wireless sensor but, when used
in combination with the DFR, the combined fault analysis of the DFR and live measurements provide
an unmatched solution.

This augmented DFR solution has proven to be an extremely effective solution to solve the main
pitfalls of standalone DFRs in distributed DFR systems. Useful and accessible live readings being
transmitted to a cloud-hosted website, cloud data storage, and an ESP32 Access Point & Station Web
server mean that the readings can seamlessly be read worldwide, as well as by anyone connected to
the local network, or even without a local Wi-Fi network — by anyone nearby. This, combined with
being able to place the sensor in previously inaccessible DFR placement locations, has successfully
fulfilled the proof of concept and pushed the boundaries of smart wireless communications in
substations.

Further research and development could be invested into the smart wireless sensor to facilitate an
improved battery system with the use of a single 9V battery, rather than the current portable power
bank and 12V solution. A rechargeable solution could be engineered, with the possibility of using
more sustainable energy sources, such as using solar panels, etc. 4G internet capabilities could be
implemented to ensure that readings are uploaded to the cloud website and storage, regardless of
whether there’s a local Wi-Fi network nearby. The smart wireless sensor could be moved from the
breadboard to a more semi-permanent solution, such as a stripboard/Veroboard. After thorough
prototype testing, a final PCB solution could be designed and engineered, along with an aesthetic
casing — facilitating the smart wireless sensor to reach its full project potential.

107

Appendices

Appendix 1: 4-channel ADC measurements storing to MicroSD Card C++ program

written in semester 1

#include <Adafruit ADS1X15.h>
#include "FS.h"

#include "SD.h"

#include "SPI.h"

#include <iostream>

#include <string>

using namespace std;

// set up ADS1115
Adafruit ADS1115 ads;

volid writeFile(

}

fs::FS &fs,

const char * path,

const char * message

{

Serial.printf ("Writing file: %s\n", path);

File file = fs.open(path, FILE WRITE);

if (!file) {
Serial.println("Failed to open file for writing");
return;

}

if (file.print (message)) {
Serial.println("File written");
} else {

Serial.println("Write failed");

}

file.close () ;

void appendFile (

fs::FS &fs,

const char * path,

const float wvoltsO,

const float wvoltsl,

const float wvolts2,

const float volts3

{

Serial.printf ("Appending to file: %s\n", path);

String message = M------— oo

-———-\nAINO: "
+ String(volts0, 6) + "V\n"
+ "AINl: " + String(voltsl, 6) + "V\n"
+ "AIN2: " + String(volts2, 6) + "V\n"
+ "AIN3: " 4+ String(volts3, 6) + "V\n";

File file = fs.open(path, FILE APPEND);
if (!file) {
Serial.println("Failed to open file for appending");

108

return;

}

if (file.print (message)) {
Serial.println("Message appended");
} else {

Serial.println("Append failed");
}

file.close();

}

void setup (void)

{
Serial.begin(115200) ;

// set up SD card

if (!SD.begin()) {
Serial.println("Card Mount Failed");
return;

}

uint8 t cardType = SD.cardType();

if (cardType == CARD NONE) {
Serial.println("No SD card attached");
return;

}

// create the voltages text file
writeFile (
SD,
"/ADS1115 voltage measurements.txt",
"ADS1115 Voltage Values\n"
)i

if (lads.begin()) {
Serial.println("Failed to initialise ADS.");
while (1);

}

void loop (void)
{

intl6 t adcO, adcl, adc2, adc3;

float voltsO, voltsl, volts2, volts3;

adcO = ads.readADC SingleEnded ;
adcl ads.readADC SingleEnded
adc2 = ads.readADC SingleEnded
adc3 = ads.readADC SingleEnded

volts0 = ads.computeVolts (adcO)

voltsl = ads.computeVolts (adcl);

volts2 = ads.computeVolts)
)

volts3 = ads.computeVolts

adc?2
adc3

—~ e~~~

Serial.println("----------—-"-"—"—"—"—"——"—"—"—"—-" "~ ————

—=");

Serial.print ("AO: "); Serial.print(volts0); Serial.println("V");
Serial.print ("Al: "); Serial.print(voltsl); Serial.println("V");
Serial.print ("A2: "); Serial.print(volts2); Serial.println("V");
Serial.print ("A3: "); Serial.print(volts3); Serial.println("V");

109

appendFile (
SD,
"/ADS1115 voltage measurements.txt",
voltsO,
voltsl,
volts2,
volts3
);

delay (5);

110

Appendix 2: Arduino MCU Comparison Table

Platform Chip Operating | Flash SRAM | EEPROM | Clock Analogue Digital I/0 PCB Size | Weight | Wi-Fi Bluetooth | Price
Voltage Memory Speed Input Pins | Pins
Arduino Micro | ATmega32U4 5V 32KB 2.5KB 1KB 16MHz 12 20(7 13x48 13g n n €21.60
PWM) mm
Arduino Nano ATmega328 5v 32KB 2KB 1KB 16MHz 8 22 (6 18 x 45 78 n n €21.60
PWM) mm
Arduino Nano SAMD?21 Cortex®-MO+ | 3.3V 256KB 32KB None 48MHz 8 14 (11 18 x 45 5g y y €20.80
33 10T 32bit PWM) mm
Arduino Uno ATmega328P 5V 32KB 2KB 1KB 16MHz 6 14 (6 53 x 69 25g n n €24.00
Rev3 PWM) mm
Arduino Uno ATmega4809 5V 48KB 6,144B | 256B 16MHz 6 15 (5 53 x69 25g y v €46.70
WiFi Rev2 PWM) mm
Arduino Mega ATmega2560 5V 256KB 8KB 4KB 16MHz 16 54 (15 53 x102 378 n n €42.00
2560 Rev3 PWM) mm
Arduino MKR SAMD21 Cortex®-MO0+ | 3.3V 256KB 32KB None 48MHz 7 8(13 25x52 32g y y €33.50
WiFi 1010 32bit PWM) mm
Arduino STM32H747XI dual 3.3V 2MB 1MB None 480MHz 8 84 (10 25 x 66 30g y y €99.00
Portenta H7 Cortex®-M7+M4 32bit PWM) mm
Arduino Nano Dual-core 32-bit Arm 3.3V 2MB 264kB | None 133 MHz 8 14 (10 18 x 45 6g y y €20.16
RP2040 Cortex-MO+ processor on- (up to) PWM) mm
Connect chip
SRAM

Figure 113 - Table used for comparing the Arduino MCU models.

The Arduino Nano RP2040 Connect was found to be the most suited Arduino MCU for this project

111

Appendix 3: Raspberry Pi SBC Comparison Table

Platform Chip Operating RAM Clock Digital I/0 Pins | PCB Weight Wi-Fi Bluetooth Price
Voltage Speed Size (2.4GHz)

Raspberry Pi4 | Quad core 5V 1/2/4/8GB | 1.5GHz 40 49x 85 | 46g y(5GHz |y £40.00 (1GB
Cortex-A72 SDRAM mm too) RAM model)
(ARM v8) 64-
bit

Raspberry Pi Single core 3.3V 512MB 1GHz 40 30x65 | 16g n n £5

Zero (unpopulated) mm

Raspberry Pi Single core 3.3V 512MB 1GHz 40 30x65 | 16g y y (4.1 and £10

Zero W (unpopulated) mm BLE)

Raspberry Pi Quad-core 64- | 3.3V 512MB 1GHz 40 30x65 | 16g y y (4.2 and £14

Zero2 W bit Arm Cortex- (SDRAM) (unpopulated) mm BLE)
A53

Raspberry Pi Dual-core 32- 3.3V 264kB on- 133 MHz 26 (3 analogue | 21x51 | 10g y n £5

Pico WH bit Arm Cortex- chip SRAM (up to) inputs) mm

RP2040 MO+ processor

Microcontroller

Figure 114 - Table used for comparing the Raspberry Pi SBC models. The Raspberry Pi Zero 2 W was found to be the most suited Raspberry Pi SBC for this project

112

Appendix 4: Other Platforms Specifications

Teensy 4.1 Development Board [29]

ARM Cortex-M7 at 600 MHz

7936K Flash, 1024K RAM (512K tightly coupled), 4K EEPROM (emulated)
55 digital input/output pins, 35 PWM output pins

18 analogue input pins

8 serial, 3 SPI, 3 12C ports

1 SDIO (4-bit) native SD Card port

ESP8266 (ESP32) [30]

Processor: L106 32-bit RISC microprocessor core based on the Tensilica Diamond Standard
106Micro running at 80 or 160 MHz

32 KiB instruction, 80 KiB user data

IEEE 802.11 b/g/n Wi-Fi

17 GPIO pins

10-bit ADC (successive approximation ADC)

ESP32 [31]

CPU: Xtensa dual-core (or single-core) 32-bit LX6 microprocessor, operating at 160 or 240
MHz and performing at up to 600 DMIPS

Ultra-low power (ULP) co-processor

Memory: 320 KiB RAM, 448 KiB ROM

Wi-Fi: 802.11 b/g/n

Bluetooth: v4.2 BR/EDR and BLE (shares the radio with Wi-Fi)
34 x programmable GPIOs

12-bit SAR ADC up to 18 channels

2 x 8-bit DACs

10 x touch sensors (capacitive sensing GPIOs)

4 x SPI

BeagleBone Al [32]

Dual Arm® Cortex®-A15 microprocessor subsystem

1GB RAM and 16GB on-board eMMC flash with high-speed interface
Gigabit Ethernet, 2.4/5GHz WiFi, and Bluetooth

microHDMI

Zero-download out-of-box software experience with Debian GNU/Linux
£130

113

Appendix 5: Espressif ESP32-DevKitC Specifications [33]

ESP32-DevKitC &) ESPRESSIF

3V3 : GND
PU__ EN GP1023 [VSPI_MOSI
oD/ib SWP ADC1_0 'RTC GPIO36 & ESPRESSIF GP1022
op/ib NSNS ADC1_3 | RTC GPI039 ESP32-WROOM GPIO1 , UOTXD
op/io SWDET 2 ADC1_6 | RTC GP1034 ‘ GPI03 [UORXD
op/ib CWDET 2! ADC1_7 (RTC GPIO35 ‘ GPI021
on/i0 (32K XP | TOUCH9' ADC1_4 RTC GPI032 ‘ GND
on/ip (32K XN TOUCH8 ADC1_5 RTC .GPIO33 1 GP1019 VSPI_MISO] OD/IE
DAC_1 @QEECGIEIrS : GPI0O18 1 VSPLSCK T op/IE
). ADC2_9 ' RTC GPI026 b GPIO5 | VSPLLSS Y SDIO | OD/IE/WPU
op/ib | TOUCH7, ADC2_7 |RTC GPI027 GPIO17 OD/IE
V11 -3 TOUCH6 ADC2_6 RTC (GPIO14 GPIO16 OD/IE
(1) JB TOUCH5] ADC2_5 | RTC |GPIO12 < GPI04 | RTC | ADC2_0 (TOUCHO} 0D/IE/WPD
GND ' ! GPIO0 | RTC | ADC2_1 (TOUCH1, BOOT | OD/IE/WPU
(i« @ ADC2_4 ' TOUCH4 RTC GPIO13 : ~@ GPI02 |RTC | ADC2_2 (TOUCH2 OD/IE/WPD

[0o/iE/wpu B Y IRT GPI09 N 20 GPI015 RTC | ADC2_3 TOUCH3 B "} []¢)
! [GPI010 ‘ "STIE 3@ GPIO8 [}k !
| CEIED MDD (T = 20 GPI07 S [I o/i/weu]
5V0) =@ NAR GPI06 1 & ov/ie/weu]
ESP32 Specs
. ~/\,— PWM Capable Pi
32-bit Xtensae dual-core @240MHz > Gplo,:ﬁjtoenlym
Wi-Fi IEEE 802.11 b/g/n 2.4GHz @@Z[0® GPIO Input and Output
DAC_X Digital-to-Analog Converter WPU: Weak Pull-up (Internal)
BLuetooth 4.2 BR/EDR and BLE DEBUG JTAG for Debugging RTC Power Domain (VDD3P3_RTC) WPD: Weak Pull-down (Internal)
520 KB SRAM (16 KB for cache) FLASH" External Flash Memory (SPI) Ground . PU: Pull-up (External)
Analo -t0-Di italConverter m Power Rails (3V3 and SV) U= InputFnable (AftEfRGSGt)
448 KB ROM TOUCHX ToucthensoflnputChannel | PinShared with the Flash Memory ("l;! ’(’)’PUtDlz_abZ?ldzgergeset;
! % o utput nable ‘er Reset,
34 GPIOs, 4x SPI, 3x UART, 2x I2C, 114120 Other Related Functions i OD: Output Disabled (After Reset)
2x I2S, RMT, LED PWM, 1 host SD/eMMC/SDIO, SEITYW Serial for Debug/Programming
X Arduino Related Functions
1 slave SDIO/SPI, TWAIe, 12-bit ADC, Ethernet ST Strapping Pin Functions

Figure 115 - Photo to show the specifications and pinouts of the ESP32 devkit used in this project [33] 114

Appendix 6: Adafruit ADS1115 ADC Breakout Specifications [34]

e Supply voltage range: 2 — 5.5V

e Analogue input range: -0.3 — 5.3V (when using 5V Vdd supply)
e 16-bit ADC

e 4-channel inputs

e Continuous current consumption: 150uA

e |2Cinterface

e Internal Oscillator

e Programmable data rate: 8SPS to 860SPS

e 860 samples/second over 12C

n a..

Figure 118 - Photo taken of the ADA ADS1115 ADC being used in the project
prototype breadboard circuit

115

Appendix 7: Adafruit MicroSD Card Breakout Board+ Specifications [35]

e Onboard 5v -> 3v regulator provides 150mA for power-hungry cards

o 3y level shifting means you can use this with ease on either 3v or 5v systems

e Uses a proper level shifting chip, not resistors: fewer problems, and faster read/write access
e Use 3 or 4 digital pins to read and write 2Gb+ of storage

e Activity LED lights up when the SD card is being read or written

e 8 mounting holes and separate header

e Push-push socket with card slightly over the edge of the PCB

Figure 119 — Photo taken of the ADA MicroSD breakout being used in the project prototype
breadboard circuit

116

Appendix 8: U-Blox Neo-6m GPS Breakout Board Specifications [36]

e GPS Module GY-NEO6M NEO-6M + onboard Battery + EEPROM + Antenna + U.FL connector
e Highly configurable U-Blox Neo-6M module

e Onboard LDO 3.3v regulator

e EEPROM & Battery for faster GPS Lock

e (Can be configured to 5Hz update rate for better responsiveness

e The default baud rate is 9600 but can be changed

e Provided with an external antenna

e Can be used with the Arduino TinyGPS Library

e Standard NMEA and/or U-Blox UBX outputs

e 1PPS (1 Pulse per Second) output signal on the connector

~AB 7

NEO-6M-0-001
24232963770
1429

£300 2

| @ © ublosAG

=

m.
(=)
-\
X

<
N

Figure 120 — Photo taken of the ADA MicroSD breakout that will be used in the project prototype
breadboard circuit

117

Appendix 9: Final ESP32 Master C++ Code for ADC Readings, GPS, etc.

#include <Adafruit ADS1X15.h>

#include <Arduino.h>
#include <Wire.h>
#include <WireSlave.h>

#define I2C_SLAVE ADDR 0x04

Adafruit ADS1015 adsl;
Adafruit ADS1015 ads2;

// Required on ESP32 to put the ISR in IRAM.
#ifndef IRAM ATTR

#define IRAM ATTR

#endif

// Pointer to the timer
hw timer t *My timer = NULL;

volatile bool new data = false;
void IRAM ATTR onTimer () {
new data = true;

}

void setup(void)

{
// Set-up the timer interrupt and start it
My timer = timerBegin (0, 80, true);
timerAttachInterrupt (My timer, &onTimer, true);
timerAlarmWrite (My timer, 833, true);
timerAlarmEnable (My timer);

Serial.begin (2000000) ;

// ADS1015 ADCs
adsl.setDataRate (RATE ADS1015 3300SPS);
ads2.setbataRate (RATE ADS1015 3300SPS);

if (ladsl.begin(0x48)) {
Serial.println("Failed to initialize ADS1015 1.");
ESP.restart () ;

}

if (lads2.begin(0x49)) {
Serial.println("Failed to initialize ADS1015 2.");
ESP.restart () ;

}

// Start differential conversions.

adsl.startADCReading (ADS1X15 REG CONFIG MUX SINGLE O,
/*continuous=*/true) ;

ads2.startADCReading (ADS1X15 REG CONFIG MUX SINGLE O,
/*continuous=*/true);

// GPS serial setup
Serial2.begin (9600, SERIAL 8N1l, 16, 17); // set up GPS module
communication on 9600 baud

}

serial

118

void loop (void)

{
unsigned long startTime;
unsigned long timeTaken;

unsigned long prevPositiveZeroCrossing = micros();
unsigned long prevTime = micros();
static unsigned long lastWireTransmit = 0;

static byte x = 0;

int bufferSize = 400;
float sumSquareVoltages =
float sumSquareCurrents
float vrms = 0.0;

float irms = 0.0;

o O
o O
~.

~.

float avgScaledVRMS = 0.0;
float avgScaledIRMS = 0.0;
float scaledVoltage = 0.0;
float scaledCurrent = 0.0;

float scaledVRMS = 0.0;
float scaledIRMS = 0.0;

float scaledPower = 0.0;

float avgScaledPower = 0.0;
float timeElapsed = 0.0;

float energyConsumption = 0.0;
float faultCounter = 0.0;

float bufferV|ibufferSize];
float bufferC[bufferSize];
float bufferM[bufferSize];

float prevVoltage = 0.0;
float currentFrequency = 0.0;
float avgFrequency = 0.0;

int cycleCounter = 1; // used to count the number of full cycles that
have occurred for the running average frequency calculations

float fregMidPoint = 2.5;

float midPoint = 2.5;
float midPointAvg = 0.0;

float primarySideVoltagePeak = 11000.0;
float primarySideFaultCurrentPeak = 200.0;

boolean faultOccuring = false;
boolean prevFaultOccuring = false;
[/ —mmmmmmmmm— - gps syncing ---------------
// clear the serial
while (Serial2.available() > 0) {
Serial2.read();
delay(1l);

}

// wait for the start of a new second

119

while (Serial2.available() == 0) {

}

// warmup - starting at the exact start of a new second
for (int i = 0; 1 < 100 ; 1i++) {
while (!new data) {

}
adsl.getlLastConversionResults () ;
ads2.getlLastConversionResults () ;

}

startTime = millis();
// 1000 seconds
for (int 1 = 0; 1 < 1200000 ; i++) {

// Tries to send new data to the slave once per second

if (!new data && millis() - lastWireTransmit > 1000 && i > 100) {
// first create a WirePacker that will assemble a packet
WirePacker packer;
char values[2507];

// First row

dtostrf (scaledvVoltage, -10, 3, values);
packer.write (values);
packer.write(",");

dtostrf (scaledCurrent, -10, 3, wvalues);
packer.write (values);
packer.write(",");

dtostrf (currentFrequency, -10, 3, values);
packer.write (values);
packer.write (", ");

dtostrf (scaledPower, -10, 3, wvalues);
packer.write (values);
packer.write(",");

// Second row

dtostrf (avgScaledVRMS * sqrt(2), -10, 3, values); // avgScaledVoltage
packer.write (values);

packer.write(",");

dtostrf (avgScaledIRMS * sqrt(2), -10, 3, values); //
avgScaledCurrent

packer.write (values);

packer.write(",");

dtostrf (avgFrequency, -10, 3, values);
packer.write (values);
packer.write(",");

dtostrf (avgScaledPower, -10, 3, values);

packer.write (values) ;
packer.write(",");

120

// Third row

dtostrf (energyConsumption, -10, 3, values);
packer.write (values);

packer.write(",");

dtostrf (faultCounter, -10, 1, wvalues);
packer.write (values) ;
packer.write (", ");

dtostrf (timeElapsed, -10, 3, values);
packer.write (values) ;
packer.write(",");

dtostrf (midPoint, -10, 3, wvalues);
packer.write (values);
packer.write (", ");

// close the packet
packer.end();

// transmit the packed data
Wire.beginTransmission (I2C_SLAVE ADDR) ;
while (packer.available()) { // write every packet byte
int content = packer.read();
Wire.write (content);
}
Wire.endTransmission () ; // stop transmitting
lastWireTransmit = millis();

}

// waits until new data is taken from the ADC at each timer interrupt
while (!new data) {

}

intl6 t resultsADS1 = adsl.getLastConversionResults();
float voltage = adsl.computeVolts (resultsADS1);

intl6 t resultsADS2 = ads2.getlastConversionResults();
float current = ads2.computeVolts (resultsADS2);

if (i < bufferSize) {
// midPoint

midPointAvg = ((midPointAvg * i) + voltage) / (i + 1);
bufferM[i] midPoint;
// vrms

bufferv[i] = voltage - midPoint;
sumSquareVoltages += pow(voltage - midPoint, 2);
vrms = sqgrt (sumSquareVoltages / (i + 1));

// irms
bufferC[i] = current - midPoint;
sumSquareCurrents += pow(current - midPoint, 2);
irms = sqgrt (sumSquareCurrents / (i + 1));

} else {
int pos = 1 % bufferSize;
float oldM = bufferM[pos];

121

float oldVv buffervV[pos];
float 0ldC = bufferC[pos];

// midPoint

midPointAvg = ((midPointAvg * bufferSize) + voltage - (0oldV + oldM))
/ bufferSize;

midPoint = midPointAvg;

bufferM[pos] = midPoint;

// vrms

sumSquareVoltages = (pow(vrms, 2) * bufferSize) - pow(oldVv, 2) +
pow (voltage - midPoint, 2);

vrms = sqgrt (sumSquareVoltages / bufferSize);

bufferV[ipos] = voltage - midPoint;

// irms

sumSquareCurrents = (pow(irms, 2) * bufferSize) - pow(oldC, 2) +
pow (current - midPoint, 2);

irms = sqgrt (sumSquareCurrents / bufferSize);

bufferC[pos] = current - midPoint;

}

// scale the voltage and current values to the primary side values

scaledVRMS = (vrms * primarySideVoltagePeak) / sqgrt(2);

scaledVoltage = (scaledVRMS * sqrt(2)); // 11000V == 1.414V

scaledIRMS = (irms * primarySideFaultCurrentPeak) / sqgrt(2);

scaledCurrent = (scaledIRMS * sqgrt(2)); // 200A == 1.414V

scaledPower = scaledVoltage * scaledCurrent; // Watts

avgScaledPower = ((avgScaledPower * i) + scaledPower) / (1 + 1); //
Watts

avgScaledVRMS = ((avgScaledVRMS * i) + scaledVRMS) / (i + 1);

avgScaledIRMS = ((avgScaledIRMS * i) + scaledIRMS) / (i + 1);

/] ——mmmm e —— Frequency —---————-————————————————————

long currentTime = micros/();

// 1f at zero crossing (zero crossing from negative to positive
specifically)

if (prevVoltage <= fregMidPoint && voltage > fregMidPoint) ({

long trueZero = currentTime - ((currentTime - prevTime) * ((voltage -

fregMidPoint) / (voltage - prevVoltage))):;

currentFrequency = 1000000.0 / (trueZero - prevPositiveZeroCrossing);

if (4 > 100) ¢{
avgFrequency = ((avgFrequency * cycleCounter) + currentFrequency) /
(cycleCounter + 1);
cycleCounter++;
} else {
avgFrequency = currentFrequency;

}

prevPositiveZeroCrossing = trueZero;

}

// needs 100 samples warmup

122

if (1 > 100) {
// energy consumption
timeElapsed = (millis() - startTime) / 1000; // s
energyConsumption = avgScaledPower * timeElapsed / 3600000; // kWh

[/ —mmmmmmm e —— Fault Detection —-——--——-—--—--"---—————————
if (scaledCurrent >= 100.0) { // trip point set at 100A
faultOccuring = true;
} else if (scaledCurrent < 40.0) { // fault finished value boundary
set at 40 to ensure fault
faultOccuring = false; // has truly finished, rather
than recounting the same fault twice

}

// checks for the very start of a fault
if (prevFaultOccuring == false && faultOccuring == true) {
faultCounter++;

}

prevFaultOccuring = faultOccuring;

[/ mmmmm e — Plotting ——-—-—-=—=——-==="="="""="—"—"—"—————————
// Serial.print ("ScaledvVoltage:");

// Serial.print (scaledVoltage) ;

// Serial.print (" ");

//

// Serial.print ("ScaledCurrent:");

// Serial.print (scaledCurrent) ;

// Serial.print (" ");

//

// Serial.print ("Frequency:");

// Serial.print (currentFrequency) ;

// Serial.print (" ");

//

// Serial.print ("ScaledPower:");

// Serial.print (scaledPower, 3);

// Serial.print (" ");

//

// Serial.print ("AvgScaledVoltage:");

// Serial.print (avgScaledVRMS * sqrt(2));
// Serial.print (" ");

//

// Serial.print ("AvgScaledCurrent:");

// Serial.print (avgScaledIRMS * sqrt(2));
// Serial.print (" ");

//

// Serial.print ("AvgFrequency:") ;

// Serial.print (avgFrequency) ;

// Serial.print (™ ");

//

// Serial.print ("AvgPower:") ;

// Serial.print (avgScaledPower, 3);

// Serial.print (™ ");

//

// Serial.print ("EnergyConsumptionkWh:") ;
// Serial.print (energyConsumption) ;

// Serial.print ("™ ");

//

123

// Serial.print ("TimeElapsed:");

// Serial.print (timeElapsed) ;

// Serial.print ("™ ");

//

// Serial.print ("ScaledVRMS:") ;

// Serial.print (scaledVRMS) ;

// Serial.print ("™ ");

//

// Serial.print ("ScaledIRMS:");

// Serial.print (scaledIRMS) ;

// Serial.print ("™ ");

// Serial.print ("AvgScaledVRMS:") ;
// Serial.print (avgScaledVRMS) ;

// Serial.print ("™ ");

//

// Serial.print ("AvgScaledIRMS:") ;
// Serial.println(avgScaledIRMS) ;

Serial.print ("ADClVoltage:");
Serial.print (voltage);
Serial.print (" ");

Serial.print ("ADC2Current:");
Serial.print (current);

Serial.print (" ");
Serial.print ("FaultCounter:");
Serial.print (faultCounter);
Serial.print (" ");

Serial.print ("MidPoint:");
Serial.println(midPoint);

}

prevVoltage = voltage;

prevTime = currentTime;
new data = false;
}
timeTaken = millis() - startTime;

124

Appendix 10: Final ESP32 Slave C++ Code for storing to MicroSD card, hosting station
and AP web server, sending data to Spring Boot application pipeline for cloud website
and storage, etc.

#include <Arduino.h>
#include <Wire.h>
#include <WireSlave.h>
#include <string>
#include "FS.h"
#include "SD.h"
#include "SPI.h"
#include <WiFi.h>
#include <HTTPClient.h>
#include "time.h"

#include <ESPAsyncWebServer.h>

#define SDA_PIN 21
#define SCL_PIN 22
#define I2C SLAVE ADDR 0x04

// define prototypes for functions

void receiveEvent (int howMany) ;

void appendFile(fs::FS &fs, const char * path, String message);
void sendReadingsToBackend() ;

const
const

const
const

char *ssid = ""; // your local network ssid
char *password = ""; // your local network password

char *soft ap ssid = "SmartWirelessSensorAP";
char *soft ap password = "testpassword";

AsyncWebServer server (80);

const
const
const

float
float
float
float

float
float
float
float

float
float
float
float

char *ntpServer = "pool.ntp.org";
long gmtOffset sec = 0;
int daylightOffset sec = 3600;

voltage = 0.0;
current 0.0;
frequency = 0
.07

power = 0

.0;

avgVoltage = 0.0;
avgCurrent 0.0;
avgFrequency = 0
.0;

avgPower = 0

.0;

energyConsumption = 0.0;
faultCounter = 0.0;
timeElapsed = 0.0;
offset = 0.0;

void setup ()

{

Serial.begin (2000000) ;

// 12C
bool success = WireSlave.begin(SDA PIN, SCL_PIN, I2C SLAVE ADDR);

125

if (!success) {
Serial.println("I2C slave init failed");
ESP.restart ()

}

// microSD card
while (!SD.begin()) {
delay (100);
Serial.println("Failed to initialise microSD card - check that it's
inserted");
ESP.restart () ;
}

uint8 t cardType = SD.cardType();

if (cardType == CARD NONE) {
Serial.println("Invalid card type: none");
ESP.restart () ;

}

// Wi-Fi server mode

WiFi.mode (WIFI_MODE APSTA) ;
WiFi.softAP(soft ap ssid, soft ap password);
WiFi.begin(ssid, password);

// Connect to Wi-Fi network

Serial.println("Connecting");
unsigned long startTime = millis();

while (WiFi.status() != WL CONNECTED) ({
delay (500);
Serial.print(".");
if (millis() - startTime > 3000) {

Serial.println ("***WiFi Disconnected - Please try restarting the

ESP32***") ;
Serial.println ("The sensor readings are still available via the Smart

Wireless Sensor Access Point");
Serial.print ("Connect to the \"SmartWirelessSensorAP\" Access Point
on any device, then go to http://");
Serial.print (WiFi.softAPIP());
Serial.println("/readings");
break;
}
}

Serial.println("");
WireSlave.onReceive (receiveEvent) ;
// Time - Use Wi-Fi to syncronise the ESP32 time with this server (only

needs done on initialisation)
configTime (gmtOffset sec, daylightOffset sec, ntpServer);

// Wi-Fi Server and AP Server Setup
Serial.print ("ESP32 IP as soft AP: ");
Serial.println(WiFi.softAPIP());

Serial.print ("ESP32 IP on the WiFi network: ");
Serial.println(WiFi.localIP{());

server.on ("/readings", HTTP GET, [] (AsyncWebServerRequest * request) {

126

const char * format =

"Smart Wireless Sensor Measurements\n"

"Voltage: %.3fkVv\n"

"Current: %$.3fA\n"
"Frequency: %.3fHz\n"

"Power Consumption: %.3fkW\n"
"Average Voltage: %.3fkv\n"
"Average Current: %.3fA\n"
"Average Frequency: %.3fHz\n"
"Average Power Consumption: %.3fkW\n"
"Energy Consumption: %.3fkWh\n"
"Number of Faults: %.0f\n"

"Time Elapsed: %.0fs\n"

"Voltage Offset/Midpoint: %.3fv\n";

char message[450];
snprintf (

message,
450,
format,

voltage,
current,
frequency,
power,

avgVoltage,
avgCurrent,
avgFrequency,
avgPower,

energyConsumption,
faultCounter,
timeElapsed,
offset

)7

if (ON_STA FILTER(request)) {

}

}
)

request->send (200, "text/plain', message);

return;

else if (ON_AP FILTER(request)) {

request->send (200, "text/plain', message);

return;

server.begin();

}

void loop ()

{

WireSlave.update () ;
delay (1) ;

}

void sendReadingsToBackend () {
//Check WiFi connection status

if

(WiFi.status () == WL CONNECTED) ({

127

HTTPClient http;

char requestURL[250];
snprintf (

requestURL,

250,

"https://smart-wireless-sensor-
backend.nw.r.appspot.com/setReadings/%.3f,%.3f,%.3f,%.
// cloud server URL
"http://192.168.0.26:8081/setReadings/%$.3f,%.3f,%.3f,

£,%.3£,%.3£,%.3£,%.3£f",
//

3f,%.3f,

%

.3

f

4

%

o
°

.3

.3

£,

£,

5.3

5.3

£,%5.3£,%5.3£,%.3£,%5.3£,%.3£f,%.3f,%.3f",

voltage,
current,
frequency,
power,

avgVoltage,
avgCurrent,
avgFrequency,
avgPower,

energyConsumption,
faultCounter,
timeElapsed,
offset

);

String serverPath =

requestURL;

// local NPM server URL

// Your Domain name with URL path or IP address with path

http.begin(serverPath.c str());
Serial.print ("Sending GET request to:
Serial.println(serverPath.c str());

// Send HTTP GET request
int httpResponseCode =

if (httpResponseCode > 0) {

Serial.print ("HTTP Response code:
Serial.println (httpResponseCode) ;
http.getString();

String payload =
Serial.println(payload);
}
else {
Serial.print ("Error code:

}

// Free resources
http.end() ;
}

else {

Serial.println ("***WiFi Disconnected - Please try restarting the

ESP32%**") ;

http.GET () ;

")
Serial.println (httpResponseCode) ;

")

")

Serial.println("The sensor readings are still available via the Smart

Wireless Sensor Access Point");

Serial.print ("Connect to the \"SmartWirelessSensorAP\" Access Point on

any device, then go to http://");
Serial.print (WiFi.softAPIP());
Serial.println("/readings");

}

128

void receiveEvent (int howMany)

{

String s = "";
while (WireSlave.available())
message
{
char ch = WireSlave.read():;
s += ch;

}

// Serial.println(s);

int commaCount = 0;

int start = 0;

for (int 1 = 0; 1 < s.length();
char ch = s.charAt(i);
if (ch == "',") {

float floatValue = s.substring(start,

switch (commaCount) {
case 0:

// loop through every byte in the I2C

i++) |

i) .toFloat () ;

voltage = floatValue / 1000.0;

break;
case 1:

current = floatValue;

break;
case 2:

frequency = floatValue;

break;
case 3:

power = floatValue / 1000.0;

break;

case 4:
avgVoltage
break;

case 5:
avgCurrent
break;

case 6:

floatValue / 1000.0;

floatValue;

avgFrequency = floatValue;

break;
case 7:

avgPower = floatValue / 1000.0;

break;

case 8:

energyConsumption = floatValue;

break;
case 9:

faultCounter = floatValue;

break;
case 10:

timeElapsed = floatValue;

break;

case 11:
offset = floatValue;
break;

129

}
start = 1 + 1;
commaCount++;

const char * format =

"Voltage: %.3fkvV\n"

"Current: %.3

"Frequency: %.3fHz\n"

"Power Consumption: %.3fkW\n"
"Average Voltage: %.3fkv\n"
"Average Current: %.3fA\n"
"Average Frequency: %.3fHz\n"
"Average Power Consumption: %.3fkW\n"
"Energy Consumption: %.3fkWh\n"
"Number of Faults: %.0f\n"

"Time Elapsed: %.0fs\n"

"Voltage Offset/Midpoint: %.3fv\n";

char message[450];
snprintf (
message, 450, format,

voltage,
current,
frequency,
power,

avgVoltage,
avgCurrent,
avgFrequency,
avgPower,

energyConsumption,
faultCounter,
timeElapsed,
offset

);

struct tm timeinfo;

char dateTimeString[] = "/Smart Wireless Sensor Readings.txt";

if (getLocalTime (&timeinfo)) |
strftime (
dateTimeString,
100,
"/%d%B%Y S$HSM.txt",
&timeinfo
) ;
} else {
Serial.println("Failed to obtain time,
Smart Wireless Sensor Readings.txt file");

}

const char * path = dateTimeString;
appendFile (SD, path, message);

sendReadingsToBackend () ;

appending to

130

void appendFile (
fs::FS &fs,
const char * path,
String message

) A

File file = fs.open(path, FILE APPEND);

if (!file) {
Serial.println("Text file could not be appended to or created");
return;

}

Serial.print (message) ;
if (!file.print (message)) {
Serial.println("***File append failed: Check that microSD card has been
inserted, then reboot***");

}

file.close();

131

Appendix 11: MATLAB simulation to validate the true frequency and vrms algorithms

that

clea
clc;

fs
dt

f =
cycl

stop

tota
for

end

for

end
plot

hold

are run on the master ESP32

r all;

1200; % sampling frequency
1/fs; % seconds per sample

[49.97, 49.98, 49.97];
es = [50, 150, 70];

TimeTotal = 0;

1Samples = 1;

i = 1:1length(f)

stopTimes(i) = cycles(i) / f(i);

samples(i) = stopTimes(i) * fs;

stopTimeTotal = stopTimeTotal + stopTimes(i);
totalSamples = totalSamples + samples(i);

(0:dt:stopTimeTotal);

i = 1:totalSamples

if (i <= samples(1l) + 1)
y(i) = sgqrt(2) * sin(2 * pi * (1) * t(i));
yTrue(i) = f(1);

elseif (i <= samples(1l) + samples(2) + 1)
y(i) = sqrt(2) * sin(2 * pi * £(2) * t(i));
yTrue(i) = f(2);

elseif (i <= samples(l) + samples(2) + samples(3) + 1)
y(i) = sgrt(2) * sin(2 * pi * f(3) * t(i));
yTrue(i) = f(3);

end

(t, y);

on

prevVoltage = 0.0;
prevTime = 0.0;
currentFrequency = 0.0;
disp(currentFrequency)

midPoint = ©;
prevPositiveZeroCrossing = -1;

buffer = y(1:24);
disp(buffer);

sumsS
for

end
vrms

quareVoltages = 9;

i = 1:1length(buffer)

sumSquareVoltages = sumSquareVoltages + buffer(i)~2;
disp(sumSquareVoltages);

vrmsPlot(i) = 0;

= sqrt(sumSquareVoltages / length(buffer));

132

for i = 1:1length(y)
voltage = y(i);
currentTime = t(i);

% VRMS
if (i > length(buffer))

pos = mod(i-1, length(buffer)) + 1;
old = buffer(pos);
new = y(i);

sumSquareVoltages = (vrms*2 * length(buffer)) - o0ld"2 + new"2;
vrms = sqrt(sumSquareVoltages/length(buffer));
buffer(pos) = y(i);

disp(round(vrms,3)); % 3dp
vrmsPlot(i) = vrms;
end

% Frequency
if (prevVoltage <= midPoint && voltage > midPoint)
trueZero = currentTime - ((currentTime - prevTime) * ((voltage - midPoint)
/ (voltage - prevVoltage)));

currentFrequency = 1 / (trueZero - prevPositiveZeroCrossing);
if (i > 100)
disp(round(currentFrequency, 3)); % 3dp
end
prevPositiveZeroCrossing = trueZero;
end
frequenciesPlot(i) = currentFrequency;
prevVoltage = voltage;

prevTime = currentTime;
end

plot(t,frequenciesPlot)
hold on

plot(t, yTrue)

hold on

plot(t, vrmsPlot)
disp("length(t)");
disp(length(t));

disp("length(yTrue)");
disp(length(yTrue));

133

Appendix 12: Backend Spring Boot Java Application
SensorController.java file

package com.sam.ross.sensor.contoller;

import com.sam.ross.sensor.objects.SensorData;

import lombok.extern.slf4dj.S1f47;

import org.springframework.http.ResponseEntity;

import org.springframework.web.bind.annotation.CrossOriging;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RestController;

@RestController
// specifies that should only accept HTTP requests received from the React
JS web URL
@CrossOrigin(origins = {"https://smart-wireless-sensor-
backend.nw.r.appspot.com/"})
//@CrossOrigin // uncomment to enable HTTP requests from any origin
@S1f47
public class SensorController {
double voltage = 0.0;
double current = 0.0;
double frequency = 0.0;
double avgVoltage = 0.0
double avgCurrent = 0.0;
double avgFrequency = 0
double timeElapsed = 0.0;
double power = 0.0;
double avgPower = 0.0;
double energyConsumption = 0.0;
double offset = 0.0;
double faultCounter = 0.0;

@GetMapping ("/setReadings/{data}")
public ResponseEntity<String> setValues (CPathVariable String data) {
log.info ("setValues endpoint has received a request (controller)"™);

String[] values = data.split(",");

for (String value: values) {
if (value.equals("nan")) {
return ResponseEntity.ok("\"nan value received\"");

}

’

voltage = Double.parseDouble(values[0]
current = Double.parseDouble(values|[1]
frequency = Double.parseDouble (values|
power = Double.parseDouble(values[3]);
avgVoltage = Double.parseDouble(values[4])
avgCurrent = Double.parseDouble(values[5])
avgFrequency = Double.parseDouble(values|[6
avgPower = Double.parseDouble(values[7]);
energyConsumption = Double.parseDouble(values[8]);
faultCounter = Double.parseDouble(values[9]);
timeElapsed = Double.parseDouble(values[10]);

)
)7
21);

’

1)

134

offset = Double.parseDouble(values[1l1l]);

return ResponseEntity.ok("Success: " + data);

}

@GetMapping ("/getReadings")
public ResponseEntity<SensorData> getValues () {
log.info ("getValues endpoint has received a request (controller)");

SensorData sensorData = SensorData.builder()
.voltage (voltage)
.current (current)
.frequency (frequency)
.avgVoltage (avgVoltage)
.avgCurrent (avgCurrent)
.avgFrequency (avgFrequency)
.timeElapsed(timeElapsed)
.power (power)
.avgPower (avgPower)
.energyConsumption (energyConsumption)
.offset (offset)
.faultCounter (faultCounter)
.build();

return ResponseEntity.ok(sensorData);

}

@CrossOrigin // ping requests accepted from any origin
@GetMapping ("/ping")
public ResponseEntity<String> ping() {

log.info ("ping endpoint has received a request (controller)");

return ResponseEntity.ok ("pong");

135

SensorData.java file

package com.sam.ross.sensor.objects;

import lombok.AllArgsConstructor;
import lombok.Builder;
import lombok.Getter;
import lombok.NoArgsConstructor;

@Getter
@Builder

@NoArgsConstructor

@AllArgsConstructor

public class SensorData {

private
private
private
private
private
private
private
private
private
private
private
private

double
double
double
double
double
double
double
double
double
double
double
double

voltage;
current;
frequency;
power;
avgVoltage;
avgCurrent;
avgFrequency;
avgPower;
energyConsumption;
faultCounter;
timeElapsed;
offset;

136

Appendix 13: React JS Website Application

index.js — The main ReactlS JavaScript file

import React from 'react’;
import ReactDOM from ‘'react-dom/client’;
import './index.css';

class MainWrapper extends React.Component {
constructor(props) {
super(props);
this.state = {
baseUrl: "http://192.168.0.26:8081/getReadings"”,
// baseUrl: "https://smart-wireless-sensor-
backend.nw.r.appspot.com/getReadings",

voltage: 0.0,
current: 0.0,
frequency: 0.0,
power: 0.0,

avgVoltage: 0.9,
avgCurrent: 0.0,
avgFrequency: 0.0,
avgPower: 0.0,

energyConsumption: 0.0,
numberOfFaults: 0,
timeElapsed: 0.0,
offset: 0.0,

demo: "demo-on",
counter: 0,

// alphabetical here for handy alignment with chrome dev tools for
obtaining demo values

demoAvgCurrent: [18.601, 18.599, 18.598, 18.596, 18.596],

demoAvgFrequency: [49.707, 49.714, 49.701, 49.705, 49.717],

demoAvgPower: [198.121, 198.119, 198.079, 198.032, 198.066],

demoAvgVoltage: [10.651, 10.650, 10.648, 10.651, 10.654],

demoCurrent: [18.598, 18.596, 18.596, 18.601, 18.599],

demoFrequency: [49.701, 49.705, 49.717, 49.707, 49.714],

demoOffset: [2.497, 2.483, 2.5, 2.484, 2.497],

demoPower: [198.032, 198.066, 198.121, 198.119, 198.079],

demoTimeElapsed: 1,

demoVoltage: [10.648, 10.651, 10.654, 10.651, 10.650],

137

prevResultTimeElapsed: 0.0,
sameReadingsCounter: 0,
s
¥

componentDidMount = () => {
this.myTimer = setInterval(() => {
this.getReadings();
}, 1000);

}

componentWillUnmount = () => {
clearInterval(this.myTimer);

}

getReadings() {
fetch(this.state.baseUrl)
.then((res) => {
if (res.status >= 400 || res.status === 204) {
this.setDemoValues();
throw new Error(res.status);

}

return res.json();
}
.then(
(result) => {
console.log(result);
let demoResult = "demo-off";
let updatedSameReadingsCounter = this.state.sameReadingsCounter + 1;
if (result.timeElapsed !== this.state.prevResultTimeElapsed) {
updatedSameReadingsCounter = 0;

}

this.setState({
sameReadingsCounter: updatedSameReadingsCounter

})s

if (this.state.sameReadingsCounter > 7) {
this.setDemoValues();

demoResult = "demo-on";

} else {
if (result.timeElapsed === this.state.prevResultTimeElapsed) {
}

this.setState({
voltage: result.voltage,
current: result.current,
frequency: result.frequency,

138

power: result.power,

avgVoltage: result.avgVoltage,
avgCurrent: result.avgCurrent,
avgFrequency: result.avgFrequency,
avgPower: result.avgPower,

energyConsumption: result.energyConsumption,
numberOfFaults: result.faultCounter,
timeElapsed: result.timeElapsed,

offset: result.offset,

demoTimeElapsed: result.timeElapsed,
demo: demoResult,

prevResultTimeElapsed: result.timeElapsed,

})
}
¥
(error) => {
console.log("Unexpected error returned:
this.setDemoValues();

+ error. message) >

}

setDemoValues() {
let count = this.state.counter;
this.setState({
demoTimeElapsed: this.state.demoTimeElapsed + 1,
demoEnergyConsumption: this.state.demoEnergyConsumption + ©.055023167,

1)

// reset demo state every 24 hours
if (this.state.demoTimeElapsed === 86401) {
this.setState({
demoTimeElapsed: 0,
demoEnergyConsumption: 0,

1)
}

this.setState({
voltage: this.state.demoVoltage[count % 5],
current: this.state.demoCurrent[count % 5],
frequency: this.state.demoFrequency[count % 5],
power: this.state.demoPower[count % 5],

139

avgVoltage: this.state.demoAvgVoltage[count % 5],
avgCurrent: this.state.demoAvgCurrent[count % 5],
avgFrequency: this.state.demoAvgFrequency[count % 5],
avgPower: this.state.demoAvgPower[count % 5],

energyConsumption: this.state.demoAvgPower[count % 5] *
this.state.demoTimeElapsed / 3600.0,

timeElapsed: this.state.demoTimeElapsed,

offset: this.state.demoOffset[count % 5],

counter: count + 1,

demo: "demo-on"

1)
}

render() {
return (
<div className="container">
<header className="header">
<hl className="headerl">Smart Wireless Sensor Readings</h1l>
</header>

<div className="section-middle">
<div className='outer-row'>
<div className="row">
<div className="readings">
<p>Voltage:</p>
</div>
<div className="readings">
<p>Current:</p>
</div>
<div className="readings">
<p>Frequency:</p>
</div>
<div className="readings">
<p>Power:</p>
</div>
</div>

<div className="row">

<div className="readings">
<p>{this.state.voltage.toFixed(3)}kV</p>

</div>

<div className="readings">
<p>{this.state.current.toFixed(3)}A</p>

</div>

<div className="readings">
<p>{this.state.frequency.toFixed(3)}Hz</p>

140

</div>
<div className="readings">
<p>{this.state.power.toFixed(3)}kW</p>
</div>
</div>
</div>

<div className='outer-row'>
<div className="row">
<div className="readings">
<p>Avg Voltage:</p>
</div>
<div className="readings">
<p>Avg Current:</p>
</div>
<div className="readings">
<p>Avg Frequency:</p>
</div>
<div className="readings">
<p>Avg Power:</p>
</div>
</div>

<div className="row">
<div className="readings">
<p>{this.state.avgVoltage.toFixed(3)}kv</p>
</div>
<div className="readings">
<p>{this.state.avgCurrent.toFixed(3)}A</p>
</div>
<div className="readings">
<p>{this.state.avgFrequency.toFixed(3)}Hz</p>
</div>
<div className="readings">
<p>{this.state.avgPower.toFixed(3)}kW</p>
</div>
</div>
</div>

<div className='outer-row'>
<div className="row">

<div className="readings" id='readings'>
<p>Energy Consumption:</p>

</div>

<div className="readings" id='readings'>
<p>Number of Faults:</p>

</div>

<div className="readings" id='readings'>

141

<p>Time Elapsed:</p>
</div>
<div className="readings" id='readings'>
<p>Offset/midpoint:</p>
</div>
</div>

<div className="row">
<div className="readings" id='readings'>
<p>{this.state.energyConsumption.toFixed(3)}kWh</p>
</div>
<div className="readings" id='readings'>
<p>{this.state.numberOfFaults}</p>
</div>
<div className="readings" id='readings'>
<p>{this.state.timeElapsed}s</p>
</div>
<div className="readings" id='readings'>
<p>{this.state.offset.toFixed(3)}V</p>
</div>
</div>
</div>
</div>

<header className="header">
<div className={this.state.demo