-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_generator.py
667 lines (550 loc) · 33.4 KB
/
train_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
import torch
import torch.nn as nn
from torch.nn import functional as F
from torchvision.utils import make_grid as make_image_grid
import argparse
import os
import time
from cp_dataset import CPDataset, CPDataLoader
from cp_dataset_test import CPDatasetTest
from networks import ConditionGenerator, VGGLoss, load_checkpoint, save_checkpoint, make_grid
from network_generator import SPADEGenerator, MultiscaleDiscriminator, GANLoss
from sync_batchnorm import DataParallelWithCallback
from tensorboardX import SummaryWriter
from utils import create_network, visualize_segmap
import sys
from tqdm import tqdm
import numpy as np
from torch.utils.data import Subset
from torchvision.transforms import transforms
import eval_models as models
import torchgeometry as tgm
def remove_overlap(seg_out, warped_cm):
assert len(warped_cm.shape) == 4
warped_cm = warped_cm - (torch.cat([seg_out[:, 1:3, :, :], seg_out[:, 5:, :, :]], dim=1)).sum(dim=1, keepdim=True) * warped_cm
return warped_cm
def get_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--name', type=str, required=True)
parser.add_argument('--gpu_ids', type=str, default='0')
parser.add_argument('-j', '--workers', type=int, default=4)
parser.add_argument('-b', '--batch_size', type=int, default=8)
parser.add_argument('--fp16', action='store_true', help='use amp')
parser.add_argument("--dataroot", default="./data/")
parser.add_argument("--datamode", default="train")
parser.add_argument("--data_list", default="train_pairs.txt")
parser.add_argument("--fine_width", type=int, default=768)
parser.add_argument("--fine_height", type=int, default=1024)
parser.add_argument("--radius", type=int, default=20)
parser.add_argument("--grid_size", type=int, default=5)
parser.add_argument('--tensorboard_dir', type=str, default='tensorboard', help='save tensorboard infos')
parser.add_argument('--checkpoint_dir', type=str, default='checkpoints', help='save checkpoint infos')
parser.add_argument('--tocg_checkpoint', type=str, help='condition generator checkpoint')
parser.add_argument('--gen_checkpoint', type=str, default='', help='gen checkpoint')
parser.add_argument('--dis_checkpoint', type=str, default='', help='dis checkpoint')
parser.add_argument("--tensorboard_count", type=int, default=100)
parser.add_argument("--display_count", type=int, default=100)
parser.add_argument("--save_count", type=int, default=10000)
parser.add_argument("--load_step", type=int, default=0)
parser.add_argument("--keep_step", type=int, default=100000)
parser.add_argument("--decay_step", type=int, default=100000)
parser.add_argument("--shuffle", action='store_true', help='shuffle input data')
# test
parser.add_argument("--lpips_count", type=int, default=1000)
parser.add_argument("--test_datasetting", default="paired")
parser.add_argument("--test_dataroot", default="./data/")
parser.add_argument("--test_data_list", default="test_pairs.txt")
# Hyper-parameters
parser.add_argument('--G_lr', type=float, default=0.0001, help='initial learning rate for adam')
parser.add_argument('--D_lr', type=float, default=0.0004, help='initial learning rate for adam')
# SEAN-related hyper-parameters
parser.add_argument('--GMM_const', type=float, default=None, help='constraint for GMM module')
parser.add_argument('--semantic_nc', type=int, default=13, help='# of input label classes without unknown class')
parser.add_argument('--gen_semantic_nc', type=int, default=7, help='# of input label classes without unknown class')
parser.add_argument('--norm_G', type=str, default='spectralaliasinstance', help='instance normalization or batch normalization')
parser.add_argument('--norm_D', type=str, default='spectralinstance', help='instance normalization or batch normalization')
parser.add_argument('--ngf', type=int, default=64, help='# of gen filters in first conv layer')
parser.add_argument('--ndf', type=int, default=64, help='# of discrim filters in first conv layer')
parser.add_argument('--num_upsampling_layers', choices=['normal', 'more', 'most'], default='most',
help='If \'more\', add upsampling layer between the two middle resnet blocks. '
'If \'most\', also add one more (upsampling + resnet) layer at the end of the generator.')
parser.add_argument('--init_type', type=str, default='xavier', help='network initialization [normal|xavier|kaiming|orthogonal]')
parser.add_argument('--init_variance', type=float, default=0.02, help='variance of the initialization distribution')
parser.add_argument('--no_ganFeat_loss', action='store_true', help='if specified, do *not* use discriminator feature matching loss')
parser.add_argument('--no_vgg_loss', action='store_true', help='if specified, do *not* use VGG feature matching loss')
parser.add_argument('--lambda_l1', type=float, default=1.0, help='weight for feature matching loss')
parser.add_argument('--lambda_feat', type=float, default=10.0, help='weight for feature matching loss')
parser.add_argument('--lambda_vgg', type=float, default=10.0, help='weight for vgg loss')
# D
parser.add_argument('--n_layers_D', type=int, default=3, help='# layers in each discriminator')
parser.add_argument('--netD_subarch', type=str, default='n_layer', help='architecture of each discriminator')
parser.add_argument('--num_D', type=int, default=2, help='number of discriminators to be used in multiscale')
# Training
parser.add_argument('--GT', action='store_true')
parser.add_argument('--occlusion', action='store_true')
# tocg
# network
parser.add_argument("--warp_feature", choices=['encoder', 'T1'], default="T1")
parser.add_argument("--out_layer", choices=['relu', 'conv'], default="relu")
parser.add_argument("--clothmask_composition", type=str, choices=['no_composition', 'detach', 'warp_grad'], default='warp_grad')
# visualize
parser.add_argument("--num_test_visualize", type=int, default=3)
opt = parser.parse_args()
# set gpu ids
str_ids = opt.gpu_ids.split(',')
opt.gpu_ids = []
for str_id in str_ids:
id = int(str_id)
if id >= 0:
opt.gpu_ids.append(id)
if len(opt.gpu_ids) > 0:
torch.cuda.set_device(opt.gpu_ids[0])
assert len(opt.gpu_ids) == 0 or opt.batch_size % len(opt.gpu_ids) == 0, \
"Batch size %d is wrong. It must be a multiple of # GPUs %d." \
% (opt.batch_size, len(opt.gpu_ids))
return opt
def train(opt, train_loader, test_loader, test_vis_loader, board, tocg, generator, discriminator, model):
"""
Train Generator
"""
# Model
if not opt.GT:
tocg.cuda()
tocg.eval()
generator.train()
discriminator.train()
model.eval()
# criterion
if opt.fp16:
criterionGAN = GANLoss('hinge', tensor=torch.cuda.HalfTensor)
else:
criterionGAN = GANLoss('hinge', tensor=torch.cuda.FloatTensor)
# criterionL1 = nn.L1Loss()
criterionFeat = nn.L1Loss()
criterionVGG = VGGLoss()
# optimizer
optimizer_gen = torch.optim.Adam(generator.parameters(), lr=opt.G_lr, betas=(0, 0.9))
scheduler_gen = torch.optim.lr_scheduler.LambdaLR(optimizer_gen, lr_lambda=lambda step: 1.0 -
max(0, step * 1000 + opt.load_step - opt.keep_step) / float(opt.decay_step + 1))
optimizer_dis = torch.optim.Adam(discriminator.parameters(), lr=opt.D_lr, betas=(0, 0.9))
scheduler_dis = torch.optim.lr_scheduler.LambdaLR(optimizer_dis, lr_lambda=lambda step: 1.0 -
max(0, step * 1000 + opt.load_step - opt.keep_step) / float(opt.decay_step + 1))
if opt.fp16:
if not opt.GT:
from apex import amp
[tocg, generator, discriminator], [optimizer_gen, optimizer_dis] = amp.initialize(
[tocg, generator, discriminator], [optimizer_gen, optimizer_dis], opt_level='O1', num_losses=2)
else:
from apex import amp
[generator, discriminator], [optimizer_gen, optimizer_dis] = amp.initialize(
[generator, discriminator], [optimizer_gen, optimizer_dis], opt_level='O1', num_losses=2)
if len(opt.gpu_ids) > 0:
if not opt.GT:
tocg = DataParallelWithCallback(tocg, device_ids=opt.gpu_ids)
generator = DataParallelWithCallback(generator, device_ids=opt.gpu_ids)
discriminator = DataParallelWithCallback(discriminator, device_ids=opt.gpu_ids)
criterionGAN = DataParallelWithCallback(criterionGAN, device_ids=opt.gpu_ids)
criterionFeat = DataParallelWithCallback(criterionFeat, device_ids=opt.gpu_ids)
criterionVGG = DataParallelWithCallback(criterionVGG, device_ids=opt.gpu_ids)
upsample = torch.nn.Upsample(scale_factor=4, mode='bilinear')
gauss = tgm.image.GaussianBlur((15, 15), (3, 3))
gauss = gauss.cuda()
for step in tqdm(range(opt.load_step, opt.keep_step + opt.decay_step)):
iter_start_time = time.time()
inputs = train_loader.next_batch()
# input
agnostic = inputs['agnostic'].cuda()
parse_GT = inputs['parse'].cuda()
pose = inputs['densepose'].cuda()
parse_cloth = inputs['parse_cloth'].cuda()
parse_agnostic = inputs['parse_agnostic'].cuda()
pcm = inputs['pcm'].cuda()
cm = inputs['cloth_mask']['paired'].cuda()
c_paired = inputs['cloth']['paired'].cuda()
# target
im = inputs['image'].cuda()
with torch.no_grad():
if not opt.GT:
# Warping Cloth
# down
pre_clothes_mask_down = F.interpolate(cm, size=(256, 192), mode='nearest')
input_parse_agnostic_down = F.interpolate(parse_agnostic, size=(256, 192), mode='nearest')
clothes_down = F.interpolate(c_paired, size=(256, 192), mode='bilinear')
densepose_down = F.interpolate(pose, size=(256, 192), mode='bilinear')
# multi-task inputs
input1 = torch.cat([clothes_down, pre_clothes_mask_down], 1)
input2 = torch.cat([input_parse_agnostic_down, densepose_down], 1)
# forward
flow_list, fake_segmap, _, warped_clothmask_paired = tocg(input1, input2)
# warped cloth mask one hot
warped_cm_onehot = torch.FloatTensor((warped_clothmask_paired.detach().cpu().numpy() > 0.5).astype(np.float)).cuda()
if opt.clothmask_composition != 'no_composition':
if opt.clothmask_composition == 'detach':
cloth_mask = torch.ones_like(fake_segmap)
cloth_mask[:,3:4, :, :] = warped_cm_onehot
fake_segmap = fake_segmap * cloth_mask
if opt.clothmask_composition == 'warp_grad':
cloth_mask = torch.ones_like(fake_segmap)
cloth_mask[:,3:4, :, :] = warped_clothmask_paired
fake_segmap = fake_segmap * cloth_mask
# warped cloth
N, _, iH, iW = c_paired.shape
grid = make_grid(N, iH, iW)
flow = F.interpolate(flow_list[-1].permute(0, 3, 1, 2), size=(iH, iW), mode='bilinear').permute(0, 2, 3, 1)
flow_norm = torch.cat([flow[:, :, :, 0:1] / ((96 - 1.0) / 2.0), flow[:, :, :, 1:2] / ((128 - 1.0) / 2.0)], 3)
warped_grid = grid + flow_norm
warped_cloth_paired = F.grid_sample(c_paired, warped_grid, padding_mode='border').detach()
warped_clothmask = F.grid_sample(cm, warped_grid, padding_mode='border')
# make generator input parse map
fake_parse_gauss = gauss(F.interpolate(fake_segmap, size=(iH, iW), mode='bilinear'))
fake_parse = fake_parse_gauss.argmax(dim=1)[:, None]
# occlusion
if opt.occlusion:
warped_clothmask = remove_overlap(F.softmax(fake_parse_gauss, dim=1), warped_clothmask)
warped_cloth_paired = warped_cloth_paired * warped_clothmask + torch.ones_like(warped_cloth_paired) * (1-warped_clothmask)
warped_cloth_paired = warped_cloth_paired.detach()
# region_mask = parse[:, 2:3] - warped_cm
# region_mask[region_mask < 0.0] = 0.0
# parse_rn = torch.cat((parse, region_mask), dim=1)
# parse_rn[:, 2:3] -= region_mask
else:
# parse pre-process
fake_parse = parse_GT.argmax(dim=1)[:, None]
warped_cloth_paired = parse_cloth
old_parse = torch.FloatTensor(fake_parse.size(0), 13, opt.fine_height, opt.fine_width).zero_().cuda()
old_parse.scatter_(1, fake_parse, 1.0)
labels = {
0: ['background', [0]],
1: ['paste', [2, 4, 7, 8, 9, 10, 11]],
2: ['upper', [3]],
3: ['hair', [1]],
4: ['left_arm', [5]],
5: ['right_arm', [6]],
6: ['noise', [12]]
}
parse = torch.FloatTensor(fake_parse.size(0), 7, opt.fine_height, opt.fine_width).zero_().cuda()
for i in range(len(labels)):
for label in labels[i][1]:
parse[:, i] += old_parse[:, label]
parse = parse.detach()
# --------------------------------------------------------------------------------------------------------------
# Train the generator
# --------------------------------------------------------------------------------------------------------------
output_paired = generator(torch.cat((agnostic, pose, warped_cloth_paired), dim=1), parse)
fake_concat = torch.cat((parse, output_paired), dim=1)
real_concat = torch.cat((parse, im), dim=1)
pred = discriminator(torch.cat((fake_concat, real_concat), dim=0))
# the prediction contains the intermediate outputs of multiscale GAN,
# so it's usually a list
if type(pred) == list:
pred_fake = []
pred_real = []
for p in pred:
pred_fake.append([tensor[:tensor.size(0) // 2] for tensor in p])
pred_real.append([tensor[tensor.size(0) // 2:] for tensor in p])
else:
pred_fake = pred[:pred.size(0) // 2]
pred_real = pred[pred.size(0) // 2:]
G_losses = {}
G_losses['GAN'] = criterionGAN(pred_fake, True, for_discriminator=False)
if not opt.no_ganFeat_loss:
num_D = len(pred_fake)
GAN_Feat_loss = torch.cuda.FloatTensor(len(opt.gpu_ids)).zero_()
for i in range(num_D): # for each discriminator
# last output is the final prediction, so we exclude it
num_intermediate_outputs = len(pred_fake[i]) - 1
for j in range(num_intermediate_outputs): # for each layer output
unweighted_loss = criterionFeat(pred_fake[i][j], pred_real[i][j].detach())
GAN_Feat_loss += unweighted_loss * opt.lambda_feat / num_D
G_losses['GAN_Feat'] = GAN_Feat_loss
if not opt.no_vgg_loss:
G_losses['VGG'] = criterionVGG(output_paired, im) * opt.lambda_vgg
loss_gen = sum(G_losses.values()).mean()
optimizer_gen.zero_grad()
if opt.fp16:
with amp.scale_loss(loss_gen, optimizer_gen, loss_id=0) as loss_gen_scaled:
loss_gen_scaled.backward()
else:
loss_gen.backward()
optimizer_gen.step()
# --------------------------------------------------------------------------------------------------------------
# Train the discriminator
# --------------------------------------------------------------------------------------------------------------
with torch.no_grad():
output = generator(torch.cat((agnostic, pose, warped_cloth_paired), dim=1), parse)
output = output.detach()
output.requires_grad_()
fake_concat = torch.cat((parse, output), dim=1)
real_concat = torch.cat((parse, im), dim=1)
pred = discriminator(torch.cat((fake_concat, real_concat), dim=0))
# the prediction contains the intermediate outputs of multiscale GAN,
# so it's usually a list
if type(pred) == list:
pred_fake = []
pred_real = []
for p in pred:
pred_fake.append([tensor[:tensor.size(0) // 2] for tensor in p])
pred_real.append([tensor[tensor.size(0) // 2:] for tensor in p])
else:
pred_fake = pred[:pred.size(0) // 2]
pred_real = pred[pred.size(0) // 2:]
D_losses = {}
D_losses['D_Fake'] = criterionGAN(pred_fake, False, for_discriminator=True)
D_losses['D_Real'] = criterionGAN(pred_real, True, for_discriminator=True)
loss_dis = sum(D_losses.values()).mean()
optimizer_dis.zero_grad()
if opt.fp16:
with amp.scale_loss(loss_dis, optimizer_dis, loss_id=1) as loss_dis_scaled:
loss_dis_scaled.backward()
else:
loss_dis.backward()
optimizer_dis.step()
# --------------------------------------------------------------------------------------------------------------
# recording
# --------------------------------------------------------------------------------------------------------------
if (step + 1) % opt.tensorboard_count == 0:
i = 0
grid = make_image_grid([(c_paired[0].cpu() / 2 + 0.5), (cm[0].cpu()).expand(3, -1, -1), ((pose.cpu()[0]+1)/2), visualize_segmap(parse_agnostic.cpu(), batch=i),
(warped_cloth_paired[i].cpu() / 2 + 0.5), (agnostic[i].cpu() / 2 + 0.5), (pose[i].cpu() / 2 + 0.5), visualize_segmap(fake_parse_gauss.cpu(), batch=i),
(output[i].cpu() / 2 + 0.5), (im[i].cpu() / 2 + 0.5)],
nrow=4)
board.add_images('train_images', grid.unsqueeze(0), step + 1)
board.add_scalar('Loss/gen', loss_gen.item(), step + 1)
board.add_scalar('Loss/gen/adv', G_losses['GAN'].mean().item(), step + 1)
#board.add_scalar('Loss/gen/l1', G_losses['L1'].mean().item(), step + 1)
board.add_scalar('Loss/gen/feat', G_losses['GAN_Feat'].mean().item(), step + 1)
board.add_scalar('Loss/gen/vgg', G_losses['VGG'].mean().item(), step + 1)
board.add_scalar('Loss/dis', loss_dis.item(), step + 1)
board.add_scalar('Loss/dis/adv_fake', D_losses['D_Fake'].mean().item(), step + 1)
board.add_scalar('Loss/dis/adv_real', D_losses['D_Real'].mean().item(), step + 1)
# unpaired visualize
generator.eval()
inputs = test_vis_loader.next_batch()
# input
agnostic = inputs['agnostic'].cuda()
parse_GT = inputs['parse'].cuda()
pose = inputs['densepose'].cuda()
parse_cloth = inputs['parse_cloth'].cuda()
parse_agnostic = inputs['parse_agnostic'].cuda()
pcm = inputs['pcm'].cuda()
cm = inputs['cloth_mask']['unpaired'].cuda()
c_paired = inputs['cloth']['unpaired'].cuda()
# target
im = inputs['image'].cuda()
with torch.no_grad():
if not opt.GT:
# Warping Cloth
# down
pre_clothes_mask_down = F.interpolate(cm, size=(256, 192), mode='nearest')
input_parse_agnostic_down = F.interpolate(parse_agnostic, size=(256, 192), mode='nearest')
clothes_down = F.interpolate(c_paired, size=(256, 192), mode='bilinear')
densepose_down = F.interpolate(pose, size=(256, 192), mode='bilinear')
# multi-task inputs
input1 = torch.cat([clothes_down, pre_clothes_mask_down], 1)
input2 = torch.cat([input_parse_agnostic_down, densepose_down], 1)
# forward
flow_list, fake_segmap, _, warped_clothmask_paired = tocg(input1, input2)
# warped cloth mask one hot
warped_cm_onehot = torch.FloatTensor((warped_clothmask_paired.detach().cpu().numpy() > 0.5).astype(np.float)).cuda()
if opt.clothmask_composition != 'no_composition':
if opt.clothmask_composition == 'detach':
cloth_mask = torch.ones_like(fake_segmap)
cloth_mask[:,3:4, :, :] = warped_cm_onehot
fake_segmap = fake_segmap * cloth_mask
if opt.clothmask_composition == 'warp_grad':
cloth_mask = torch.ones_like(fake_segmap)
cloth_mask[:,3:4, :, :] = warped_clothmask_paired
fake_segmap = fake_segmap * cloth_mask
# warped cloth
N, _, iH, iW = c_paired.shape
grid = make_grid(N, iH, iW)
flow = F.interpolate(flow_list[-1].permute(0, 3, 1, 2), size=(iH, iW), mode='bilinear').permute(0, 2, 3, 1)
flow_norm = torch.cat([flow[:, :, :, 0:1] / ((96 - 1.0) / 2.0), flow[:, :, :, 1:2] / ((128 - 1.0) / 2.0)], 3)
warped_grid = grid + flow_norm
warped_cloth_paired = F.grid_sample(c_paired, warped_grid, padding_mode='border').detach()
warped_clothmask = F.grid_sample(cm, warped_grid, padding_mode='border')
# make generator input parse map
fake_parse_gauss = gauss(F.interpolate(fake_segmap, size=(iH, iW), mode='bilinear'))
fake_parse = fake_parse_gauss.argmax(dim=1)[:, None]
if opt.occlusion:
warped_clothmask = remove_overlap(F.softmax(fake_parse_gauss, dim=1), warped_clothmask)
warped_cloth_paired = warped_cloth_paired * warped_clothmask + torch.ones_like(warped_cloth_paired) * (1-warped_clothmask)
warped_cloth_paired = warped_cloth_paired.detach()
else:
# parse pre-process
fake_parse = parse_GT.argmax(dim=1)[:, None]
warped_cloth_paired = parse_cloth
old_parse = torch.FloatTensor(fake_parse.size(0), 13, opt.fine_height, opt.fine_width).zero_().cuda()
old_parse.scatter_(1, fake_parse, 1.0)
labels = {
0: ['background', [0]],
1: ['paste', [2, 4, 7, 8, 9, 10, 11]],
2: ['upper', [3]],
3: ['hair', [1]],
4: ['left_arm', [5]],
5: ['right_arm', [6]],
6: ['noise', [12]]
}
parse = torch.FloatTensor(fake_parse.size(0), 7, opt.fine_height, opt.fine_width).zero_().cuda()
for i in range(len(labels)):
for label in labels[i][1]:
parse[:, i] += old_parse[:, label]
parse = parse.detach()
output = generator(torch.cat((agnostic, pose, warped_cloth_paired), dim=1), parse)
for i in range(opt.num_test_visualize):
grid = make_image_grid([(c_paired[i].cpu() / 2 + 0.5), (cm[i].cpu()).expand(3, -1, -1), ((pose.cpu()[i]+1)/2), visualize_segmap(parse_agnostic.cpu(), batch=i),
(warped_cloth_paired[i].cpu() / 2 + 0.5), (agnostic[i].cpu() / 2 + 0.5), (pose[i].cpu() / 2 + 0.5), visualize_segmap(fake_parse_gauss.cpu(), batch=i),
(output[i].cpu() / 2 + 0.5), (im[i].cpu() / 2 + 0.5)],
nrow=4)
board.add_images(f'test_images/{i}', grid.unsqueeze(0), step + 1)
generator.train()
if (step + 1) % opt.lpips_count == 0:
generator.eval()
T2 = transforms.Compose([transforms.Resize((128, 128))])
lpips_list = []
avg_distance = 0.0
with torch.no_grad():
print("LPIPS")
for i in tqdm(range(500)):
inputs = test_loader.next_batch()
# input
agnostic = inputs['agnostic'].cuda()
parse_GT = inputs['parse'].cuda()
pose = inputs['densepose'].cuda()
parse_cloth = inputs['parse_cloth'].cuda()
parse_agnostic = inputs['parse_agnostic'].cuda()
pcm = inputs['pcm'].cuda()
cm = inputs['cloth_mask']['paired'].cuda()
c_paired = inputs['cloth']['paired'].cuda()
# target
im = inputs['image'].cuda()
with torch.no_grad():
if not opt.GT:
# Warping Cloth
# down
pre_clothes_mask_down = F.interpolate(cm, size=(256, 192), mode='nearest')
input_parse_agnostic_down = F.interpolate(parse_agnostic, size=(256, 192), mode='nearest')
clothes_down = F.interpolate(c_paired, size=(256, 192), mode='bilinear')
densepose_down = F.interpolate(pose, size=(256, 192), mode='bilinear')
# multi-task inputs
input1 = torch.cat([clothes_down, pre_clothes_mask_down], 1)
input2 = torch.cat([input_parse_agnostic_down, densepose_down], 1)
# forward
flow_list, fake_segmap, _, warped_clothmask_paired = tocg(input1, input2)
# warped cloth mask one hot
warped_cm_onehot = torch.FloatTensor((warped_clothmask_paired.detach().cpu().numpy() > 0.5).astype(np.float)).cuda()
if opt.clothmask_composition != 'no_composition':
if opt.clothmask_composition == 'detach':
cloth_mask = torch.ones_like(fake_segmap)
cloth_mask[:,3:4, :, :] = warped_cm_onehot
fake_segmap = fake_segmap * cloth_mask
if opt.clothmask_composition == 'warp_grad':
cloth_mask = torch.ones_like(fake_segmap)
cloth_mask[:,3:4, :, :] = warped_clothmask_paired
fake_segmap = fake_segmap * cloth_mask
# warped cloth
N, _, iH, iW = c_paired.shape
flow = F.interpolate(flow_list[-1].permute(0, 3, 1, 2), size=(iH, iW), mode='bilinear').permute(0, 2, 3, 1)
flow_norm = torch.cat([flow[:, :, :, 0:1] / ((96 - 1.0) / 2.0), flow[:, :, :, 1:2] / ((128 - 1.0) / 2.0)], 3)
grid = make_grid(N, iH, iW)
warped_grid = grid + flow_norm
warped_cloth_paired = F.grid_sample(c_paired, warped_grid, padding_mode='border').detach()
warped_clothmask = F.grid_sample(cm, warped_grid, padding_mode='border')
# make generator input parse map
fake_parse_gauss = gauss(F.interpolate(fake_segmap, size=(iH, iW), mode='bilinear'))
fake_parse = fake_parse_gauss.argmax(dim=1)[:, None]
if opt.occlusion:
warped_clothmask = remove_overlap(F.softmax(fake_parse_gauss, dim=1), warped_clothmask)
warped_cloth_paired = warped_cloth_paired * warped_clothmask + torch.ones_like(warped_cloth_paired) * (1-warped_clothmask)
warped_cloth_paired = warped_cloth_paired.detach()
else:
# parse pre-process
fake_parse = parse_GT.argmax(dim=1)[:, None]
warped_cloth_paired = parse_cloth
old_parse = torch.FloatTensor(fake_parse.size(0), 13, opt.fine_height, opt.fine_width).zero_().cuda()
old_parse.scatter_(1, fake_parse, 1.0)
labels = {
0: ['background', [0]],
1: ['paste', [2, 4, 7, 8, 9, 10, 11]],
2: ['upper', [3]],
3: ['hair', [1]],
4: ['left_arm', [5]],
5: ['right_arm', [6]],
6: ['noise', [12]]
}
parse = torch.FloatTensor(fake_parse.size(0), 7, opt.fine_height, opt.fine_width).zero_().cuda()
for i in range(len(labels)):
for label in labels[i][1]:
parse[:, i] += old_parse[:, label]
parse = parse.detach()
output_paired = generator(torch.cat((agnostic, pose, warped_cloth_paired), dim=1), parse)
avg_distance += model.forward(T2(im), T2(output_paired))
avg_distance = avg_distance / 500
print(f"LPIPS{avg_distance}")
board.add_scalar('test/LPIPS', avg_distance, step + 1)
generator.train()
if (step + 1) % opt.display_count == 0:
t = time.time() - iter_start_time
print("step: %8d, time: %.3f, G_loss: %.4f, G_adv_loss: %.4f, D_loss: %.4f, D_fake_loss: %.4f, D_real_loss: %.4f"
% (step + 1, t, loss_gen.item(), G_losses['GAN'].mean().item(), loss_dis.item(),
D_losses['D_Fake'].mean().item(), D_losses['D_Real'].mean().item()), flush=True)
if (step + 1) % opt.save_count == 0:
save_checkpoint(generator.module, os.path.join(opt.checkpoint_dir, opt.name, 'gen_step_%06d.pth' % (step + 1)))
save_checkpoint(discriminator.module, os.path.join(opt.checkpoint_dir, opt.name, 'dis_step_%06d.pth' % (step + 1)))
if (step + 1) % 1000 == 0:
scheduler_gen.step()
scheduler_dis.step()
def main():
opt = get_opt()
print(opt)
print("Start to train %s!" % opt.name)
# create dataset
train_dataset = CPDataset(opt)
# create dataloader
train_loader = CPDataLoader(opt, train_dataset)
# test dataloader
opt.batch_size = 1
opt.dataroot = opt.test_dataroot
opt.datamode = 'test'
opt.data_list = opt.test_data_list
test_dataset = CPDatasetTest(opt)
test_dataset = Subset(test_dataset, np.arange(500))
test_loader = CPDataLoader(opt, test_dataset)
# test vis loader
opt.batch_size = opt.num_test_visualize
test_vis_dataset = CPDatasetTest(opt)
test_vis_loader = CPDataLoader(opt, test_vis_dataset)
# visualization
if not os.path.exists(opt.tensorboard_dir):
os.makedirs(opt.tensorboard_dir)
board = SummaryWriter(log_dir=os.path.join(opt.tensorboard_dir, opt.name))
# warping-seg Model
tocg = None
if not opt.GT:
input1_nc = 4 # cloth + cloth-mask
input2_nc = opt.semantic_nc + 3 # parse_agnostic + densepose
tocg = ConditionGenerator(opt, input1_nc=input1_nc, input2_nc=input2_nc, output_nc=13, ngf=96, norm_layer=nn.BatchNorm2d)
# Load Checkpoint
load_checkpoint(tocg, opt.tocg_checkpoint)
# Generator model
generator = SPADEGenerator(opt, 3+3+3)
generator.print_network()
if len(opt.gpu_ids) > 0:
assert(torch.cuda.is_available())
generator.cuda()
generator.init_weights(opt.init_type, opt.init_variance)
discriminator = create_network(MultiscaleDiscriminator, opt)
# lpips
model = models.PerceptualLoss(model='net-lin',net='alex',use_gpu=True)
# Load Checkpoint
if not opt.gen_checkpoint == '' and os.path.exists(opt.gen_checkpoint):
load_checkpoint(generator, opt.gen_checkpoint)
load_checkpoint(discriminator, opt.dis_checkpoint)
# Train
train(opt, train_loader, test_loader, test_vis_loader, board, tocg, generator, discriminator, model)
# Save Checkpoint
save_checkpoint(generator, os.path.join(opt.checkpoint_dir, opt.name, 'gen_model_final.pth'))
save_checkpoint(discriminator, os.path.join(opt.checkpoint_dir, opt.name, 'dis_model_final.pth'))
print("Finished training %s!" % opt.name)
if __name__ == "__main__":
main()