diff --git a/src/sage/rings/laurent_series_ring_element.pyx b/src/sage/rings/laurent_series_ring_element.pyx index 6958a0e45a0..79eb5adeba4 100644 --- a/src/sage/rings/laurent_series_ring_element.pyx +++ b/src/sage/rings/laurent_series_ring_element.pyx @@ -1359,7 +1359,9 @@ cdef class LaurentSeries(AlgebraElement): - ``n`` -- integer - - ``prec`` -- integer (optional) - precision of the result + - ``prec`` -- integer (optional) - precision of the result. Though, if + this series has finite precision, then the result can not have larger + precision. EXAMPLES:: diff --git a/src/sage/rings/polynomial/polynomial_element.pyx b/src/sage/rings/polynomial/polynomial_element.pyx index 8d67be4b531..c78f6fddb6d 100644 --- a/src/sage/rings/polynomial/polynomial_element.pyx +++ b/src/sage/rings/polynomial/polynomial_element.pyx @@ -9673,6 +9673,16 @@ cdef class Polynomial(CommutativeAlgebraElement): lowest degree is not invertible in the base ring. In both cases an ``ArithmeticError`` is raised. + INPUT: + + - ``n`` -- positive integer; the exponent of the root + + - ``prec`` -- positive integer; the precision of the result + + - ``start`` -- optional; the first term of the result. This + is only considered when the valuation is zero, i.e. when the + polynomial has a nonzero constant term. + .. ALGORITHM:: Let us denote by `a` the polynomial from which we wish to extract diff --git a/src/sage/rings/power_series_ring_element.pyx b/src/sage/rings/power_series_ring_element.pyx index 1903dc4f259..4195ab0f5ed 100644 --- a/src/sage/rings/power_series_ring_element.pyx +++ b/src/sage/rings/power_series_ring_element.pyx @@ -1415,7 +1415,9 @@ cdef class PowerSeries(AlgebraElement): - ``n`` -- integer - - ``prec`` -- integer (optional) - the precision of the result + - ``prec`` -- integer (optional) - precision of the result. Though, if + this series has finite precision, then the result can not have larger + precision. EXAMPLES:: @@ -1426,7 +1428,7 @@ cdef class PowerSeries(AlgebraElement): sage: (1 + x + O(x^5)).nth_root(5) 1 + 1/5*x - 2/25*x^2 + 6/125*x^3 - 21/625*x^4 + O(x^5) - Check that the result are consistent with taking log and exponential:: + Check that the results are consistent with taking log and exponential:: sage: R. = PowerSeriesRing(QQ, default_prec=100) sage: p = (1 + 2*x - x^4)**200